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Abstract: Pandemics in the last two centuries have been initiated by causal pathogens that include
Severe Acute Coronavirus 2 (SARS-CoV-2) and Influenza (e.g., the H1N1 pandemic of 2009). The latter
is considered to have initiated two prior pandemics in 1918 and 1977, known as the “Spanish Flu”
and “Russian Flu”, respectively. Here, we discuss other emerging infections that could be potential
public health threats. These include Henipaviruses, which are members of the family Paramyxoviridae
that infect bats and other mammals. Paramyxoviridae also include Parainfluenza and Mumps viruses
(Rubulavirus) but also Respiratory Syncytial virus (RSV) (Pneumovirus). Additionally included is the
Measles virus, recorded for the first time in writing in 1657 (Morbillivirus). In humans and animals,
these may cause encephalitis or respiratory diseases. Recently, two more highly pathogenic class
4 viral pathogens emerged. These were named Hendra Henipavirus (HeV) and Nipah Henipavirus
(NiV). Nipah virus is a negative-sense single-stranded ribonucleic acid ((−) ssRNA) virus within the
family Paramyxoviridae. There are currently no known therapeutics or treatment regimens licensed as
effective in humans, with development ongoing. Nipah virus is a lethal emerging zoonotic disease
that has been neglected since its characterization in 1999 until recently. Nipah virus infection occurs
predominantly in isolated regions of Malaysia, Bangladesh, and India in small outbreaks. Factors
that affect animal–human disease transmission include viral mutation, direct contact, amplifying
reservoirs, food, close contact, and host cell mutations. There are different strains of Nipah virus, and
small outbreaks in humans limit known research and surveillance on this pathogen. The small size of
outbreaks in rural areas is suggestive of low transmission. Person-to-person transmission may occur.
The role that zoonotic (animal–human) or host immune system cellular factors perform therefore
requires analysis. Mortality estimates for NiV infection range from 38–100% (averaging 58.2% in
early 2019). It is therefore critical to outline treatments and prevention for NiV disease in future
research. The final stages of the disease severely affect key organ systems, particularly the central
nervous system and brain. Therefore, here we clarify the pathogenesis, biochemical mechanisms, and
all research in context with known immune cell proteins and genetic factors.
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1. Introduction

Newly emerging viral infections remain a potential public health threat, including
Henipaviruses discovered in the 1990s. Two of these are highly pathogenic in humans and
are detailed below. During pathological research, Koch (1884) defined four key measures of
microorganisms (microbes). Firstly, microbes should be found in abundance in disease and
not in health; secondly, a microbe should be isolated from a host and grown in culture. In
addition, a microbe should cause disease when infecting a host organism and be reisolated
from inoculated or affected hosts to isolate the causal agent.

Within the binomial classification of kingdoms, Henipaviruses are defined under the
kingdom Orthornavirae and order Mononegavirales, that include (−) ssRNA viruses within
the family Paramyxoviridae (see Figure 1) [1,2].
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In comparison, other viruses include (+) ssRNA viruses, with the differences be-
ing that (−) ssRNA viruses have complementary RNA and require transcription to pro-
duce (+) ssRNA to produce mRNA and then translation by RNA polymerase enzymes.
Other categories include those of single- and double-stranded deoxyribonucleic viruses
(ssDNA/dsDNA) [3,4]. Negative-sense ssRNA viruses historically include those that may
cause unusual levels of disease or mortality in vertebrates. For example, Ebola virus,
Hantavirus, Influenza, Lassa fever virus, and Rabies virus are only examined from tissue
samples within Biosafety Level (BSL) 1–4 laboratories based on potential pathogen risk
categorization (see Figure 1 and Supplementary Materials). Nipah virus is categorized as a
BSL4 pathogen.

The homologous Paramyxoviridae Hendra virus was first described in 1994, when
initial reports appeared of a Morbillivirus in horses in Australia with high mortality of
unknown origin [5]. In humans, these can cause encephalitis and/or respiratory disease.
Nipah virus is named after the location of initial outbreaks in Malaysia around late 1998.
Further outbreaks in humans and animals, and/or more specifically in livestock, have
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occurred in Australia, Malaysia, Singapore, Cambodia, and Bangladesh. Mortality has been
seen with NiV infection in at least six species, including horses, cats, and dogs, as well
as ferrets, hamsters, guinea pigs, and monkeys. Besides Malaysia/Singapore (1998–1999),
other reports of NiV infection were documented in Bangladesh (2001/2003/2004). Similarly,
outbreaks were also seen in India (2001/2007/2018), and more recently in 2021 [6]. Nipah
virus is classified as a Biosafety Level 4 (BSL4) pathogen because of its high fatality rates,
thought to be 35% or more, requiring further clarification. In the first outbreak (1998),
within 265 individuals, it was indicated that fatality rates were around 40% initially. Data
on Uniprot is suggestive that at least two of the following hosts have NiV infections:
Cynopterus brachyotis (the lesser short-nosed fruit bat), Eonycteris spelaea (the lesser dawn
bat), Macroglossus spelaeus (the cave nectar bat), Homo sapiens (the human), Pteropus vampyrus
(the large flying fox bat), Scotophilus kuhlii (the lesser asiatic yellow bat), but was also
dominant in Sus scrofa (the pig), with all viral genes seen in these species (see Supplementary
Materials) [7].

Initial reports were indicative of Pteropid bats (flying foxes) and P. hypomelanus as
hosts of NiV potentially replicating or mutating [8]. More recently, before 2012, due to infor-
mation technology (IT) advancement, as well as culturing and isolating other Henipaviruses,
this has subsequently occurred. For example, the Cedar virus (CeV) was isolated from
Australian bat urine samples of P. alecto [9]. Concurrent surveillance during a 2004 human
outbreak clarified this through serological analysis. It was indicated then that birds, pigs,
dogs, shrews, and rodents did not show signs of prior infection with trace amounts of
antibodies reactive against NiV antigens. Antibodies reacting against antigens were found
in P. giganteus [10,11]. Subsequently, NiV was recovered from P. hypomelanus urine, and the
hosts of the NiV infection could be considered bats. However, other species like pigs are
thought to be amplifying viral hosts [10]. The NiV genome is known to be a (−) ssRNA
virus approximated at 18 kb but has been indicated as variable in recent years between
provisional genomic sequencing clades. Some reports indicate that mosquitoes could be
vectors. There are currently around 1300 species of bat, with NiV transmission rates in
humans unknown as measured by R0, although considered low. This may be largely due
to comparative research developments alongside next generation sequencing (NGS), as
determined by genomic surveillance. However, immune system regulation requires further
evaluation, as described below. This regulation can vary between different host species
expressing immune cell markers that include cluster of differentiation markers (CD), cy-
tokines (e.g., interleukins, IL), chemokines (CXC), but also specifically interferons (IFN).
Live NiV isolation continues to be difficult, with severity measured according to laboratory
and clinical reports due to sporadic outbreaks of such virulence. Other relevant Paramyx-
oviridae also infect humans with varying virulence; these include Human Para–Influenza
viruses (HPIV types I–V), Respiratory Syncytial virus (RSV), and Measles (MeV). These dif-
ferentially affect age groups and have historically caused severe illness in younger children
and other vulnerable groups. Recently in 2021, Para–Influenza virus was genetically charac-
terised into two sub–clades (4A and 4B) [12]. According to current reports, the incidence of
encephalitis since 2016 has been 1.5/100,000 people, regardless of pathology. This equates
to 120,000 individuals per year globally. Predominant infections that can cause encephalitis
are Herpes Simplex virus (HSV) and Varicella-Zoster virus (VZV). Other additional viruses
that may cause encephalitis include Enteroviruses, Japanese Encephalitis virus, Tick-Borne
Encephalitis virus, but also Flaviviruses, and Alphaviruses. Bacteria like Mycobacterium
Tuberculosis and Listeria Monocytogenes can also cause encephalitis [13,14]. Therefore,
the aim of this paper is to clarify current biochemical research within NiV and HeV viral
diseases that does cause excessive mortality in comparison to other well-characterised
viruses where immunogens are licensed. Utilisation of vaccines against the MeV and
Mumps viruses in comparison has demonstrated a clear reduction in disease burden and
mortality [15–17].
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2. Epidemiological and Clinical Perspectives
2.1. Clinical Manifestations and Diagnosis

Nipah virus infection frequently causes severe disease and mortality, with symp-
toms that include encephalitis and excessively high infection fatality rates (IFR) like other
BSL4 pathogens (e.g., Ebola (EBOV)). Sensory receptors for pathogens exist within all bio-
logical systems under investigation below with regards to NiV research. These receptors are
expressed within the respiratory, nervous, circulatory, endocrine, reproductive, muscular,
and skeletal systems. In our last paper, we examined systemic immune system cytokines,
chemokines, and CD markers during SARS-CoV-2 infection in depth [17]. However, below
we discuss the pathogenesis of NiV infection and immune system regulation.

Clinical symptoms may include headache, fever, and muscle aches, as well as fatigue.
Muscle stiffness, confusion, agitation, seizure, speech, and hearing issues can occur. In
children, nausea, irritability, poor feeding patterns, and rigor can be considered (see Sup-
plementary Materials). Comparisons of NiV infections are made with Japanese encephalitis.
Severe central nervous system (CNS) symptoms could be considered similar; however, this
also includes the peripheral nervous system (PNS) and immune system regulation.

Early analysis indicated through brain magnetic resonance (MR) scans that the sub-
cortical and deep white matter of the brain possessed bilateral foci. This was illustrated
to potentially affect periventricular areas and the corpus callosum with critical lesions
less than 1 cm in diameter that may differentiate NiV infection and Japanese encephali-
tis virus [18]. Other neurotropic viruses can be ruled out with cerebrospinal fluid (CSF)
analysis indicative of lymphocyte infiltration (pleocytosis) [6]. Initial symptoms that can
occur (4–14 days) are fever and headache, with concurrent signs of acquired respiratory
distress syndrome (ARDS). Subsequent cough, sore throat, and difficulty breathing can also
occur. Concerningly, compartmentalized brain tissue swelling (oedema) can occur from
infection, trauma, or stroke. Encephalitis is considered inflammation derived from chronic
viral or acute infection accompanied by drowsiness, disorientation, and mental confusion
that can progress to a coma within 24–48 h [19]. Cell counts can clarify this further. Recent
population studies clarify that this can vary according to age, country, season, viral genetic
mutations, and immune status. At least two of the following symptoms were indicated
in recent reports as being indicative of encephalitis: fever, seizures, or focal neurological
findings. Concurrent brain parenchyma with CSF pleocytosis of more than four leukocytes
per µL is suggested in recent reports [20–22]. Viral encephalitis can be characterised by a
combination of systemic effects, including vasculitis and necrosis, in both the CNS and
PNS [22]. Extensive cellular infection of neurons, endothelial cells, and smooth muscle
cells of the vasculature can occur. Initial interstitial pneumonia, accompanied by syncytial
cell formation, may be observed with mononuclear cellular infiltrates resembling other
pathologies. Additionally, long-term sequelae in survivors may include encephalopathy,
ocular motor palsy, cervical dystonia, and facial paralysis [23]. It is notable that the mean
age of survivors was 14.5 years old in the prior report; this is therefore clearly indicative of
severity in children with an infection similar to MeV. The Nipah virus can be described as a
neurotropic virus. However, we examine the factors relevant to clarify and explain how
T cell responses, a critical part of immune system development during childhood, can be
considered further. Few reports describe the exact nature of adaptive T cell responses apart
from those seen in Cytomegalovirus (CMV) and Respiratory Syncytial virus infections so
far [24–26].

2.2. Human Transmission of Henipaviruses

Initial reports remain unclear about the routes of NiV transmission. This is likely
to be a combination of oropharyngeal and nosocomial routes or through fomites. It was
thought that NiV could be transmitted through the date palm until 2014, according to
earlier outbreaks in Bangladesh [27]. Outbreaks in India (2001–2007) continued to illustrate
the similar severity of NiV disease with high IFR occurrence (74–100%), but also recently
in 2019 in Bangladesh with similar IFR [28]. Prior reports during the NiV outbreaks in
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Bangladesh were suggestive of the duration of illness leading to mortality at <6 days.
Literature indicates that there are few reports of successful live NiV cultures apart from
those obtained from samples of P. hypomelanus, P. vampyrus, and P. lylei bats. However,
researchers in Australia (2011) investigated other Pteroptids, like P. alecto, and concurred
that these could be considered natural host reservoirs where Henipaviruses co-evolve. It
was indicated in samples analyzed for HeV or NiV infection that symptoms in bats appear
to be subclinical with a low serological response [29]. Reverse transcriptase polymerase
chain reaction (RT–PCR) is often utilised with cycle threshold (Ct) values compared for
HeV genomes from urine, blood, throat, and rectal swab samples. The duration of PCR
detection from urine HeV swabs is indicated at 10–19 days following infection in animals.
In 2014, NiV was isolated from P. medius, with evidence that NiV spillover is indeed
rare [30]. Importantly, during the initial Bangladesh (2004) outbreaks, NiV viral RNA was
successfully isolated, meeting the above definition of a microbe [31].

2.3. Animal Host Reservoirs of Henipaviruses

Early outbreaks of NiV infection and concerns about pig vectors resulted in the
slaughter of 1 million pigs due to viral severity. Recent reports have examined bat novel
virus transmission in different species, indicating that species like Myotis spp. rather than
Pteropid spp. could be reservoir hosts. Also, in an early surveillance study (n = 692), protein
analysis indicated the NiV proteins below could be immunogenic. In a cross-sectional
study of bat species, it was seen that bat samples (n = 33) possessed antibodies that were
not cross-reactive against cellular infection with either HeV or NiV [32]. In a single-case
isolation study, NiV RNA was detected in blood, bronchoalveolar lavage fluid (BALF), and
CSF alongside serum IgM antibodies in people. In variable bat species, the immunoglobulin
G (IgG) specific for NiV was indicated to be found in P. medius (21%), and R. leschenaultia
(37.73%). Furthermore, neutralising antibodies (nAb) evidence of NiV infection were found
in P. medius (20.68%) that were anti–NiV immunoglobulin G (IgG) antibodies. Thus far,
the genomic clades NiV-M and NiV-B, which refer to the initial outbreaks in Malaysia and
Bangladesh, have been identified. Sequencing recently was indicative of slight variations
in genome size (15,100–18,172 bps) in Pteropus bats, with NiV not found in Rousettus spp.
during surveillance [33]. Serology reports in bat reservoirs are variable. In a recent outbreak
case study, surveillance of bats (2018/2019) confirmed that 3.2% and 25% of the samples
obtained were seropositive for NiV infection. This indicated that bat immune responses, as
indicated by serology, could plausibly be established at cyclical levels until 6–7 years after
NiV infection [34]. Indeed, in animal surveillance prior to 2011, reports did indicate that
bats may have differential regulation of immune responses, with further research required
to investigate this [29].

3. Henipavirus Pathogenesis
3.1. Introduction to Nipah Virus Proteins and Genes

Currently, the Uniprot database shows 281 proteins listed under Henipavirus that
include nine from the original HeV 1994 strain (AF017149) and eight from NiV strains
(UP000128950). Nipah virus is known to be approximately 18,200 bps in size and encode
six proteins. These are nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion
protein (F), glycoprotein (G), and polymerase (L) protein. An additional NiV P protein
encodes a further three non-structural proteins (NSP) responsible for RNA editing (V and W
proteins) or with an open reading frame (ORF/C protein). Below is shown the comparison
between NiV and HeV proteins (see Tables 1 and 2).
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Table 1. NiV proteins (adapted from source: Uniprot, accessed on 8 March 2023).

Protein Names Gene Names Length (Amino Acids)

RNA–directed RNA polymerase L (Protein L) L 2244
Non–structural protein V P/V/C 456
Glycoprotein G G 602
Fusion glycoprotein F0 (Protein F) F 546
Matrix protein (Protein M) M 352
Phosphoprotein (Protein P) P/V/C 709
Nucleoprotein (Protein N) (Nucleocapsid protein) N 532
Protein W P/V/C 450

Table 2. HeV Proteins (adapted from source: Uniprot, accessed on 13 March 2023).

Protein Names Gene Names Length (Amino Acids)

Fusion glycoprotein F0 (Protein F) F 546
RNA–directed RNA polymerase L (Protein L) L 2244
Non–structural protein V P/V/C 457
Phosphoprotein (Protein P) P/V/C 707
Nucleoprotein (Protein N) (Nucleocapsid protein) N 532
Matrix protein (Protein M) M 352
Glycoprotein G G 604
Protein C P/V/C 166
Protein W P/V/C 448

Recent outbreaks of NiV indicate that genome sequencing is required for the NiV
infection that has occurred so far in isolated outbreak samples [33,34]. In 2019, in a case
study, it was indicated that mutations occurred within the NiV N gene that the sequencing
database sites (nextstrain.org) do not currently display; although massive global surveil-
lance during the COVID–19 pandemic on viral mutations in SARS-CoV-2 spike (S) protein
domains and other potential pathogens does continue [33,34].

3.2. Nipah Virus Viral Protein Factors

Two viral membrane glycoproteins (see Table 1) above are considered to mediate NiV
cellular attachment and include the haemagglutinin–neuraminidase (HN) proteins. These
attach to the receptor binding protein (RBD) and are considered stalks shared amongst
other Paramyxoviridae requiring fusion peptides (F) with NiV possessing a NiV G gly-
coprotein [35]. These two proteins are type II membrane glycoproteins composed of a
cytoplasmic tail and transmembrane region attached to the viral envelope with a stalk and
globular head. Insertion of the hydrophobic NiV F protein alongside the NiV G protein
into the cellular plasma membrane is required for viral propagation. Nipah virus entry to
host cells was described as utilising recombinant NiV N/NiV P interaction, that is crucial
in disrupting NiV viral mRNA. This affects polymerase transcription and replicase activity
through assembly and encapsulation into full-length genomic viral RNA [36,37]. Further-
more, the N-terminal protein of NiV N could be inhibited, as with SARS-CoV-2, where
the conformation and binding shape of the unassembled NiV N protein affect cellular
entry. Hendra virus protein homology gave early indications that IFN signaling inhibition
occurred for both type I and type II IFNs (IFN–α/IFN–γ), that usually facilitates viral
elimination. In 2003, the HeV V protein was thought to accumulate intracellularly with
specific signal transducer and activator of transcription (STAT) proteins. These include
STAT1 and others below that can be dysregulated, preventing further IFN-induced signal-
ing [38]. Therefore, the NiV N protein, through saturation of a binding domain within the
NiV P protein (polymerase complex), could affect enzyme activity through transcriptase
or replicase activity [36,39]. Moreover, NiV M protein involvement in viral budding is
considered to affect cellular morphology [40]. Nevertheless, F peptides are required to bind
and traverse the phospholipid bilayer, dependently or independently of cellular receptors.
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Further clarification from Michael Weis’ group in 2015 (Marburg, Germany) indicated the
NiV F protein contains Y525RSL (a tyrosine signal) that is essential for NiV F protein uptake,
proteolytic activation, and endocytosis [41]. In comparison, Protein C researched in vivo
can cause more serious respiratory damage during NiV infection as studied in knockout
experiments [42]. In 2003, utilising an in vitro model of recombinant Newcastle Disease
virus (NDV), all three NiV proteins (NiV V, NiV W, and NiV C) were indicated as required
for intracellular NiV replication [43]. Cellular regulation of NiV appears to clarify in vitro
that p38 is also essential [44,45]. Whilst X-ray crystallography illustrated that NiV M protein
binds to intracellular phosphatidylserine (PS) and soluble cellular phosphatidylinositol
4,5-bisphosphate (PI (4,5) P2). These maintain and regulate intracellular NiV virion particle
formation and egress through NiV M protein polymerization [46]. The larger NiV L protein
function is that of a viral polymerase required for replication [47,48]. Viral NiV replication
therefore occurs intracellularly through post-transcriptional modification, resulting in 5′

capping and methylation of RNA. Thereafter, NiV V protein is described as the virulence
factor that may abrogate type I IFN responses intracellularly, as we discuss below [49].

3.3. Receptor-Mediated Nipah Virus Entry

Initially, it was clarified that two ephrin receptor types, B2 and B3 (EFNB2/ENFB3),
are both encoded by EFNB genes are implicated in cellular host HeV and NiV infection [50].
In 2003, EFNB2 receptor stability was clarified as being induced by the NiV G protein
preceding full receptor activation, similar to a viroporin [51]. Ephrin B2 is preferentially
expressed on vascular endothelial cells, as well as alveolar type II epithelial cells and
around host naïve T cells (TN), with a known role in angiogenic tissue remodeling [52].
Moreover, according to current data, EFNB2 is constitutively expressed at higher levels
in the brain, cerebral cortex, amygdala, basal ganglia, hypothalamus, and white matter.
Ephrin B2 is conserved across species and could be a therapeutic target. It appears that
two NiV proteins, NiV F and NiV G, co-stabilize at the EFNB2/EFNB3 receptor interface
to facilitate viral RNA cellular entry [53]. Microbial and viral pathogens utilise protein
glycosylation for host cell entry and immune response evasion. This can occur through
either N-glycans or O-glycans affecting cellular protein binding and signaling at the cell
membrane surface. Therefore, N-glycosylation in NiV infection was indicated by unique N-
X-S/T motifs (asparagine (N), any amino acid apart from proline (X), serine (S), or threonine
(T)). Currently, O-glycosylation of S/T residues remains unknown. Other Paramyxoviruses
are affected by N-glycans in MeV infections that alter F protein-mediated fusion and
processing. In addition, C–type lectins (e.g., galectin–1) bind to N and O glycans that
inhibit infection but increase endothelial viral RNA entry [54,55]. This was investigated in
2015, when the disruption of eight predicted N-glycosylation sites was examined to find six
(G2–G7), with one conserved between HeV and NiV in the stalk (G2) and five in the head
domain (G3–G7) [56]. The EFNB2-predominant receptor is better characterised through
histological analysis and is absent in other cellular subtypes, but other unknown receptors
may exist [50,57]. As shown below, the NIV G protein appears to be stabilized as a trimer
with NiV F/EFNB2 during cellular fusion. Intracellularly, NiV F is activated, endocytosed,
and can be cleaved through proteases (e.g., cathepsin L), but remains active during viral
replication and virion formation [58]. Given our discussion below and considering current
immunogen development, it appears as though the NiV F protein may either be less
immunogenic or shielded from immune cells during cellular infection.

3.4. Cellular Immunomodulatory Properties of Nipah Virus Infection

Bats have been described as having IFN modulatory properties that enable viral trans-
mission. Reports appeared in 2012 describing bat viral reservoirs [59]. Other reviews
document both OPXV infection and SARS-CoV-2 affecting host IFN cell synthesis. Compar-
atively, less is known about the role that IFN plays in the cellular regulation of viral infection.
Factors that have been described in P. vampyrus include type I/III IFNs modulating IFN
gene transcription through receptors; for example, different species may have different
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specific type I IFN subtypes (e.g., IFN–α/β) or type I IFN receptors (e.g., IFNAR–7). Other
species like M. lucifugus and P. vampyrus may have more of the other type I IFN subtypes
(IFN–ω). Earlier articles are indicative of a predominant type I/III IFN regulatory role
in both human and bat species that can eliminate viral infections [59]. In comparison,
type II IFN (IFN–γ) can also be considered important for adaptive immune responses in
cancer [60,61]. Within NiV disease, there are suggestions that both NIV W and NIV V both
appear to regulate IFN–β production [62]. This could occur by inhibiting the proteolysis
of the UBXN1 protein and suppressing both retinoic acid-inducible gene I (RIG–I) and a
similar helicase receptor (MDA–5). These stabilize mitochondrial antiviral signaling protein
complexes (MAVS and ubiquitin-binding UBA domain/UBX motif, UBXN1) are known to
regulate the nuclear transcription factor (NF–κB) [62,63]. Therefore, as NiV W can influence
NF–κB, the detailed role of other pattern recognition receptors (PRR) like Toll-like receptors
(TLRs) that are present on cell membranes and vesicles during NiV infection is starting to
emerge. There are ten known TLRs in humans.

Interferon modulatory properties affect intracellular viral propagation and modulate
immune responses that are well characterised in humans but less so in bats. These include
interferon regulatory factors (IRF3/7) and TLRs (TLR3/4/7/8/9) known to be affected by
viral DNA/RNA host cell entry. Many other PRRs are considered better known in other
pathologies [64]. Early in NiV research, NiV V and NiV W proteins were seen in vitro
to selectively antagonize host cell IFN gene transcripts. In the context of NiV infection,
TLR 7/9 were plausibly seen to be inhibited, thereby additionally reducing cellular IFN–α
synthesis and induction through the IκB kinase (IKK–α) and IRF7 pathways by inhibiting
NF–κB transcription [42,65]. Very recently, MAVS were thought to be critical alongside
both TLR7/MyD88, that could be redundant during NiV infection rather than TLR3. These
recent reports indicate the biological plausibility that TLR7 on immune cells could affect
activated T cell subtypes known to be preferentially infected and that express high levels of
EFNB2 during active NiV infection [66]. The amino terminals of NiV V and NiV W proteins
may be causal in this, as the NiV V protein carboxyl terminus is known to be relevant
to HPIV-II infection [43]. Recently, mRNA transcripts were noted during in vivo NiV
immunogen experiments. These researchers noted upregulation of transcription factors
(TFs) relevant to IFN responses (IFIT2, GBP1, IFIT1, MX1, OASL, and IFIT3). However,
other immune response genes were also noted as upregulated (e.g., FCAR, CLEC4E, and
IL-8) [67]. However, as NiV V and NiV W diffuse intracellularly to the nucleus, these may
inhibit the janus kinase (JAK) and STAT protein pathways affecting the IFN–β promoter
and IRF3. Furthermore, extracellular NiV W in return may antagonize TLR3 around plasma
cell membranes and intracellular vesicles. Below are shown known cellular interactions
during NiV infection and upregulated molecular gene transcripts observed in research so
far in italics (see Figure 2).

Other RNA viruses can affect TLR3 through Toll-interleukin–1 receptor (TIR) domain-
containing adaptor-inducing IFN–β (TRIFs) [68,69]. Recent reports are indicative that
IRF1 also plays a role in IFN regulation in both monocytes and macrophages (Mφ), together
with IRF7/9 coordinating TLR sensing of viral DNA/RNA [70,71]. Furthermore, IFN regu-
lation appears to be regulated through two NiV proteins, NiV V and NiV M, that enhance
the tripartite motif (TRIM6) post-translational protein degradation. This could impair the
oligomerization and phosphorylation of an IκB kinase (IKK–ε) [72]. As noted above, IFN–β
is required for myeloid cell differentiation and maturation of antigen-presenting cells (den-
dritic cells (DCs), monocytes, and Mφ), as well as regulating Mφ apoptosis [73,74]. Data
indicates that TRIM6 is also constitutively expressed predominantly by neutrophils within
the immune system (see Supplementary Materials). Furthermore, STAT proteins were
examined through immunoprecipitation of haemagglutinin (HA) proteins tagged to NiV P,
NiV V, and NiV W proteins. These were flanked by a peptide sequence (FLAG, denoted by
the DYKDDDDK sequence). The NiV P protein was observed to have a conserved interac-
tion with STAT1, STAT2, and STAT4, but specifically with amino acid residues (114–140) of
the NiV P protein. Whilst STAT1/4, but more specifically the STAT1 SH2 domain can affect
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IFN–β nuclear transcription. In addition, it was found that NiV P/V/W proteins could
also antagonize STAT4 through N-terminal domains [75]. Moreover, within endothelial
cells, STAT4 protein in vitro research indicates that IFN-α rather than the DC maturation
cytokine IL-12 is required to activate STAT4 alongside the CD4 TH1 cell response [76].
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4. Current Therapeutics
4.1. Clinical Trials

Currently, no therapeutics are licensed for human NiV prophylactic infection or treat-
ment. Development and clinical trials are ongoing with other immunogens. Currently, one
vaccine is licensed for HeV in horses [77]. Research in vivo into future NiV immunogens
indicates that therapeutics derived from the Vaccinia virus could be an effective attenu-
ated viral vector expressing both NiV G and NiV F proteins [32]. The initial emergence
of potential NiV vaccines therefore continued to be examined in vivo between 2004 and
2006 [78,79]. Presented below are the registered current clinical trials listed (see Table 3).

Table 3. Current Clinical Trials (Source: https://www.clinicaltrials.gov, accessed on 10 March 2023).

NCT ID Title Locations

NCT04199169 Safety and immunogenicity of a Nipah virus vaccine OH, USA
NCT05178901 Phase 1: evaluate safety and immunogenicity PHV02 KS, USA

NCT05398796 Dose-escalation evaluation of the safety and
immunogenicity of mRNA-1215 NIH, MD, USA

NCT01811784 Community intervention to prevent Nipah spillover Bangladesh

4.2. Henipavirus Monoclonal Antibodies and Vaccines in Development

From 2015, newer therapeutics targeting Henipaviruses during outbreaks were sugges-
tive that in vitro/in vivo Phase 1 studies established a monoclonal antibody (m102.4) that
met safety, tolerability, and pharmacokinetic profiles to be suitable for use [80]. This fol-
lowed up on 2013 research that indicated nAbs were produced against combined HeV/NiV

https://www.clinicaltrials.gov
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antigens utilising an epitope targeted against the EFNB2 G–H loop residue [81,82]. Several
projects are currently undergoing evaluation for their promise for NiV therapy devel-
opment. This research indicates that a soluble recombinant G protein subunit of HeV
(HeVsG) may provide protection against known strains of Henipaviruses that are NiV–M
and NiV–B, but also against HeV in four animal species. This HeVsG immunogen was
initially licensed in 2015 as Equivac® HeV by Zoetis Inc., under regulatory authority by the
Australian Pesticides and Veterinary Medicines Authority (APVMA) [83,84]. Similarly, in
2012, a chimpanzee Adenovirus replication-deficient vector (ChAdOx) was further inves-
tigated. Suggestions were that a limited or low antibody response may occur but would
still provide protection against 2 NiV strains (NiV–B or NiV–M). This vector progressed
through trials with Oxford University starting in 2012 [85]. Later, in conjunction with
Vaccitech/Astra Zeneca from April 2020, ChAdOx was researched in phase 1/2/3 clinical
trials and then under Emergency Use Authorization (EUA) with SARS-CoV-2 antigens
to instead express NiV-specific antigens to effect the necessary innate and adaptive im-
munogenic response. Just prior, this vector was investigated for immunogenicity against
tuberculosis, MERS–CoV, and Rift Valley fever [86–89]. Subsequently, research in vivo
utilizing the ChAdOX vector encoding the NiV G RBD protein antigen observed that NiV
N and NiV F proteins were comparatively not immunogenic, with binding antibodies at
minimal concentrations [90]. In 2019, other researchers utilised immunoinformatics to
further clarify NiV T cell epitopes. It was indicated that some were non-allergenic with
2 epitopes, LLFVFGPNL and KYKIKSNPL, that could retain antigenicity and bind to MHC
class II alleles (HLA–DRB1*01:01 and HLA–DRB1*07:01) [91]. Furthermore, in silico studies
are examining the design of self-amplifying mRNA vaccines against NiV infection [92].
More recently, the modified Vaccinia Ankara (MVA) vaccine is being engineered to express
full-length NiV G protein or soluble NiV G protein [93]. In 2022, a recombinant Vesicular
Stomatitis virus (rVSV) vector was trialled in vivo, with results suggesting that nAbs were
essential for protection within 7 days [67]. Other reports indicate that a lipid nanocapsule
protein (LNP)-encapsulated mRNA immunogen encoding the soluble HeV G protein is in
development (see Table 3 and Supplementary Materials). Other recombinant MeV vaccine
vectors are also in development that express NiV proteins [94].

4.3. Current Antiviral Therapeutics

After the 1998–1999 NiV outbreak, ribavirin was trialled, with results in 2001 indica-
tive of a 36% reduction in mortality [95]. In 2014, a synthetic purine analogue, T–705,
known as Favirapir (Avigan®) and authorized in Japan for Influenza treatment, began
undergoing phase 2/3 trials in the USA/Europe [96]. Favirapir is a viral RNA-dependent
RNA polymerase (RdRp) inhibitor observed in NiV–M infection in vivo to reduce viral
antigen in the brain, lung, and spleen as observed in histopathological observation [97].
Before/after 2019, Remdesivir (GS–5734) was examined in phase 2 clinical trials, with its
nucleoside analog seen to inhibit not just Filoviruses, but potentially also Pneumoviruses,
and Paramyxoviruses similarly [98]. More recently, other host-specific inhibitors with broad-
spectrum Paramyxovirus activity have been described. Undergoing further development are
two compounds (ZHAWOC9045/ZHAWOC21026). Early indications are suggestive that
these retain activity against not only NiV and MeV but also both RSV and HPIV (type V)
through inhibiting the RdRp complex [99].

4.4. Diagnostic Methods and Future Prospects

Recently, during further assay development, literature indicates more specific assays
have been developed. These will undoubtedly be useful and differentiate between viral
infections, including NiV and HeV, utilising EFNB2 as the known ligand in combination
with mAb–F20NiV-652022. At the time of writing this article [100], the affinity of the
NiV G protein for EFNB2 and EFNB3 receptors was not yet conclusively known. Current
proprietary lateral flow tests utilise detection of the NiV nucleocapsid (N) protein [101].
More recently, in 2022, 40 B and T cell epitopes were identified in molecular docking and
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immunoinformatics research. These authors suggest that such epitopes could evoke im-
mune cell release of a type II IFN (IFN–γ), interleukin–4 (IL–4), and interleukin–10 (IL–10).
Molecular docking studies suggested that immune cell TLR4 and TLR8 pattern receptors
could be crucial [102]. The results of this would be interesting to see. In our last publication,
we compared immune system cellular markers of Mφ during SARS-CoV-2 infection [17].
Macrophage polarization through activation and differentiation into M1 Mφ or M2 Mφ
requires further clarification, and therefore recently other researchers have clarified such
tissue-specific Mφ [17,103]. However, above we discussed TLR3/7 inhibition with regards
to NiV infection, and recent research recognizes that TLR agonists may hold promise in
this regard [104].

5. Current Known Immunological Perspectives of Nipah Virus Infection
5.1. Background

In late 1999, initial reports of NiV infection indicated that lymphocyte count, platelet
count, low serum sodium, and high aspartate aminotransferase concentration (each ob-
served in five individuals) together with high CSF pleocytosis were serum factors that
changed during NiV infection in humans. Antibody (IgM) concentrations in combination
with PCR testing were considered indicative of NiV infection [105]. Below, we consider
known serological studies in different hosts. These can vary between animals due to the
characteristic differential expression of CD molecules or other proteins. Laboratories con-
firmed that initial enzyme-linked immunosorbent assays (ELISA) could be 98.4% specific
for Henipaviruses. These require validation of the specificity of the utilised monoclonal
antibodies before diagnostic or clinical consideration [106]. Little is known about the im-
munology of NiV infection. In India (2001), reports confirmed the same high mortality
rates as before, with serological analysis available. Serology responses (IgG and IgM) in
humans were detectable in 9/18, or 50% of NiV infections [18]. However, in vitro and
porcine studies up to 2012 imply that NiV directly infects CD4−CD8hi/+ and CD4+CD8hi/+

T cells expressing CD6. Importantly, downregulation of IFN–α gene transcription can
occur, that would in effect reduce IFN–α synthesis and secretion. At the 7-day timepoint,
CD4+CD8− T cells significantly reduce when human mortality can occur; these cells form
a key part of adaptive immune systems [44]. Inhibition studies of CD6 illustrate that this
cellular marker regulates and influences leukocyte CD4 T cell extravasation across en-
dothelial cell membranes and the blood brain barrier. CD6 is also preferentially expressed
by activated monocytes, epithelial cells, and neurons [44,107–109]. Other Morbilliviridae,
such as MeV, utilize immune cell receptors like signaling lymphocyte activation molecules
(SLAMF1/CD150) to replicate within the immune system and are expressed on T cells, B
cells, natural killer (NK) cells, and DCs [110,111].

5.2. Analysis of Cellular Nipah Virus Immunogen Responses

Recent reports investigating potential future immunogens to NiV infection indicate
that the rVSV immunogen expressing the NiV G glycoprotein protects all non–human
primates from mortality within 7 days [112]. Interestingly, in this comparison, it was noted
that gene expression of MX1, OASL, IFI44, GBP1, IFIT2, and IFIT1 were key downregulated
transcripts [113,114]. Within these interferon-regulating gene TFs, IFI44 is notable as a
shared interferon-inducible factor between viral and bacterial infections, including SARS-
CoV-2, Staphylococcus aureus, but also Rheumatoid Arthritis (RA) [115]. Furthermore, more
genes that affect adaptive immunity were noted as upregulated, including CD96, KLRK1,
KLRG1, KLRF1, and SH2D1A [116,117]. These were interesting observations, as KLRK1 and
KLRG1 are implicated in lung adenocarcinoma as potential prognostic markers. However,
KLRF1/KLRG1 can be associated with TNF/IFN reduction, which is suggested to occur
from within the CD4+ T cell compartment [118–120]. Additional upregulation occurred in
survivors within NK cell compartments expressing the gene transcripts KLRC3, KLRC2,
and GZMM. These three genes encode the NK cell receptor proteins NKG2E/NKG2H and
NKG2C, together with the neutral serine protease granzyme M, that is stored in activated
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NK and T cells (see Supplementary Materials). The CD96 receptor can affect extracellular
and intracellular TFs, including T cell immunoreceptor and immunoreceptor tyrosine-
based inhibitory motif domains (TIGIT), CD226; T-cell immunoglobulin and mucin-domain
containing-3 domains (TIM–3); programmed death–ligand (PD–L1); cytotoxic T leukocyte
antigen 4 (CTLA–4); and STAT3 [121]. Below are shown the current immune cell interactions
during NiV infection, that are discussed further below (see Figure 3).
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5.3. Current Implications and Immunological Research

During the 2019 outbreaks of NiV infections (n = 18), further reports appeared of sur-
vivors (n = 2) that have a dominant cytotoxic T cell (TC) response. This was indicated by the
T cell marker CD8 and denoted by MHC class II molecule expression (HLA–DR+) together
with CD38+ but without change in the TH cell compartment. In addition, both PD–1 and
granzyme B were documented in individuals (n = 2) recovering from NiV infection with
serology analyses. In these individuals, B cell plasmablasts matured with the secretion of
specific and detectable IgG and IgM, peaking at 5 days [122]. Very recently (2020), more
detailed information is known. In comparable in vivo research in cynomolgus monkeys, it
was seen that during NiV infection, gene transcription could provide detail on NiV disease
that could plausibly influence coagulation, cytolysis, cytokine production, and other path-
ways. These include complement genes (C5/C4MPA), granzymes (GZMK), the cytokine
IL–11 receptor (IL11RA), clusterin (CLU), as well as carcinoembryonic antigen–related cell
adhesion molecule 8 (CEACAM8) (see Supplementary Materials) [123]. This upregulated
gene transcription was accompanied by decreased expression of one immune cell receptor,
CD244. The CD244 protein is encoded by SLAMF4, which encodes signaling lymphocyte
activation protein (SLAM) expressed by both NK and T cells that may restrict NK cell-
driven MHC-restricted cytolysis. CD244 can also be expressed by monocytes, NK cells,
and, at elevated levels, basophils. Other gene transcripts concurrently noted as upregulated
(CD79A, IRF8, and DEFA1) that could also respectively affect B cell differentiation, IFN
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transcription, and defensin protein production. In NiV survivors, upregulation of SLAMF6,
SLAM-associated protein (SH2D1A), family tyrosine kinase (FYN), and chemokine receptor
(CCR5) was considered significant. Furthermore, T cell genes upregulated included CD3 (D,
G, and E) and CD8a, whilst T box TF (TBX2) was downregulated in late disease. The role
of the IL1R2 protein in the regulation of IL–1α and IL–1β synthesis remains unclear [124].
IL1R2 is composed of an extracellular domain composed of three glycosylated immunoglob-
ulin (Ig)–like domains and lacks the intracellular TIR domain and can sequester IL–1α
and IL–1β [125]. Regulation of IL–1 secretion, tumor necrosis factor (TNF–α), IL–6R, TNF
receptor (TNFR1/2), and transforming growth factors (TGF–α) each occur during homeo-
static immune cell responses utilizing adhesion molecules (e.g., L–selectin (CD62L) and
ICAM–1) [126,127]. Differential effects can affect neutrophil chemotaxis [126,127]. Mono-
cyte and Mφ chemotaxis requires maturation cytokines and CD62L to cross endothelial
cell membranes, as discussed in our last publication [17,128–130]. Comparatively, within
viral pathologies, DC–SIGN (CD209) receptors can be predominant in myeloid lineages, as
in HIV–1 and Zika virus, that facilitate infection of DC subsets [128–131]. More research
would undoubtedly clarify whether these affect NiV cellular infection. In recent reports
further examining the host immune response using the VSV vector against NiV, gene
transcripts were observed for CD40L, CD3E, and CD8A alongside CX3CR1, IL-21, and TCF7.
These are key regulators of NK and T cell function [67,132]. Key cytolytic gene transcripts
for granzymes (GZMA/L/B), granulysin, KLRC2, and KLRC3 were upregulated, of which
some could potentially be synthesized by TC cells with others encoding C lectin receptors
on NK cells or DCs [67]. With regards to NiV direct infection of APCs, it remains unclear as
to whether this involves clear active replication, permissive infection, or latency as seen
in other familial viruses (e.g., Retroviridae, Coronaviridiae, Herpesviridae, or Orthopoxviridae).
Nipah virus was indicated as appearing to lack fusion ability with myeloid-derived cells,
including DCs, monocytes, and Mφ. This is consistent with the comparatively lower
expression of EFNB2 or EFNB3 [50]. Reports are contradictory, although earlier research
refers to interstitial DCs that develop through maturation into different phenotypes as anti-
inflammatory, pro-inflammatory, or anti-tumorigenic [133]. Interstitial cells were originally
defined in 1978 as distinguishable from tissue Mφs histologically by high staining and
expression of MHC type II molecules that present peptide antigens [134].

In 2013, it was clarified in vitro that four pro-inflammatory cytokines were produced
within four days by DCs after NiV infection. These are IL–1β, TNF–α, IL–10, and CCL3,
with reduced type I IFN synthesis. A concomitant upregulation of three immune cell mark-
ers (CD40, CD80, and CD86) occurred that affects the tolerogenic profile of DCs [135]. Of
these proteins, CCL3 is known to be a chemoattractant for six immune cell types, including
T cells, B cells, basophils, eosinophils, mast cells, and NK cells. Comprehensive recent
reports document in vivo serum and immune cells up to day 14, describing respiratory
infection of epithelial cells, endothelial cells, and CD68+ Mφ, but not pneumocytes ex-
pressing E–cadherin [135]. Therefore, this could be indicative of either pro-inflammatory
or anti-inflammatory Mφ or tumor-associated Mφ not yet known [136]. However, as we
discussed in our last article, immune cells can be described by characteristic CD markers
and chemokines [17]. Pleiotropic cytokines and receptor families remain a focus for future
research to elucidate signal transduction mechanisms. For example, the role of the IL–6 fam-
ily of receptors, which includes the leukemia inhibitory factor receptor (LIFR) and ligands,
remains under research and development. Recent discoveries implicate LIFR within the
family of IL–6 receptor subunits as being regulatory in other pathologies. These plausibly
may affect JAK and STAT3, but also mitogen-activated protein kinases (MAPK) and a serine
threonine kinase (AKT/protein kinase B, PKB) that will be discussed further [17,137–140].

6. Discussion

Nipah virus and other BSL4 pathogens represent a present public health threat that
have been comparatively recently discovered and isolated since 1994. Hendra virus char-
acterization and Nipah virus isolation during sporadic laboratory culture developments
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and outbreaks since 1999 are indicative of this. Comparatively, less is known about the role
that IFN plays in immune cell regulation within Pteroptids, which therefore should be a
key area of research. This would elucidate how zoonotic regulation occurs within different
species of animals that possess differential cellular immune system markers. According
to the WHO website, these are listed as unknown landscape, target product profiles, trial
designs, and scientific consultations (see Supplementary Data). Infection with the Nipah
virus remains a focus. Recent history, since its discovery in 1999, with pandemics caused
by other viruses like Influenza (H1N1) and SARS-CoV-2 is suggestive that scientific ratio-
nale is required to contextualize the relevance of research. Risk factors for Nipah virus
transmission are suggestive of epidermal contact, food transfer, and an unclear transmis-
sion rate during currently reported sporadic outbreaks [141–143]. However, comparisons
with viral outbreaks in other herd animals are noteworthy. Recently, the H1N1 strain of
Orthomyxoviridae (Influenza) was almost continuously recorded from 1974 to 2015. Other
strains of Influenza (H5N1/H5N8) were noted as increasing in animal herds in recent
reports. For example, in Europe, 2520 outbreaks of H5N1 Influenza occurred in animals in
October 2021, resulting in 3867 dead birds [144,145]. Furthermore, H5N1 outbreaks were
reported in mink farms indicated during the COVID–19 pandemic as potential amplifying
host reservoirs. More recently, discussions have started occurring to ascertain the effec-
tiveness of disinfecting the Nipah virus, with the prospect that this can be done within
8 min using quaternary ammonium compounds or ethanol [146,147]. Reports between
2006 and 2012 are indicative of bat Nipah virus antibody prevalence that ranges in P. medius
at around 6–7 years [148]. In contrast, in humans, other Paramyxoviruses can cause serious
disease, for example Measles, where real-world data estimates of mortality suggest that this
remains greater than 100,000 individuals per year. Measles virus is considered to reduce
the antibody repertoire produced by B cell plasmablasts from 73% to 11% [149,150]. The
apparent reduction in type I IFN secretion seen with human NiV infection, specifically
IFN–β, may regulate DC, monocyte, and Mφmaturation through cellular apoptosis, whilst
NiV potentially replicates within T cell compartments. The role that CD244 receptor down-
regulation performs, which is expressed by NK cells, basophils, and eosinophils, remains
unknown but could plausibly affect B and T cell signaling.

7. Conclusions

In conclusion, given the encouraging immunogen developments we have outlined
above for cellular and current molecular immunological research, we hope this paper
provides further clarity to clinicians, researchers, and academics around the world. There
are similarities between the Measles virus and the Nipah virus during the technological
evolution of the immunological field occurring between 1994 and 2023. Above, we have
presented known facts regarding Nipah virus with regards to protein, cellular infection,
and immunology affecting IFN regulation in context with research since 1999. All proteins,
genes, and immune cell mechanisms that the NiV infection is considered to affect during a
lethal infection are displayed. Given the concerns that other emerging viral infections post-
COVID–19 pandemic may pose, it is prudent to provide a detailed analysis and evaluate
known host immune system responses in context. However, it is apparently clearer now
that, within different viral outbreaks, knowledge gaps exist that require development.
For example, in earlier Measles virus infections, it can clearly be seen that there is a
suggestion of biphasic adaptive immune response regulation coinciding with TH17 cell
characterization. Such variations during any host immune response to different infections
result in the induction of differential cytokines and chemokines within crucial B and T
cell compartments. Much remains unknown due to sporadic Nipah virus outbreaks with
regards to other immune receptors, such as Toll-like receptors and other pattern-sensing
receptors. In other non-viral infections, some clarity appears with the above potential
factors, originally discovered in 1957. These are type I, II, and III IFNs that appear to
be central regulators of nuclear transcription factors and antiviral activity through the
innate and adaptive arms of the immune system. Further research into the latter would
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undoubtedly clarify and develop knowledge about the relevance between pathologies and
innate immune system signaling in the future.
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