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Abstract: Interceding nutrients have been acquiring increased attention and prominence in the field
of healing and deterrence of various disorders. In this light, the present article encompasses several
facets of ketogenic diet as an immunomodulator with respect to its expansive clinical applications.
Accordingly, several scientific records, models, and case histories, including viral infections, cancer,
chronic diseases, e.g., cardiovascular diseases, epilepsy, as well as numerous other neuro-disorders,
are assembled, revealing a profound influence of KD in favor of improvement in the patient’s
condition. We accentuate possible manifold mechanisms of KD that require further exploration.
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1. Introduction

Lifestyle usually plays an important role in human beings’ health. Various categories
of diets, e.g., “low carbohydrate diets”, “traditional regional diets”, and “plant forward
diets”, are known, followed, and prescribed in the interest of improving and/or maintain-
ing the well being of respective individuals. An extensive survey and research is being
conducted in almost all the corners of the world to study the impact of these diets on human
beings. Ketogenic diets (KD) encompass a lower consumption of carbohydrates, adequate
protein, and a high fat regimen which induces ketone body production via mimicking the
metabolism of the fasting state without significant calorie deprivation.

The long-chain triglyceride (LCT) diet, the modified Atkins diet (MAD), the low
glycemic index procedure, and the medium-chain triglyceride (MCT) diet are four major
types of ketogenic diets (KD) that have been shown to be effective in many scientific
reports [1,2]. Since 20th century, KD has been used for the treatment of epilepsy [3].
KD started gaining attention of the clinical and research community in the past decade
due to its wide ranging therapeutic functions in several diseases, e.g., polycystic ovarian
syndrome, obesity, dyslipidemia, type 2 diabetes, hypertension, Alzheimer’s disease, cancer,
respiratory compromise, cardiovascular health, cancer, intestinal disorders, Parkinson’s
disease, and malignancies (Figure 1) [1,4,5].

The genetic variation within the gut microbiome of an individual could be improved
by following KD. KD could alter the diversity of the microbiome by increasing the ratio
of Bacteroidetes to Firmicutes. KD might affect epigenome by stimulating a signaling
molecule called β-hydroxybutyrate (BHB). As an adjuvant therapy, KD can be used to
starve cancer cells by making them more defenseless towards radiation and chemotherapy,
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owing to its Warburg effect [4]. KD can be modified to fit a vegan or vegetarian practice,
with plant-based proteins, fats, etc. or can be adapted to consume animal products, giving
flexibility to choose dietary preference to patients of diabetes and obesity [6]. According
to recent reports, low-carbohydrate KDs could result in weight loss as well as favorable
alterations in high-density lipoprotein cholesterol and serum triglycerides [7].
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Figure 1. Role of ketogenic diet in modulation of different diseases.

Similar metabolic patterns are seen in fasting studies. In one of the rheumatoid
arthritis case study, patients’ β-hydroxybutyrate (BHB) levels were found to be elevated
upon following intermittent fasting. This was correlated to diminishing disease symptoms.
In this regard, KD also holds a great potential as a therapeutic alternative in treating
arthritis. However, more evidence will be helpful to support this outcome [8]. A low-calorie
ketogenic diet could be considered as a promising therapy to improve psoriasis-related
dysmetabolism, upon extensive reformation of the inflammatory as well as metabolic state
of the subject [9]. Moreover, in a recent study, KD was also shown to inhibit colitis and
protect intestinal barrier decay [10].

2. Immune Modulation by Ketogenic Diet in Viral Infection

The COVID-19 pandemic has contributed to the deaths of more than 6 million peo-
ple. Studies have provided the cellular mechanisms for understanding the composite
SARS-CoV-2 access route on the cell’s surface in the host. SARS-CoV-2 binds to ACE2 re-
ceptors and excessively induces the secretion of TNF-α, IL-6, and IL-1 are pro-inflammatory
cytokines, promoting the progression of acute respiratory distress syndrome (ARDS) [11].
A eucaloric KD has been proposed to have potential therapeutic role against COVID-19
due to its role in suppressing critical risk complications, such as anti-inflammation, hyper-
tension, type-2 diabetes, obesity, and metabolism modulation [12,13]. An MCTs-rich KD
can provoke lipid metabolism switch, could disfavor infection and replication of virus, and
can inhibit the cytokine storm [14]. This swapping of the host lipid metabolism can also
be achieved by consumption of coconut-rich medium-chain fatty acids along with olive
oil, followed by fasting for 8–12 h and a dinner rich with vegetables and fruits, resulting in
activation of the ketogenic pathway [14].

Amongst the 68 COVID-19 patients who received a eucaloric standard diet, 34 pa-
tients receiving KD were observed to have a lower risk of mortality [15]. Ketone bodies
like β-hydroxybutyrate (BHB) maintain the redox balance by providing an alternative
carbon source for oxidative phosphorylation (OXPHOS) and the synthesis of bioener-
getic amino acids and glutathione. KD induces levels of interferon-γ by CD4+. Under a
SARS-CoV-2 stimulated ARDS stress, the exhausted and glycolysis skewed T cells can be
reprogrammed metabolically by BHB to perform OXPHOS [16]. Activation of ketogen-
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esis reduces pathogenic monocytes in the lungs of aged mice infected with mCoV-A59
(murine beta coronavirus infected with mouse hepatitis virus strain-A59), inactivates the
NLRP3 inflammasome, and increases the tissue-protective γδ T cells [3,17,18]. There are
many proposed molecular mechanisms that explain the therapeutic role of the exogenous
ketone-based metabolic therapy in combination with a moderately high-fat diet against
the cytokine storm induced by severe SARS-CoV-2 infection. By reducing glucose uptake
into ILC2s, KD reduces lung inflammation. A study in mice proved that KD potentially
activated a γδ T cell response, leading to decrease IAV mortality. KD is also known to
normalize the disease induced upregulation of Th17/Treg Ratio [19]. In COVID-19 patients,
KD has been proven to provide superior energy by directing human CD8+ T cells towards
aerobic mitochondrial metabolism [20].

3. Ketogenic Diet Mediated Immune Regulation in Cancer

The ketogenic diet (KD) stimulates a metabolic switch from glycolysis into mitochon-
drial metabolism, the differential stress resistance phenomenon with high tumor control
ability and lower normal-tissue complications, making it an intriguing dietary approach
for cancer patients who are under the supervision and follow-up of a healthcare provider
(Figure 2) [21]. Initial findings regarding the role of food consumption curtailment in tumor
growth was reported by Rous in 1914 [22]. Later, Tisdale et al. (1987), [23] reported the
anti-tumor effect of ketogenic diet. Afterwards, many researchers supported the utilization
of the ketogenic diet in various animal models through numerous mechanisms [24–26].
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Figure 2. Modulation of different diseases by ketogenic diet.

The ketogenic diet was utilized for the management of human malignant brain tu-
mor [27]. Researchers utilized an immunocompetent mouse model of malignant glioma
and observed that a ketogenic diet led to blood glucose reduction, blood ketones elevation,
and overall life extension [28,29]. CTLA-4 (cytotoxic T lymphocytes associated antigen 4)
and PD-1 (Programmed cell death protein-1) are the immune checkpoints utilized as targets
for treatment of multiple tumor types [30]. By lowering PD-L1 protein levels and enhancing
the expression of type I interferon and antigen presentation genes, the introduction of the
ketogenic diet increases the effectiveness of anti-CTLA-4 immunotherapy [31] resulting in
anti-proliferative effects due to cell cycle extension.

IFN induced chemokines, such as CXCL-9, CXCL-10, and CXCL-11, can upregulate
T-cell infiltration in melanoma [32] and CT26+ mouse model [33], thus enhancing immu-
nity against tumor. Moreover, 3-hydroxybutyrate, a principal ketone body generated via
ketogenic diet consumption was reported to induce T-cell dependent tumor growth inter-
ruption in belligerent tumor models [34]. In a glioblastoma mouse model, the ketogenic
diet enhanced anti-tumor primary and acquired immune response by promoting cytolysis
mediated by CD8+ T cells and increased CD4+ T-cells infiltration together with T cell killing
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activity [35]. Further, Sun et al. 2022 [36] also demonstrated the inhibitory role of ketogenic
diet on tumor growth by enhancing the Th1 cells and cellular immune function. An in-
crease in CD8+ T-cells and decrease in CD4+ FOX P3+ T-cells in tumor tissue, attenuation
of PD-L1, and CTL4 immunosuppression were the other observed mechanisms of action of
the ketogenic diet in a tumor model [33].

Although PI3K enhanced the downstream of both insulin receptor and IGF-1R,
PI3K/Akt dysregulation is directly linked to neoplasmic development and increased re-
sistance to cancer therapy [37]. There are many different factors and micro-environments
where mTOR signaling is modulated [38]. Growth factors, mitogens, PI3K, activated AMP
kinase, and hormones such as insulin all operate as stimulants for mTOR signaling [38].
AMP-activated protein kinase (AMPK), phosphatidylinositide 3-kinase (PI3K), and mTOR
are all adversely impacted by decreased nutritional patterns [39]. The tumor suppressor
activity is increased by a ketogenic diet, which inhibits mTOR signaling by activating the
AMPK signaling pathway [39]. Calorie restriction via the ketogenic diet decreased the
expression of pro-inflammatory markers, including cyclooxygenase 2, nuclear factor-k, and
macrophage inflammatory protein 2, in a mouse model of astrocytoma [40].

Macrophages are known to have regulatory functions in modulating tumor immune
response. Studies reported that ketogenic diet utilization led to switch of tumor associated
macrophage from M2 to M1 phenotype which inhibited tumor progression [41]. M1
macrophage can promote and amplify the Th1 type response inhibiting tumorigenesis [42].
Equilibrium between Th1/Th2 responses is crucial for cancer development as Th2 cytokines
(IL-4, IL-5, IL-13) promote tumor growth and progression. An enhanced Th1/Th2 ratio was
demonstrated by implementation of the ketogenic diet in a colon tumor allograft mouse
model by up regulating the Th1 driven immune response and inflammatory response
provided beneficial effects against tumor [33]. Although the ketogenic diet has several
positive effects, it may not be able to stop tumors from developing, but it can postpone
their growth and increase survival rates [43]. Furthermore, when used in conjunction
with conventional radiotherapy or chemotherapy, KD exhibits a synergistic effect on the
treatment of cancer [29,44].

4. Ketogenic Diet Mediated Immune Regulation in Cardiovascular Diseases

The four categories of cardiovascular disease, frequently referred as heart events, are
as follows: Aortic atherosclerosis, cerebrovascular disease, peripheral artery disease, and
coronary artery disease (CAD) [45–47]. Immune cells also play important role in heart
failure, particularly to pathological CD4+ T-lymphocytes during ischemic heart failure and
heart remodeling [48]. Humans practice fasting for various reasons including religious,
ethical, health reasons etc. since ancient times. Visioli et al. (2022) concluded that dietary
intake manipulation to reduce calorie intake, intermittent fasting, and prolonged fasting are
included in human culture possibly because of their positive effect on health [49]. Evidence
showing the relationship between the differentiation and functioning of immune cells with
reference to nutrient metabolism is accumulating in the scientific literature. To induce
ketosis without limiting fat intake, the keto diet, also known as the ketogenic diet, consists
of a low-carbohydrate diet with a moderate amount of protein restriction [50].

A low carbohydrate diet for longer period depletes the glycogen store of the body
and stimulate keto-genesis, making ketone bodies the only source of energy. In addition to
serving as energy sources, these ketone bodies function as significant signaling molecules
that influence the expression and activity of transcription factors including PGC-1 and
sirtuins (SIRTs) [51,52], poly-adenosine diphosphate [ADP]-ribose polymerase 1 (PARP1),
and ADP ribosyl cyclase [53] fibroblast growth factor 21 and nicotinamide adenine dinu-
cleotide (NAD+) [54]. Additionally, calorie restriction inhibits the PI3K/Akt/mTOR axis
while simultaneously activating the adenosine monophosphate-activated protein kinase
(AMPK) and sirtuin family proteins [51,55,56].

Acetyl-coenzyme A carboxylase 1 (ACC1) activity is inhibited by AMPK, which
prevents the production of fatty acids. ACC1 induces vascular endothelial cell impairment
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leading to increase in disease severity in acute ischemic stroke patients [57,58]. It also
increases plasma triglyceride levels, which will lead to an enlargement of atherosclerotic
plaque and vascular occlusion, and finally increases disease severity [59]. This alteration
in lipid metabolism is linked to an increase in T regulatory cells and a decrease in Th17
cells, which together ameliorate brain ischemia [60]. Th17 cells influence blood pressure
by producing IL-17 and IL-22. IL-17 may have an impact on the sodium transport system,
which includes sodium chloride cotransporter, epithelial sodium channels, and the sodium-
hydrogen exchanger, in the renal proximal and distal tubular epithelial cells 3 [61]. On the
other hand, IL-22 may affect the cyclooxygenase of the cells of the vascular wall and increase
endothelial dysfunction, in turn increasing resistance in blood flow [62]. Additionally, mice
lacking γδ T cells were reported to be protected from endothelial damage and hypertension
caused by angiotensin II [63]. Fat-related illness symptoms have been linked to decreased
pro-inflammatory Th17 cell numbers in the gut and adipose tissue [64].

The individual role of B cells was poorly understood in hypertension. It might occur
due to the activation of B cells that need co-stimulatory signals from T cells. However, anti
CD 20 therapy [65] and Taylor et al. (2018) [66] have shown an association in preventing
angiotensin II- related hypertension in mice. IgG was accumulated in the aortic adventitia
during Angiotensin II- dependent hypertension in mice. It is regarded as a significant
site of collagen and macrophage accumulation [67]. Endothelial cell nitric oxide synthase
relaxes vessels during hypertension. Mice fed on high fat diet expresses Fcγ receptors
on endothelial cells. IgG after associating with antigen can target these Fcγ receptors of
endothelial cells thus have a negative effect of vasorelaxing activity [68]. These findings
indicate a role for B lymphocytes in the endothelial dysfunction that primes vascular
stiffening and elevated blood pressure as well as vascular remodeling.

It has been established that a ketogenic diet is linked to enhanced cardiac function,
cardiomyocyte survival, and decreased cardiac fibrosis [69,70]. According to investigation,
the activation of cardiac fibroblasts by ketone bodies was increased by the activation of
transforming growth factor-β1 [71]. The differentiation of group 2 innate lymphoid cells
and the T cell subset is regulated by the ketogenic diet [72]. Additionally, ketogenesis
functions as a novel metabolic pathway in CD8+ Tmem cells, modifying these cells to
facilitate the creation of memories through improved mitochondrial performance and
substrate metabolism [73]. IL 33 has been found to reduce the symptoms of cardiac
fibrosis [74]. Tao et al. (2021) examined the function underlying mechanism of Ketogenic
diet in diabetic cardiomyopathy [75]. They found a decrease in the level of both CD4+ CD25+

Foxp3+ cells in blood and serum concentrations of IL-4 and IL-10 (Figure 2). Ketone bodies
prevented naive CD4+ T cells from differentiating into Tregs. In the presence of ketone
bodies, ST2L ligand synthesis, the proportion of ST2L+ cells in Tregs, and IL-33 production
all decreased. The NLRP3 inflammasome regulates the release of the pro-inflammatory
cytokines IL-1 and IL-18 and caspase-1 activation in macrophages [76]. It is a crucial innate
immune sensor that may become active in response to atherosclerosis [77]. Therefore,
understanding the endogenous mechanisms that regulate the NLRP3 inflammasome’s
deactivation may help in the management of a number of chronic disorders. The ketogenic
diet reduces inflammation, and these anti-inflammatory effects may be associated with
BHB facilitated inhibition of the NLRP3 inflammasome [78]. The immunomodulatory
effects of KD on various immune cells are summarized in Table 1.
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Table 1. The immunomodulatory effects of ketogenic diet on Immune Cells.

Type of Ketogenic Diet (KD) Mechanism of Action Conclusions/Effects References

Medium-Chain Triglycerides
(MCT) Reduced Leukocyte Count Anti-Tumor Effect [79]

Eucaloric Ketogenic Diet (EKD)
M1 Recruitment of Neutrophil

and Platelets in
Thrombo-Inflammation

Prevention of Cytokine Storm in
COVID-19. [80]

Very Low Calorie Ketogenic
Diet (VLCKD) Altered Leukocyte Methylation Obesity Prevention [81]

KD Reduced WBC & Neutrophil
Count

In Epilepsy, baseline immunosuppression
does not worsen with KD. [82]

KD Enhanced activity of Th1 cells Promoted cellular immune function in a
CT26 colon tumor allografts mouse model. [33]

KD Suppression of Th1 & Th17 Protection against autoinflammation
(Central Nervous System). [83]

KD Suppression of macrophages
& neutrophils

Attenuation of autoinflammation
(Muckle-Wells syndrome/ Gout) [83]

KD Activation of protective γδ T cells
and decreases myeloid cell subset

Ketogenesis-induced protection from
mCoV-A59-driven inflammatory damage

in aging.
[17]

5. Ketogenic Diet Mediated Immune Modulation in Central Nervous System Diseases

To sustain homeostasis, the human body comprising the encephalon amends its
metabolism with respect to modified sustenance or disorder. This brings dynamic chal-
langes for the energy metabolism of the diverse brain cell types. Many studies have shown
significant role of KD in affecting the metabolous cross-talk between CNS cells as well as
the periphery and the brain to manage neurological diseases.

Globally, more than 50 million people suffer from epilepsy [84]. Epilepsy is a chronic
brain ailment categorized via recurring seizures: The short occurrences of uncontrolled
movements capable of distressing either a portion or an entire body that may trigger uncon-
sciousness or uncontrolled bladder or bowel function [85]. Cumulatively, the prognosis of
epilepsy leads to suboptimal movement, deteriorated quality of health, and increased prob-
ability of death. Infections coupled with head injury, brain defects paired with prenatal or
perinatal wounds, and brain tumors are the chief causes of epilepsy [86,87]. Approximately,
40% of epilepsy is triggered by genetic predisposition [88]. Several genes/variants have
been correlated in many epileptic forms [89–91]. KD aims the downregulated adaptive and
innate immunity existent in drug-resilient and refractory epileptic conditions [18]. Due to
its extensive anti-inflammatory and neuroprotective activity, KD is being proven to be a
safe and an efficient cure in patients with numerous pediatric and neurological disorders.
A comprehensive antiepileptic approach of the KD is still indefinite [92].

The central nervous system (CNS), which is known for its privileged immune estab-
lishment, has been reported to exhibit immune and inflammatory responses [93]. Since
the CNS tumors are vastly reliant on glucose, KD is being investigated as a potential im-
munomodulatory therapy for its treatment. Targeting the crucial components in immune
pathways could facilitate the immunostimulatory approach against epilepsy [94]. KD is a
rich source of ketone bodies, which constrain glutamate, in turn decreasing the biosynthesis
of kynurenic acid, a metabolite responsible for epilepsy, in a kynurenine pathway (Figure 2).
KD causes elevation of fatty acids, intonation of glycemia, and caloric restriction [95].
KD reduces astrocytic adenosine kinase (ADK) expression to increase the extracellular
levels of adenosine [96]. Adenosine is an anti-inflammatory molecule that reduces the
concentrations of TNF-α, IL-6, and CXCL2/3 and synchronizes an LPS-derived migration
of the polymorphonuclear cells. Reduction of ADK downgrades inflammation in central
and peripheral system [97]. It also elicits repressive adenosine A1 receptor (A1AR) [98].
Masino et al. (2012) reported a decrease in electrographic seizure activity while studying
the stimulus of the adenosine in KD [99]. On other hand, mitochondrial respiration upreg-
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ulates the levels of uncoupling proteins that decrease the ROS and increase resistance to
seizures [100].

Many refractory epilepsy cases in children have reported the efficiency of KD in modi-
fying the concentrations of serotonin as well as dopamine in the cerebrospinal fluid [101].
These reports have also indicated a substantial escalation in agmatine and γ-aminobutyric
acid (GABA), exclusive of fluctuations in glutamate intensities [102]. KD works efficiently
for children aged <3 years with West syndrome (WS) [103]. In WS, Patient experiences
spasms and hypsarrhythmia [104]. Previous findings have reported 90% cognitive defi-
ciency and 10–30% display signs of autistic spectrum disorder [105]. Sadly, many cases with
WS were found to develop into a destructive epileptic brain disorder, Lennox-Gastaut syn-
drome (LGS) [106–108]. However, when hormonal therapy was merged with KD, treated
children were less prone to developing LGS. This report predicted the efficacy of KD in
causing obstructions in the extreme neuroinflammation in WS, consequently, terminating a
precarious progression to LGS [109–111]. KD is being proven to successfully manage FIRES
(febrile infection-related epilepsy syndrome) [112] and NORSE (new onset refractory status
epilepticus) [109,113–115]. KD’s influence on neuroinflammation has also been found to be
fruitful in treating myoclonic atonic epilepsy (MAE) with corticosteroids [116,117].

One of the CNS autoimmune inflammatory disorders is multiple sclerosis (MS). MS
causes motor impediment and cerebral deficit. Pro-inflammatory eicosanoids are linked in
the pathological process of MS due to their roles in enhancing vascular permeability and
encouraging leukocyte migration activity across the brain [118–120]. A study showed the
influence of KD on upregulation of anti-inflammatory ALOX15 and enzymes COX1, COX2,
and ALOX5 eicosanoids in subjects with relapsing-remitting MS [121,122]. Kim et al. (2012)
showed the favorable effect of KD correlated with decreased inflammation markers of brain
in an experimental autoimmune encephalomyelitis (EAE) murine model [119]. KD could
rescript crucial characteristics of MS pathogenesis through enriched CNS bioenergetics, and
ketosis supported the expression of antioxidant pathways and lowered effector cell related
protection [123]. KD is allied with a neuroprotective activity imparted by an enhanced
sirtuin 1, (SIRT1- a participant of class III HDACs), expression in numerous cell types in the
CNS [124–126]. KD is also reported to provide better neural consequences in a cuprizone-
induced demyelination mouse model [127]. The downregulation of peroxisome proliferator-
activated receptor γ (PPARγ) mRNA was observed in the monocytes of relapsing-remitting
MS subjects [128]. PPARγ might overpower Th17 cell differentiation [129]. Initiation of
PPARγ in different cell types of the brain leads to remyelination and shields demyelination
as well as neuroinflammation [130,131].

A pilot study evaluated the safety and permissibility of a modified Atkins diet (KD-
MAD), a form of KD, in 20 patients with relapsing MS. This study presented anthropomet-
rical enhancements on KDMAD, with a decrease in body mass index and total fat mass
as well as low levels of proinflammatory adipokines at three months on KD intake [132].
Bahr et al. (2020) reported a decline in disease rigorousness, promising immunomodulatory
effect of KD on 111 relapsing–remitting MS patients [133].

Spinal cord injury causes either short term or permanent damage to motor and sensory
system [134–136]. Streijger et al. (2013) mentioned a full recovery of a spinal cord injury in
3rd week of treatment with KD which was initiated immediately after four hours of injury
in mice [135]. In this case, inhibition of the NF-κB pathway followed by KD moderated
a proinflammatory cytokines upsurge in the blood and spinal cord [137,138]. KD not
only averts the diminution of superoxide dismutase produced by the spinal trauma, but
also motivates a significant controller of the oxidative stress response known as nuclear
factor-E2-related factor 2 [134,139,140].

Parkinson’s disease (PD) is a neurodegenerative ailment [141–143]. Clinically, mi-
croglial triggering and neuroinflammation may have a function in the succession of the
disease [144,145]. Its symptoms comprise of bradykinesia, tremor in legs, hands, and head,
stiffness in muscles, and slowness in movement [146,147]. Yang et al. (2010) reported
dysregulated levels of IL-1 β, IL-6 [148], and TNF-α, alleviated motor dysfunction, as well
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as decreased stimuli of microglia and neuronic forfeiture in the SN upon treating with KD
nourished MPTP injection [149–151]. Several studies provide information on microbiota-
immune-brain axis [152]. Olson et al. (2018) described an acquired seizure protection
associated with KD stimulated GABA upsurge in the hippocampus in murine models
upon successful transplantation of the KD gut microbiome [153]. Sampson et al. (2020)
exposed the association of the overexpressed α-synuclein of a PD murine model with
neuroinflammation, cerebral deficit, and gut microbiome [154,155].

6. Keto Diet Complications:

Although KD is efficient in curing epilepsy, several studies have found frequent side
effects like nausea, acidosis, and hypoglycemia etc. in patients [156]. However, these
complications could be managed effortlessly by vigilant supervision of blood counts, hep-
atic enzymes, urinalysis, profiles depicting levels of minerals, vitamin, lipid, and serum
carnitine [157]. Studies have also shown specific atypical and grave complications of KD,
e.g., inflammation of pancreas, impairment or irritation and soreness to the small intestine,
heart rhythm disorder, cardiomyopathy, and Parkinsonism. In these cases, immediate
termination of the KD, proper examination and advance care should be applied to minimal-
ize unfavorable consequences [158]. Patients on KD require special attention throughout
surgical practices as various medical intervention procedures involve exposure of carbo-
hydrates into the blood circulation. The epilepsy should be managed by excluding drugs
such as propofol, a carbohydrate-comprising remedy to counteract post-surgical seizure
incidents [159,160]. A disturbing effect of KDs on micronutrient levels was found in a case
of a refractory epilepsy female patient who developed scurvy due to an insufficient level of
vitamin C while on a KD [161–163].

Some antiseizure Medicines are also known to interact negatively with KD [159,164].
One of the examples is of Phenobarbital, which was reported to grow by 100% in patients
on a KD. It was found to migrate to the blood–brain barrier, inducing distorted cerebral
status at the usual prescription doses [165]. Thus, phenobarbital doses should be altered by
observing the AED levels [165]. A prominently negative neural after-effect was reported by
Erickson et al. (2003) [166] in an infant diagnosed with cryptogenic epileptic encephalopathy
that evolved chorea and ataxia three weeks after starting a classical KD. One of the GI
effects of the KD is cholelithiasis induced by metabolic changes turning into amplified
gallbladder activity. Two such cases are mentioned, among which one required surgical
attention [167]. Obese patients are more prone to these complications, having a high risk
of dyslipidemia. The high fat intake in KD could have consequences of dyslipidemia and
atherosclerosis. Kapetanakis et al. (2017) assessed 26 KD treated epileptic infants who
exhibited declined carotid distensibility and deteriorated lipid profiles upon three months
to a year post initiation of KD [168]. The same group evaluated the changes steadied by
second year. Based on this evidence, patients with underlying dysregulations in their
metabolism should be subject to very careful monitoring during KD.

7. Conclusions

Overall, several preclinical studies show or indicate that the KD modifies the immune
system to combat different disease conditions by impacting the immune microenvironment
of the host. Furthermore, molecular and mechanistic studies are required to establish the
concrete role of ketogenic diets in immune alterations.
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