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Abstract: Lymph nodes are secondary lymphoid organs that appear as bean-like nodules usually
<1 cm in size, and they are localized throughout the body. Many antigen-presenting cells such as
dendritic cells and macrophages reside in lymph nodes, where they mediate host defense responses
against pathogens such as viruses and bacteria. In cancers, antigen-presenting cells induce cytotoxic T
lymphocytes (CTLs) to react to cancer cell-derived antigens. Macrophages located in the lymph node
sinus are of particular interest in relation to anti-cancer immune responses because many studies
using both human specimens and animal models have suggested that lymph node macrophages
expressing CD169 play a key role in activating anti-cancer CTLs. The regulation of lymph node
macrophages therefore represents a potentially promising novel approach in anti-cancer therapy.

Keywords: macrophage; lymph node; CD169; PD-L1

1. The Critical Role of Lymph Nodes in Anti-Cancer Immunotherapy

Cancer cells are characterized by the accumulation of a variable number of genetic
alterations that result in the production of neoantigens. Cancer specific antigens such as
cancer-testis antigens, oncofetal antigens, aberrantly expressed proteins, and viral antigens
are also targets of cytotoxic T cells. CD8+ T cells recognize cancer cells via binding between
the T-cell receptor and major histocompatibility complex class I/peptide complex [1]. Chen
and Mellman (2013) suggested that the immune system is triggered to eliminate cancer cells
via stimulation of the cancer-immunity cycle [2]. Immune checkpoint blockade therapy
targeting cytotoxic T-lymphocyte (CTL)-associated antigen 4 (CTLA-4) or programmed
death 1 (PD-1)/programmed death ligand 1 (PD-L1) has become a promising anti-cancer
immunotherapy approach [3]. Anti-PD-1 and anti-CTLA-4 therapy are reportedly effective
for patients with several types of solid tumors, such as melanoma, non-small-cell lung
cancer, renal cell carcinoma, urothelial carcinoma, head and neck squamous cell carcinoma
(SCC), esophageal SCC, gastric adenocarcinoma, triple-negative breast carcinoma, and
microsatellite instability-high tumors [4].

CTLA-4 is expressed on T-lymphocytes and competitively inhibits the binding of
CD28 to costimulatory molecules such as CD80 and CD86. PD-1 ligands are expressed on
both cancer cells and immune cells. Among immune cells, antigen-presenting cells such as
macrophages and dendritic cells (DCs) express high levels of PD-1 ligands [5]. Myeloid
cells express PD-1 ligands in both the tumor microenvironment and lymph nodes [6].
Fransen et al. demonstrated that CD11b+ myeloid cells residing in lymph nodes express
significantly higher levels of PD-L1 in tumor-bearing mice; lymph node resection in these
mice abrogated the anti-tumor effect of anti–PD-1 therapy [7]. Fransen et al. also found that
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the anti-tumor effect of anti-PD-1 therapy was suppressed by the S1P receptor inhibitor
FTY720, which restricts T cells in lymphoid organs. Zhao et al. reported that lymph node
resection in the early stage abrogated anti-tumor immune responses, however, immune
responses were not observed by lymph node resection in the advanced stage [8]. They
additionally showed that anti-tumor immune cells were restricted to tumor-draining lymph
nodes in the early stage and spread to the spleen in the advanced stage, which indicated
that surgical resection of regional lymph nodes in patients with advanced tumors might
not affect anti-tumor immunity in patients. Dammeijer et al. detected expression of PD-L1
in DCs and macrophages in tumor-draining lymph nodes; blocking PD-L1 on DCs (but
not macrophages) induced an effective anti-tumor immune response [9]. These authors
also found greater interaction between PD-1 and PD-L1 in the lymph nodes than tumors,
which correlated with shorter relapse-free survival. These findings suggest that tumor-
draining lymph nodes play a critical role in the anti-tumor immune responses induced by
anti-PD1/PD-L1 therapy in the early stage of diseases.

2. Function of Lymph Node Macrophages in Mice

Interest in the role of lymph node macrophages in the initiation of immune responses
is increasing [10]. Research in this area has shown that lymph node sinus macrophages
(SMs) express sialoadhesin (CD169), a 185-kDa type I lectin involved in phagocytosis of
pathogens and cell–cell contact with lymphocytes via binding to CD43 (sialophorin). SMs
are divided into two subtypes in mice: subcupsular SMs (SCSMs) and medullary SMs
(MSM), which are characterized as CD11b+ CD169+ F4/80− and CD11b+ CD169+ F4/80+

cells, respectively (Figure 1A) [11,12]. However, macrophages located in the medullary
cord in both humans and rodents are CD169−. CD169 expression is specifically restricted
to macrophages, particularly resident macrophages in the spleen, liver, bone marrow,
and intestines. CD169 is thought to play a role in the uptake of sialylated antigens and is
therefore considered a potentially useful target for antigen delivery in vaccine development
in mice [13,14]. Targeting antigen delivery to CD169-expressing cells was also shown to
enhance immune responses in pigs [15]. These animal model data thus indicate that
SCSMs/MSMs can take up and present tumor antigens to lymphocytes, thus inducing
effective immune responses.
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Figure 1. In vivo murine tumor model in CD169-DTR mice. (A) Representative figure of hematoxylin
and eosin staining and immunohistochemical staining of CD169 (brown colored) of murine lymph
nodes. (B) Following subcutaneous injection of diphtheria toxin (DT) on day 0, mice were inoculated
subcutaneously with 5 × 105 tumor cells (day 1). Subcutaneous tumor nodules were dissected
after 10 days (day 11). (C) Tumor samples were fixed and embedded in paraffin. Sections were
stained with anti-CD8, anti-CD4, anti-Iba1 (marker for pan-macrophage), and anti–PD-L1 antibodies.
(D) Cell count and signal value data were evaluated using ImageJ software. Differences between the
two groups were evaluated using the Mann–Whitney U-test.
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3. The Function of Lymph Node Macrophages in the Anti-Tumor Immune Response
in Mice

Tumor tissues, particularly malignant tumors with a high proliferative capacity, contain
numerous apoptotic or necrotic dead cells. Tumor cell debris or tumor cell antigens that
migrate to the draining lymph nodes are taken up by antigen-presenting cells such as DCs,
which facilitate recognition of tumor antigens by naïve CD8+ CTLs and induce tumor cell–
specific CTLs [16]. Das Mohapatra et al. reported that apoptotic tumor cells are taken up
through phagocytosis by DCs and SM, whereas live tumor cells are taken up via trogocytosis,
primarily by DCs [17]. The critical role of SMs in anti-cancer immune responses is evidenced
by in vivo studies using animal models. Subcutaneous injection of dead cancer cells is known
to induce tumor antigen-specific CTLs [18]. To explore the function of CD169-expressing
macrophages in anticancer immune responses, Asano et al. investigated the effect of deple-
tion of macrophages in diphtheria toxin receptor (DTR) transgenic mice in which CD169+

macrophages were specifically depleted by diphtheria toxin abrogated anti-cancer immune
responses in mice vaccinated with dead cancer cells. [19]. However, there was no difference
in the CTL response to tumor cells between wild-type and CD169-deficient mice, indicating
that CD169 does not play a critical role in the anti-tumor immune response.

CD169 expression is restricted to marginal zone metallophilic macrophages in the
spleen [20]. Antigens circulating in the blood flow are preferentially captured by spleen
antigen presenting cells including CD169+ macrophages which transfer the antigens to B cells
and DCs [21,22]. Benhard et al. demonstrated that both DCs and CD169+ macrophages
induce CTL responses in the spleen. They found that DCs induce CTLs that react to strongly
binding epitopes, whereas macrophages induce CTLs that react to a broader range of epi-
topes [23]. Muraoka et al. demonstrated that CHP nanogel-conjugated tumor antigens are
specifically engulfed by MSMs, induce antigen-specific CTLs, and suppress tumor develop-
ment [24]. These findings indicate that MSMs, in addition to SCSMs and DCs, also function
in antigen presentation.

We attempted to confirm the suppression of tumor development in another murine tumor
model using MB49 (murine bladder cancer) and PDA (pancreatic ductal adenocarcinoma) cell
lines and CD169-DTR mice. Consistent with the previous studies described above, the growth
of MB49 and PDA subcutaneous tumors was significantly promoted by macrophage-depletion
via diphtheria toxin (Figure 1B). Immunohistochemical analysis using paraffin-embedded
tumor samples showed a significant increase in infiltrating lymphocytes in tumor tissues
in SM-depleted mice (Figure 1C,D). Macrophage infiltration and PD-L1 expression were
significantly lower in SM-depleted mice as compared with control mice, suggesting that the
tumor microenvironment in SM-depleted mice has characteristics of non-inflamed tumors.

4. The Function of SMs in Protumor Function of B-Lymphocytes in Mice

Saunderson et al. first reported that CD169+ macrophages in the spleen and lymph node
captured exosomes via binding to CD169. They also reported that microvesicles were not
retained in the subcapsular sinus of CD169-deficient mice but penetrated deeper into the
lymph node paracortex [25]. Muhsin-Sharafaldine suggested that CD169 mediates anti-tumor
immune responses via the uptake of tumor antigen-containing microvesicles; however, the
anti-tumor immune response was not affected in CD169-deficient animals [26]. Pucci et al.
reported an increase in B cells in draining lymph nodes following SM depletion and that
pro-tumor immunoglobulin was involved in tumor growth [27]. They also found that the
capture of tumor-derived exosomes by SMs inhibited the proliferation of pro-tumor B cells
in the lymph nodes; an immunohistochemical analysis using human samples revealed the
presence of melanoma-derived antigens in melanoma-free draining lymph nodes. Similar
effects of SMs on B-cell proliferation in murine 4T1 and MMTV-PyMT mammary carcinoma
models were reported by Tacconi et al. [28]. These authors demonstrated lung metastasis
of cancer cells in SM-depleted mice, but depletion of B cells using an anti-CD20 antibody
significantly suppressed lung metastasis. RNA sequencing of SMs in tumor-draining lymph
nodes revealed the up-regulation of several genes potentially associated with B-cell activation.
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5. Potential Origin of SMs in Mice

The M1/M2 classification based on the condition of macrophage activation was intro-
duced in the late 1990s [29,30]. A Th1-like immune environment is generally believed to
induce M1(-like) macrophage polarization, whereas a Th2-like immune environment induces
M2(-like) macrophage polarization. SMs express both M1- and M2-related genes, making
these cells unsuitable for M1/M2 classification [31]. In addition to M1/M2 classification,
macrophages can be categorized into two types depending on origin: monocyte-derived
macrophages and tissue-resident macrophages derived from hematopoietic precursors in
the embryonic yolk sac or fetal liver at birth [32–34]. Kupffer cells in the liver, alveolar
macrophages in the lung, microglia in the brain parenchyma, as well as macrophages in
the intestines, pancreas, and abdominal cavity, are classified as tissue-resident macrophages;
however, the origin of SMs remains unclear [35]. Tacconi et al. reported that both SCSMs and
MSMs exhibit proliferative activity and that inhibition of CSF1R abrogated SM proliferation
in tumor-draining lymph nodes. Based on the results of parabiosis tests, Pucci et al. suggested
that SMs are tissue-resident macrophages. Investigations of cell–cell interaction between B
lymphocytes and SMs indicated that SCSM proliferation is dependent on lymphotoxin (LT)-
α1/β2 secreted from B lymphocytes [36]. Selective transgenic overexpression of LTα1/β2
in B cells led to an increase in the total number of SCSMs without affecting the number
of B cells [37]. These observations suggest that both SCSMs and MSMs have proliferative
and self-renewal activity similar to tissue-resident macrophages originating from embryonic
precursors. However, what causes the difference in F4/80 antigen expression between SCSMs
and MSMs remains to be determined.

6. The Importance of SM in Human Solid Tumors

Routine pathological analyses afford many opportunities for clinicians to observe the
lymph nodes of cancer patients. The presence of metastasis to the lymph nodes is an important
factor in determining disease stage, and the pathologist is responsible for making that decision.
We examined CD169 expression in human lymph nodes immunohistochemically using
paraffin-embedded sections. SMs were also positive for other macrophage markers such as
CD163 and CD204, and Ki67-positive SMs were also observed (Figure 2). The DC-related
marker fascin was also expressed on SMs [38]. First, when we analyzed samples from cases of
colorectal carcinoma, and interestingly, the rate of CD169 positivity of the SMs varied greatly
among individual cancer-bearing patients and non-cancer controls [39]. This observation
was inconsistent with CD169 expression in mouse lymph nodes. There were also no clear
differences between SCSMs and MSMs, in contrast to mouse lymph nodes. Statistical analyses
of postoperative survival and clinicopathological factors between patients with high and low
numbers of CD169-positive SMs in lymph nodes were also performed. In cases with colorectal
carcinoma, high CD169 expression in SMs had significantly longer overall survival, smaller
tumor size, and less lymph node metastasis [39]. Multivariate analysis identified CD169
positivity rate in SMs as an independent factor in determining overall survival in colorectal
carcinoma patients. The same analysis was performed for malignant melanoma, bladder
cancer, endometrial carcinoma, gastric cancer, and esophageal cancer, and in cases with high
CD169 expression, a significant prolongation of overall survival and cancer-specific survival
was observed [40–44]. Multivariate analysis also indicated that a high number of CD169+ SMs
is an independent prognostic factor in malignant melanoma, gastric cancer, and bladder cancer.
Other researchers have reported similar results for prostate cancer and breast cancer [45,46].
Infiltrating CD8-positive T cells in tumor tissues, particularly in tumor nests, play a central
role in the anti-tumor immune response in cancer patients. We hypothesized that CD169+ SMs
activate CD8-positive T cells to promote anti-tumor immunity and therefore analyzed CD169+

SMs and the infiltration of CD8-positive T cells into tumor tissues. The number of CD8-
positive T cells in tumor tissues was significantly higher in colorectal carcinoma, malignant
melanoma, gastric cancer, breast cancer, endometrial carcinoma, and bladder cancer, which
exhibited a high CD169 positivity rate in SMs (Table 1). In endometrial carcinoma, the number
of CD169+ SMs was also correlated with infiltration of NK cells into the tumor [41].
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Figure 2. Immunohistochemical analysis of human lymph nodes. (A) SMs were positive for CD169,
CD163, and CD204. Lymphatic endothelial cells were also positive for CD204. Scale bar, 100 µm.
(B) High-power field examination of the lymph sinus. The cell membrane of macrophages was positive
for CD169. Scale bar, 20 µm. (C) Double immunohistochemical staining of CD169 (green) and Ki67
(brown) in the lymph node sinus. Some double-positive cells were observed. Scale bar, 10 µm.

The results of the present study demonstrate a significant correlation between CD169+

SMs in anti-tumor immune responses and a better clinical course. Other groups have also
suggested that CD169+ SMs play a critical role in anti-tumor immune responses (Table 1).
Gunnarsdottir et al. reported that the co-localization of CD169+ SMs and cancer cells in lymph
node metastatic lesions was linked to improved recurrence-free survival in patients with
breast cancer [46]. Those authors also examined PD-L1 expression in SMs; however, they
found no significant association between PD-L1 expression on SMs and clinical course [46].
Using a rat prostate cancer model, Strömvall et al. identified several genes, including the
gene encoding CD169, which are up-regulated in the pre-metastatic niche in tumor-draining
lymph nodes [49]. In a subsequent study using the rat model, they found fewer CD169+ SMs
in pre-metastatic tumor-draining lymph nodes, and a reduction in the number of CD169+

SMs was found to be closely associated with shortened relapse-free survival in prostate cancer
patients [45]. Topf et al. reported that the metastatic spread of head and neck carcinoma to
regional lymph nodes was associated with fewer CD169+ SMs in draining lymph nodes [48].
This reduction in the number of SMs was significant in cancer cases without human papilloma
virus infection. Thus, accumulating evidence suggests that CD169+ SMs play a critical role in
determining the clinical course of various types of cancer, but details regarding the relationship
between SMs and cancer in humans remain to be determined.

Table 1. Clinical significance of CD169+ sinus macrophages (SMs) in solid tumors.

Tumor Type Link to Prognosis Link to TIL Comments Reference

Colorectal cancer better OS yes

High density of CD169+ SMs were observed in cases with T1/2 stage or
without lymph node metastasis. CD169 expression in human

monocyte-derived macrophages was increased by type-I
interferons (IFNs).

[39]

Melanoma better OS yes IFN-alpha secreted from plasmacytoid dendritic cells was suggested to
link to CD169 expression. [40]

Endometrial
cancer better OS yes High density of CD169+ SMs were correlated with high density of

natural killer cells more significantly than that of TILs. [41]

Bladder cancer better OS yes High density of CD169+ SMs were observed in cases with T1/2 stage. [42]

Esophageal cancer better OS yes
The density of CD169+ SMs were higher in female than male. Significant

correlation between CD169+ SMs and TILs were seen in cases with
neoadjuvant therapy. CD169+ SMs partially expressed IDO1.

[44]

Breast cancer not significant yes High density of CD169+ SMs was correlated with high density of TILs in
cases with high Ki67 index. [47]

Breast cancer better PFS not done

High density of CD169+ SMs were seen in cases with low tumor size,
and correlated with PD-L1 expression both in primary tumor and

metastatic tumor. Co-expression of CD169 and PD-L1 was seen in cases
of younger age.

[46]
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Table 1. Cont.

Tumor Type Link to Prognosis Link to TIL Comments Reference

Gastric cancer better OS and PFS yes
High density of CD169+ SMs was associated with better OS in cases with
advanced cancer or without metastasis and correlated to better PFS in

cases with diffuse type or high tumor-stroma ratio.
[43]

Prostate cancer better OS not done The significance of CD169+ SMs was suggested by rat prostate cancer
metastatic model. [45]

Head and
neck cancer not done not done High density of CD169+ SMs were observed in lymph node

without metastasis. [48]

OS: cancer specific overall survival, PFS; progression free survival; TIL; tumor infiltrating lymphocytes, IDO; indoleamine-2,3-dioxygenase.

7. Conclusions

Evidence indicating that CD169+ SMs play a significant role in anti-cancer immune
responses is increasing, and many studies examining human samples and mouse models
have been published (Figure 3). Targeted delivery of anti-tumor vaccines to SMs is also
considered an effective anti-tumor vaccine therapy approach. The mechanism underlying
the observed individual variation in the number of CD169+ SMs in lymph nodes remains
unknown. Analyzing CD169 in regional lymph nodes could both help predict the clinical
prognosis in patients with several types of solid tumors as well as enable the prediction of
anti-cancer immune responses. With regard to the observed individual variability in the
number of CD169+ SMs in human samples, we suggest that this variability derives from a
different population of tissue-resident macrophages originating from embryonic precursors.
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