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Abstract: Intestinal fibrosis is one of the most common intestinal complications observed in inflam-
matory bowel disease, especially Crohn’s disease (CD). Intestinal fibrosis in CD is associated with
chronic inflammation resulting from immunologic abnormalities and occurs as a form of tissue
repair during the anti-inflammatory process. Various types of immune cells and mesenchymal cells,
including myofibroblasts, are intricately involved in causing intestinal fibrosis. It is often difficult
to treat intestinal fibrosis as intestinal stricture may develop despite treatment aimed at controlling
inflammation. Detailed analysis of the pathogenesis of intestinal fibrosis is critical towards advancing
the development of future therapeutic applications.
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1. Introduction

Intestinal fibrosis is a complication of various diseases, such as inflammatory bowel
disease (IBD), radiation enteritis, graft-versus-host disease, ischemic enteritis, collagenous
colitis, drug-induced enteritis, gastrointestinal tumors, and postoperative intestinal tract
dysfunction [1]. Among these diseases, IBD, which includes Crohn’s disease (CD) and
ulcerative colitis (UC), is an intractable disease requiring lifelong treatment due to inflam-
mation caused by immunologic abnormalities specific to the intestinal tract [2]. At present,
no radical treatment exists for either disease, and the main treatments—nutritional therapy,
drug therapy, and surgical therapy—are aimed at suppressing symptoms. Despite the
application of various treatments, intestinal fibrosis often follows after the resolution of
inflammation [3,4]. CD, in particular, is associated with intestinal complications such as
intestinal stricture resulting from chronic inflammation, which is a factor in many oper-
ations [5,6]. The main reason for intestinal stricture in CD patients is intestinal fibrosis
due to chronic inflammation. Despite recent progress in drug development for treating
intestinal fibrosis, there is currently no effective medical treatment [7,8]. In this review, we
describe the pathogenesis of intestinal fibrosis in CD and potential future treatments.

2. Clinical Problems Associated with Intestinal Stricture in Crohn’s Disease

CD is a chronic inflammatory bowel disorder with remittent and relapsing episodes.
Half of adult CD patients will have intestinal complications, such as strictures or fistulas,
within 20 years following their initial diagnosis [6,9,10]. In addition to the gastrointestinal
tract, various extra-intestinal complications, such as of the joint and skin, may be observed,
making CD a systemic disease [11]. Intestinal stricture is a common intestinal complication.
Intestinal fibrosis leads to intestinal stricture and subsequent intestinal obstruction, which
is a serious clinical problem. Within 10 years of diagnosis, as many as 70% of patients
experience complications resulting from intestinal stricture, with surgical treatment nec-
essary in more than one-third of cases. Within one year after surgery, approximately 70%
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of patients experience a recurrence endoscopically, which may require re-operation in the
future and significantly lowers the quality of life of patients with CD [12,13]. CD can be
classified as inflammatory, stenotic, and fistulizing types. In a report by Cosnes et al., 85%,
2%, and 13% of patients were classified as having inflammatory, stenotic, and fistulizing
types, respectively, at five years, and then the type shifted after 10 years with 48%, 14%, and
38% of patients having inflammatory, stenotic, and fistulizing types [12]. Various factors of
CD cause intestinal stricture, including age at diagnosis (Table 1) [13–15].

Table 1. Background factors for CD causing intestinal stricture.

Clinical course

Age at diagnosis <40 years
Anal lesions

Steroid therapy for initial treatment
Small intestinal lesions

Smoking
Long term disease duration

Deep ulcers in the intestinal tract

Genetic findings

Janus-associated kinase 2 (JAK2)
ATG16L1

NOD2/CARD15
TNF superfamily 15 (TNFSF15)

5T5T (MMP3)
rs1363670

3. Current Treatment Strategies for Intestinal Stricture of Patients with
Crohn’s Disease

Management of CD intestinal stricture includes drug therapy, endoscopic treatment
(e.g., endoscopic balloon dilation) and surgical treatment (e.g., strictureplasty). Drug ther-
apy may be successful in inflammation-driven strictures but is less effective in fibrotic
stenoses and endoscopic or surgical treatment should be considered [4,5,15]. The indi-
cations for various treatments for intestinal stricture of CD depends on the individual
patient’s clinical condition. Recent advances in medical treatment have resulted in higher
efficiency and improvement in the treatment of CD patients, and the indication and need
for surgery in CD patients will probably be lower in the treatment of inflammation-based
stricture. However, deciding whether a patient needs surgery or continues medical treat-
ment is currently a difficult question and often requires a comprehensive assessment [4,16].
Therefore, the strong relationship between preoperative bowel wall thickening and postop-
erative recurrence suggests the significance of anti-inflammatory treatment for avoiding
intestinal stricture [17].

4. What Is Intestinal Fibrosis in Crohn’s Disease?

The clinical issue of CD intestinal stricture related to CD is still unclear, but the
pathophysiology has been elucidated based on the progress of recent research [9,13,18,19].
Intestinal stricture in CD is pathologically characterized by fibrosis, centered on the sub-
mucosa and thickening of the intestinal wall due to the hyperplasia of smooth muscle
cells. Collagen production in full-thickness chronic inflammation is considered to be the
main cause of fibrosis [13]. Although the underlying pathophysiology of intestinal fibrosis
remains unclear, recent findings indicate that pathologic fibrosis in CD is due to inflam-
mation and tissue remodeling of the gastrointestinal tract [18,19]. That is, fibrosis is a
chronic progressive change characterized by an excessive accumulation of extracellular
matrix (ECM) components such as collagen and its central role in the stroma. Mesenchymal
cells, such as myofibroblasts, produce ECM [20,21]. The increase in the tissue ECM, which
comprises mainly of collagen and fibronectin, eventually leads to the development of in-
testinal strictures and obstruction. Fibronectin colocalizes with fibroblast aggregates [5,18].
Intestinal stricture in CD generally results from a combination of fibrosis and inflammatory
tissue and can occur anywhere in the gastrointestinal tract, but most frequently occurs in
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the terminal ileum. CD related to fibrosis of the small intestine has a higher incidence of
clinical complications, which may be related to the lumen size of the small intestine [18].

5. Cells and Molecules Involved in Intestinal Fibrosis
5.1. Mesenchymal Cells Such as Myofibroblasts

ECM components such as collagen are produced by myofibroblasts to initiate normal
tissue repair through the production and degradation of matrix metalloproteinase (MMP),
and its inhibitor, tissue inhibitor metalloproteinase (TIMP) [22,23]. An imbalance between
MMP and TIMP may lead to the accumulation of collagen and subsequent fibrosis [24].
Additionally, in CD, persistent damage to the intestinal epithelium or endothelium leads to
the release of chemotactic factors that are involved in the mobilization and activation of
inflammatory cells associated with innate and acquired immune responses, as well as in
the activation and migration of mesenchymal cells [19,21]. Activated myofibroblasts derive
from a variety of cells, including fibroblasts, smooth muscle cells, epithelial cells by epithelial-
mesenchymal transition (EMT), endothelial cells by endothelial-to-mesenchymal transition
(Endo-MT), stellate cells, pericytes, and bone marrow stem cells, and play a central role in
intestinal fibrosis. In addition, various cytokines and growth factors are strongly involved
in the differentiation and proliferation of these cells (chemokines are strongly involved in
the migration of bone marrow-derived mesenchymal stem cells to tissues) and promote the
excessive production and accumulation of the ECM (Figure 1) [19,25–28]. Thus, there are
many pathways in the fibrosis process, which may contribute to the complexity of treatment
for intestinal fibrosis in patients with CD.
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Figure 1. Differentiation into activated myofibroblasts in the intestine. Activated myofibroblasts are
the center of fibrosis. Activated myofibroblasts differentiate from various cells such as epithelial cells
by epithelial-mesenchymal transition, endothelial cells by Endo-MT, stellate cells, pericytes, and bone
marrow stem cells, as well as fibroblasts and smooth muscle cells.

5.2. Immune Cells

Fibroblasts and myofibroblasts in the mucosal region are exposed to a very complex
microenvironment with a variety of biologic mediators. Studies using human intestinal
tissues or animal models revealed that the behavior of various immune cells during
chronic inflammation may trigger and directly promote the development of intestinal
fibrosis [28,29]. In the innate immune system, immune cells are activated mainly by
the production of tumor necrosis factor (TNF)-α, IL-12p40, transforming growth factor
(TGF)-β1, platelet-derived growth factor, and others [18,19,28,30]. Monocyte-derived
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M1 macrophages induce inflammation and produce proinflammatory cytokines such as
interferon (IFN)-γ and TNF-α. Interestingly, IL-12p40 also has been previously reported to
promote M1 polarity and induce inflammation and fibrosis, which may play an important
role in the pathogenesis of intestinal fibrosis in CD along with TNF-α [30,31]. Monocyte-
derived proinflammatory M2a macrophages are differentiated by interleukin (IL)-4, 13, and
others, and secrete fibrosis-promoting factors such as TGF-β1, connective tissue growth
factor (CTGF), fibroblast growth factor (FGF), and insulin-like growth factor (IGF) [32,33].
On the other hand, M2c/reg macrophages are induced to differentiate by IL-10. The
M2c/reg macrophages are anti-fibrotic and not only inactivate myofibroblasts but also
inhibit M1 and M2a macrophages [19,34,35]. Neutrophils also produce various pro-fibrotic
factors as a result of epithelial injury and bacterial reaction [19,36]. In the acquired immune
system, Th17- and Th2-type immune responses are believed to be pro-fibrotic [37,38]. On
the other hand, Th1-type (mainly induced by IL-12) and Treg-type immune responses may
be involved in anti-fibrosis, but the details are still unknown (Figure 2) [19,39]. Thus, in
addition to the inhibitory processes involved in tissue repair, inflammatory processes are
associated with the development of fibrosis and could partially explain why suppressing
inflammation may not be an effective treatment for fibrosis (Table 2).
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Figure 2. Association between immune response and fibrosis. M1 macrophages activate myofibrob-
lasts and fibrosis. M2a macrophages produce pro-fibrotic factors, while M2c/reg macrophages are
anti-fibrotic and not only inactivate myofibroblasts but also inhibit M1 and M2a macrophages. Th2
cells are thought to be strongly involved in fibrosis as well as in the Th17 type immune response,
while the Th1 type immune response is thought to have possible anti-fibrotic activity. Treg cells may
inhibit fibrosis, but the detailed mechanisms are not clear.

Table 2. Major molecules involved in fibrosis or anti-fibrosis.

Fibrosis

IL-1
IL-4
IL-13
IL-17

TGF-β1
TNF-α
CTGF
FGF
IGF

Anti-fibrosis
IFN-γ
Il-10
IL-12
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6. Microbiota and Intestinal Fibrosis

In addition to the paracrine signals from immune and non-immune cells described
above, myofibroblasts are activated by a variety of mechanisms, including autocrine
factors secreted by myofibroblasts and pathogen-associated molecular patterns (PAMPs) of
microbial origin that interact with pattern recognition receptors such as Toll-like receptors
(TLRs) [18,40]. Toll-like receptors, consisting of TLR1 to TLR9, serve as sensors of the gut
microbiota and are important in maintaining intestinal homeostasis, regulating immune
responses and the formation of bacterial flora [41]. In particular, TLR4 signaling promotes
pro-fibrotic activation of intestinal fibroblasts, enhances NF-κB promoter activity and
increases collagen contraction [30,40].

Recent animal studies have demonstrated that these immune system cells response
to specific bacteria and bacterial cell components (peptide glycans) in the intestinal tract
can result in the secretion of cytokines and growth factors such as TGF-β1 and CTGF,
and the activation of myofibroblasts. It is also reported that the sustained activation of
ECM-producing cells worsens intestinal fibrosis [18,29,40]. Bacteria such as Mucispirillum
schaedleri and Ruminococcus in the cecum and Streptococcus and Lactobacillus in the ileum
were positively correlated with fibrosis in the tumor necrosis factor-like cytokine 1A (TL1A)
transgenic mouse model [42]. TL1A is a member of the tumor necrosis factor superfamily,
which, when overexpressed in mice, causes spontaneous intestinal inflammation and
fibrosis [43].

In particular, adherent-invasive Escherichia coli (AIEC), a mucosa-associated bacterium
of E. coli, adheres to the gut epithelium and causes chronic intestinal inflammation in
genetically susceptible hosts [28,44]. AIEC strains are found more frequently than other
strains in ileal specimens from patients with CD and are suspected to be involved in the
initiation or progression of inflammatory processes in the gut [45]. In mice, chronic AIEC
infection leads to tissue pathology in the small and large bowel, especially the cecum,
with elevated Th1 and Th17 responses. In addition, compared to controls, the histology
of the cecum of AIEC-infected mice showed extensive ECM deposition and the increased
expression of collagen type I/III and profibrotic mediators such as TGF-β1, CTGF, and
IGF-I. Similar findings were observed in intestinal stricture related to CD [46]. Clinical
studies in humans revealed that dysbiosis is involved in the onset and exacerbation of
CD [47,48]. In addition, Clostridium innocuum has been found to migrate from the intestinal
lumen of surgically resected CD samples into the mesenteric adipose tissue (MAT), drawing
attention to its involvement in intestinal fibrosis. In this study, DSS-treated ASF-colonised
mice (colonized with eight indigenous bacteria) were irrigated with C.innocuum, and the
bacteria were detected by MAT. In addition, the activated macrophages in this mouse
strongly produce various cytokines and growth factors, which leads to the induction of
mesenteric adipocytes and intestinal fibrosis [49]. Studies using human samples of other
bacteria have shown that patients with Crohn’s disease have a reduced diversity of bacterial
species representing the phyla Firmicutes and Bacteroidetes [50,51]. These studies suggest
that stimulation by specific intestinal bacteria and immune reactions is important for the
onset and exacerbation of fibrosis

7. New Therapeutic Strategies for Intestinal Fibrosis

As described above, the mechanisms underlying fibrosis are complicated. Fibrosis
is a phenomenon observed in both inflammatory and non-inflammatory processes, and
the treatment of fibrosis is difficult [52]. For example, TGF-β1 has long been considered a
candidate therapeutic target for fibrosis because of its strong fibrosis-promoting effects [53].
This cytokine, however, has strong anti-inflammatory effects and is also involved in ep-
ithelial cell rearrangement, making it essential for suppressing intestinal inflammation and
regenerating the epithelium. For these reasons, animal studies have been conducted to try
to suppress TGF-β1 locally in the intestinal tract, rather than systemically [54]. At present,
there are no approved therapeutic drugs for intestinal fibrosis. Some studies in a small
number of cases have examined the effects of drugs used to treat fibrosis in other organs
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for the treatment of intestinal fibrosis and candidate substances have also been evaluated
in animals. Pirfenidone, a drug already approved for human diseases such as pulmonary
fibrosis and fibrosis of other organs, inhibits intestinal fibrosis in experimental mice, and
future development is expected [55–57]. MMP-9 antibody and BCL2 inhibitor have also
been approved for the treatment of human fibrosis in other organs and mouse studies
suggest that these drugs may be effective against intestinal fibrosis [58,59]. An IL-1 family
member, IL-36, is reported to be involved in CD intestinal fibrosis, and the IL-36 pathway
has been investigated in experimental mice [60–63]. While CTGF, located downstream
of TGF-β1, does not directly suppress TGF-β1, CTGF suppression in mice was shown to
be effective for fibrosis of the liver and kidney [19,63]. Clarification of the involvement
of intestinal bacteria is also expected to lead to the control of intestinal fibrosis, although
the therapeutic application in humans remains unclear [44,57]. Based on their therapeutic
application for fibrosis in other organs, the endothelin and renin-angiotensin systems also
play important roles in fibrosis, and thus the antihypertensive drugs bosentan and losartan
are used as antifibrotic drugs in the lungs. Clinical trials using these drugs to target fibrosis
in other organs, such as the heart, liver, and skin are underway [64–67].

8. Conclusions

Intestinal fibrosis in CD involves not only inflammatory processes, but tissue repair
and regeneration processes as well, and treatment is often challenging. Further eluci-
dation of the pathogenesis and optimization of multiple therapies, including those for
inflammation control, will be important for developing more effective treatments for
intestinal fibrosis.
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