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Abstract: NK cells are lymphocytes involved in the innate and adaptative immune response. These
cells are located in peripheral blood and tissues with ample functions, from immune vigilant to
tolerogenic reactions. In the endometrium, NK cell populations vary depending on age, hormones,
and inflammation. When pregnancy occurs, tissue-resident NK cells and conventional NK cells are
recruited to protect the fetus, a tolerogenic response. On the contrary, in the inflamed endometrium,
various inflammatory cells down-regulate NK tolerance and impair embryo implantation. Therefore,
NK cells’ pharmacological modulation is difficult to achieve. Several strategies have been used,
from progesterone, lipid emulsions to steroids; the success has not been as expected. However, new
therapeutic approaches have been proposed to decrease the endometrial inflammatory burden and
increase pregnancy success based on understanding NK cell physiology.

Keywords: NK cells; tolerance; pregnancy; tissue-resident NK cells; conventional NK cells; decidual
NK cells; uterine NK cells

1. NK Cell Subpopulations

Natural killer cells (NK) have been considered an essential subtype of lymphocytes
involved in innate and adaptive immune responses [1]. In peripheral blood, two main
subpopulations have been described; one cytotoxic CD3-CD56dim CD16high, and one
cooperative or tolerogenic CD3-CD56bright CD16dim [1]. NK cells can be transformed
from one type to another depending on tissue milieu, cytokine or receptor stimulation, or
pharmacologic therapy [1,2]. However, NK activity modulation does not come solely by
expressing CD16 and CD56 receptor. A complex array of molecules are responsible for NK
cell activity. There are activating or cytotoxic receptors, integrin, selectins, killing inhibitory
receptors (KIR), PD-1 receptors, CD161, and cytokine receptors responsible for NK cell
activity [1,2]. The expression of different receptors may be dependent on the stimulus or
tissue milieu.

Reports of NK cells in innate immune response and memory events have led to a
better understanding of NK cells’ tissue-specific role in the immune response [2–7]. In a
similar fashion as tissue macrophages, tissue-resident NK cells (trNK cells) differ in antigen
expression and function. Differences have been described for NK cells from skin, liver,
adipose tissue, suggesting that trNK cells may be unique depending on the location [6,7].
Most probably, the variance between normal physiological responses, inflammation and
remodeling involves trNK cells, macrophages, and the migration of other cell types [6–13].
Chemokines secreted by the tissue may recruit tissue independent NK cells from the blood-
stream, and once they arrive at their destination, their cell functions may be modulated by
tissue milieu [10–12]. There is still a debate concerning the responses of tissue-resident and
conventional NK cells in humans’ upon inflammatory stimulus.

In humans, tissue-specific uterine NK cells (uNK) is the most abundant lymphocyte,
around 70 %, in decidua and mesometrial tissue (Table 1) [10–13]. These cells highly express
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CD56, CD103, CD9, NKp46, KIR inhibitory receptors, CD94 NKG2A, and a low amount
of CD16 receptor and killing receptors. As expected, uNK cells are non-cytotoxic and
heterogeneous [10–13]. Three different subpopulations have been described in the uterus
based on CD56 expression. Two of them express CD117, CD49a, CD103, integrin β7,
CD9, and CD69, and transcription factor Eomes, but one produces IFNγ and the other
TGFβ/VEGF. The expression of CD103 and CD69 defines the difference in subpopulations
(Table 1). A third cell subpopulation expresses CD49a, has an increased amount of Eomes
transcription factor, and responds to IL4 [13]. Interestingly, ILC1 cells, associated with Th1
IFNγ transcription and function, are present in the endometrium before puberty. Thus,
local ILC1 cells may be involved in the uterine milieu and crucial for the recruitment or
maturation of uNK and cNK migration to the tissue in the menarche.

Table 1. General Characteristics of NK cells.

Type of NK Cell Markers Cytokine Response

Circulating
tolerogenic CD16low CD56bright CD94bright, NKG2A(C or E)/CD94, CD161. IL10, TGFβ

Circulating cytotoxic CD16bright CD56dim, CD57+, CD94dim, NKG2D/CD94, NKp30+,
NKp46+, CD62L med IFNγ

cNK CD16high CD56dim, CD49a−, DX5+, NKG2D/CD94, NKp30+, NKp46+, CD62Lmed IFNγ

uNK CD56bright, CD16low, NKG2A/CD94, CD49a+, NKp46+, integrin β7+,
CD117+, DX5−

uNK1 CD49ahigh, CD103high, CD69+ IFNγ

uNK2 CD49ahigh, CD103med, CD69+, KIRhigh inhibitory TGFβ/VEGF

uNK3 CD56high CD49a+, KIRhigh inhibitory, CD69med IL-4

dNK CD56high CD16low, CD94high, NKp46+

dNK 1
CD103low, CD9+, CD39+, CD69low, CYP26A1, B4GALNT1+, Jag1+, TIM3high,
KIR2DL1+, KIR2DL2+, KIR2DL3+, KIR2DS1+, KIR2DS4+, LIRB1+, NKG2A+,

NKG2C+, NKG2E+
IFNγ, TGFβ

dNK 2 CD103high, CD9low, CD69high, Jag1+, CD83+, KIRhigh inhibitory, ANXA1+,
ITGB2+, TGIT+, TIM3low, NKG2A+, NKG2C+, NKG2E+ TGFβ/VEGF

dNK 3 CD103low, KIRhigh inhibitory, ITGβ7+, CD74+, CD160+, KLRB1+, ITGB2+, TGIT+ TGFβ/IL-4

The table represents the described markers for different cell populations and the responses to cytokines. The term cNK are conventional NK
cells, uNK are uterine resident NK cells, dNK are decidual NK cells. The acronym LIRB1 corresponds to Leukocyte immunoglobulin-like
receptor-1, B4GALNT1refers to β 1,4 N acetylgalactosamine transferase 1, CYP26A1 corresponds to Cytochrome P450 26A1, ANXA
corresponds to annexin A1, ITGB2 corresponds to integrin subunit beta 2, TGIT corresponds to T cell immunoglobulin and ITIM domain.

In mouse, a new classification was postulated of innate lymphocytes (ILC) as ILC1,
ILC2, ILC3, NK tissue-resident (trNK), and conventional NK cells (cNK) [5–7]. Recent
reports have shown that trNK cells express CD49a, but lack the expression of DX5, and
the reverse is true for cNK [8]. Also, cNK cells are more cytotoxic than trNK and ILC
counterparts [5,8–12]. Based on this definition of innate lymphocytes, Sojka and cowork-
ers [12,13] named the NK cells in the uterine tissue as trNK, not uNK cells. Their remark is
based on the fact that, in pregnancy, cNK migrate to the tissue and cooperate with trNK
cells. The two NK cell subpopulations, tissue-resident and conventional, are distinguish-
able [10,12,13]. Nfil3 and Eomes are the required transcription factors for cNK cells and
not for uterine trNK cells [12]. When pregnancy occurs, trNK and cNK cells increase in the
decidua, providing the tolerogenic model for a normal pregnancy [12,13]. The trNK are
closer to the trophoblasts, and the cNK cells are in the periphery. Once labor starts, the cNK
presence decreases in the endometrium, while the number of uterine trNK cells diminishes
in the puerperium [12]. In this particular physiological event, the cooperation among
different cell populations and the tissue involved is crucial for fetal survival. Nonetheless,
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the tissue events in which NK cells are involved are not necessarily dependent on specific
subpopulations circulating NK cells in the peripheral blood [6,8,10–13].

2. NK Cells in Pregnancy

Progesterone is essential in reproduction and pregnancy maintenance. The hor-
mone induces the transcription and secretion of progesterone-induced blocking factor
(PIBF) [14,15]. In turn, PIBF levels are increased in normal pregnancy and very low in
recurrent pregnancy failure [16]. Moreover, the progesterone stimulates protein glycodelin
A (GdA), or human placental protein-14 binds to NK cells CD16 low CD56bright NK cells
purified from peripheral blood and transforms them into dNK-like cells [17,18]. Sialylated
glycans expressed on glycodelin A are critical for binding to the receptor [17]. In addition,
Glycodelin A stimulated cells to control endothelial cell angiogenesis by secreting vascular
endothelial growth factor (VEGF) and trophoblast invasion by secreting insulin-like growth
factor-binding protein 1 (IGFBP-1) [17].

Studies in pregnancy loss and preeclampsia have raised important questions concern-
ing the role of NK cells in embryo implantation [9–19]. Fetal expression of MHC-I and
its recognition by KIR receptors on NK cells, along with NKG2A/CD94, are critical for
dNK cells (Table 1). On the contrary, the role of cNK cells is not tolerogenic; it protects
the decidua against pathogens and abnormal cells. The cytotoxic response of cNK cells
depends on NKG2D/CD94 and KIR activating receptors, NKp30, NKp46, and not by
NKG2A/CD94 and KIR inhibitory receptors and their ligands. Activation of cNK cells
may lead to a robust cytotoxic response against the embryo leading to pregnancy termina-
tion [11,19–22]. However, cNK cells are also critical for vascular remodeling, an important
event to maintain blood flow to the fetus, often impaired in preeclampsia. The tolerogenic
response of dNK cells is dependent on TGFβ levels, while IFN γ activates cNK cells. Thus,
a balance between TGF β production inducing the tolerogenic response of NK cells or IFN
γ inducing inflammatory responses is critical to determine pregnancy outcome [11,19–22].

Huhn and coworkers [23] were able to determine, in healthy human pregnancy,
different cell populations in the decidua (Table 1). They identified three decidual NK cell
subpopulations (d1, d2, and d3), ILC3, and a group of proliferating NK cells using mass
cytometry [23]. When dNK cells were stimulated with PMA and ionomycin, dNK2 and
dNK3 secreted more chemokines than dNK1. The secretion included the chemokine C motif
ligand (XCL1), a cytokine able to activate maternal dendritic cells and fetal extravillous
trophoblasts. The d2 and d3 NK cells express a high amount of KIR inhibitory receptors [23].
Nevertheless, KIR antigen expression in dNK1 cells correlates with granzyme B granule
content in the cells suggesting that these cells are more prone to be cytotoxic. These results
indicate that KIR receptors control fetal development and could be involved in eliminating
abnormal trophoblasts [24]. These issues have also been discussed in a recent review [19].
In summary, uNK cells are similar to dNK cells in the expression of several antigens;
however, some others are only present in dNK cells (Table 1).

The involvement of different dNK cell subpopulations in embryo implantation and
maintaining pregnancy still requires more research. Guo et al. [24], analyzing single-cell
NK by qPCR, reported that a subset of dNK cells, previously defined as a protective NK
cell for embryo growth, is diminished in patients with spontaneous abortion. Even though
the decrease of this subpopulation may be due to different events, their assessment may be
critical for determining therapeutic success.

A shift in the control of tissue subpopulations can be observed in different stages
of normal pregnancy. In the first trimester, NK cells are prone to protect the fetus from
pathogens; however, this protection decreased in term pregnancies [19,22,23]. In term
pregnancies, dNK cells, usually tolerogenic, have a higher cytotoxic response against K562
than those of the first trimester [22,23]. This effect may be due to an impaired inhibitory
response due to a downregulated expression of inhibitory receptors recognizing HLA-C
antigens or HLA E and G similarly as cNK cells [22,23]. Also, the dNK cells from the first
trimester differ from that dNK obtained in term pregnancies based on proteomic data.
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It is unclear if the cNK cells redistribute to other tissue or circulation after pregnancy
termination and if the dNK cells transform into uNK cells to aid endometrial tissue repair
after pregnancy.

The role of cNK cells on pathogen has become more evident in the latest years.
cNK cells have been involved in protecting the fetus against infections like Toxoplasma
gondii [25,26]. During Toxoplasma infection, Tim-3 is involved in dNK impairment, and
consequently, cNK may be involved in pregnancy termination by NK cells [25,26]. The
response is dependent upon the production of IFN γ and the downregulation of KIR
inhibitory receptors.

3. NK Cells and Endometrial Disease

A first approximation of the importance of the role of hormones in endometriosis
was by Loverro and coworkers [27]. Mizumoto [28] and Eriksson et al. [29] contrasted
previous reports demonstrating the presence of suppressive leukocytes in the endometrium,
and Eriksson et al. [29] defined the phenotype of uNK cells and their response to TGFβ.
One essential difference between NK cells from peripheral blood and uNK cells is the
response to hypoxia [30–32]. Furthermore, the peripheral NK cells and uNK cells respond
differently to TGFβ when the cells are incubated in hypoxic conditions ex vivo [31,32].
These results suggest a significant difference in hypoxia-inducing transcription factor 1
and, consequently, substantial changes in physiological responses.

In mouse endometriosis models, trNK cells express higher amounts of inhibitory
KIR receptors [33]. This increased expression does not parallel with an increase in HLA
E and HLA G molecules, physiological ligands of such receptors, suggesting that the
inflammatory response is not physiologically controlled. Other MHC class I receptors and
NKp46, CD103 (integrin alpha E), seem to be related to NK cell attraction and increased
cytotoxic responses by cNK cells [33,34]. In aged mouse and humans, the resolution
of endometriosis is delayed [34]. Chronic inflammation in endometrial tissue decreases
the telomerase activity of several cells, impeding their optimal physiological response in
mouse [34] and humans [21,35–39]. trNK cells could also be affected by the low telomerase
response [34]. On the other hand, senescent cells may activate the cytotoxic response of
cNK cells [34–39] against autologous cells and, in consequence, generate more cell death
maintaining the local chronic inflammatory response.

In humans, NK cells, macrophages, and T cells are responsible for maintaining the local
inflammatory response [35–40]. The role of TH17 and IFN γ has been widely discussed;
however, the control of inflammation in the tissue is not achieved in many patients despite
surgery or other therapeutic options raising the question of a wider variety of endometrial
diseases [21,36–39]. One of the often-overlooked events is autoantibodies, which can play
an essential role in maintaining the inflammatory response [40–42].

The frequency of endometrial cancer is high in developed countries as compared to
other cancers [43]. The occurrence of this type of cancer has been associated with ageing
and obesity [43]. Despite the solid statistical association between ageing and obesity to
tumour incidence, little is known about the immune response in this type of tumour
except for T CD8 cytotoxic cells [44]. The generation of a tumour in the endometrium
associated with age and obesity has raised important questions concerning the pool of
circulating and tissue-dependent NK cells [43–46]. The trNK cells do not represent a cell
type able to induce a proper immune vigilant response [45,46]. In an analysis of menstrual
blood, NK cells were shown to express CD103 [47], an antigen expressed in T regulatory
cells [48]. Two populations were described based upon the CD103 marker [47,48]. The
CD103 positive cells express inhibitory KIR, Tigit, and TIM3 proteins and inhibit local
immune response [49,50]. The CD103 negative counterparts have low expression of those
markers and high cytotoxic markers; they are cytotoxic against the tumour [49,50]. The
number of inhibitory receptors and suppressive cells increases depending on the severity
of the disease [49,50]. The production and secretion of chemokines and IL-1β and IL-6 by
these cells are decreased, suggesting reduced cell recruitment to the tumour [49,50].
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Several reports on the importance of KIR receptors in endometriosis [51,52] and
the expression of NKG2D [53]. However, more analysis is required because of the con-
tradictory reports on uNK cells in endometriosis and inflammatory events related to
pregnancy loss [54,55].

4. NK Cells in Autoimmune Diseases

During the screening of possible causes of infertility or recurrent pregnancy loss,
the presence of autoantibodies may be relevant. The presence of autoantibodies may be
independent of peripheral lymphocyte or NK cell populations, but may be dependent on
tissue subclinical inflammatory responses.

Women with autoimmune diseases with the proper therapeutic conditions may un-
dergo pregnancy without major complications. The most common autoimmune disease
is anti-thyroid antibodies [41,42,56–58]; however, the most difficult to treat is antiphos-
pholipid antibody and lupus. The main issue depends upon the control of autoantibodies
and thrombosis. Most patients with subtle inflammatory reactions may benefit from
progesterone or anti-inflammatory therapy [40].

Autoantibodies may be responsible for NK cell activation in the decidua; however,
the mechanism is unclear [41,42,56–58]. Control of thyroid hormone can be achieved
pharmacologically. Vitamin D appears to have a protective role in this process as human
chorionic gonadotrophin [56–58]. Both induce a tolerogenic immune response [56–59].
However, anti-nuclear and antiphospholipid antibodies may require special medical treat-
ment. Zhang and coworkers [41] were able to show a correlation of NKG2D expression
with antiphospholipid antibodies in obstetric patients. These results support the hypothesis
of downregulation of inhibitory KIR receptor expression in patients with autoimmune
diseases. It would be interesting to study the possible role of small HLA molecules in
modulating NK cell responses in these patients.

Jiang and coworkers showed the importance of NETosis and dNK cells in lupus preg-
nancies [60]. The critical issue seems to be related to the inflammatory burden based on cell
death at the endometria [60]. In addition, NETs may induce dNK modulation depending on
DAMP receptor signaling, which would downregulate KIR inhibitory receptors, enhancing
KIR activating receptor [60]. Probably, impaired production of HLA E and G, ligands of
inhibitory receptors, may also play a vital role in dNK activation.

5. NK Cells in Obesity

In adipose tissue, trNK cells seem to be important not only in maintaining adipose
tissue control, but they may be involved in the subtle inflammatory activation that may lead
to insulin resistance and metabolic syndrome [46,61–63]. In the breast mouse tumour model,
adipose tissue increase and high-fat diet are related to more tumour growth, suggesting a
skewed response of NK cells against the tumour [46,61–63]. In particular, Spielman and
coworkers [63] injected mammary tumour 4T1-luc2 cells in the mammary adipose tissue
of BALBc animals in which ovaries were surgically removed and showed that NK cells
close to the tumour had a higher expression of NKG2D despite a decreased expression
of NKp46 and an increased amount of adipose tissue. These results propose that there is
a link between adipokines and circulating and trNK cells [64]. Even though leptin and
adiponectin do not alter peripheral blood NK cells cytotoxic response in vitro, there is
evidence of the increased incidence of endometrial, ovary, and mammary tissues cancer in
obese humans and animals [46,65].

Another alternative that has not been explored in detail is single or multiple genetic
polymorphisms of critical proteins, receptors, or signal transduction pathways that may
be relevant for NK cell modulation and tissue migration [46]. Studies with the NK cell
line NK-92 suggest that several exciting analyses could be performed using migration and
invasion [66–69]. For example, STAT 3 was involved in Tim-3 dysregulation of dNK, which
involves immune response against pathogen and tissue rejection [27,67–69]. The migration
of tissue-resident NK cells from obese individuals has not been studied thoroughly in
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different metabolic disorders related to circulating hormone levels and could be relevant to
understand the possible effect on uterine or decidual NK cells.

Pregravid and gravid obesity seem to alter the immune cells involved in the en-
dometrium [70–72] and predispose women to gestational diabetes. Maternal obesity also
alters uNK activity [70–72]. Even though in NK cells of gravid obese women, the expression
of KIR2DS1 is increased over KIR2DL1, there is no increase in cytotoxic response. Yet, the
interaction of the activating receptor HLAC2 induces the secretion of TNFα, which affects
the local inflammatory milieu and may affect fetal development and may predispose to
preeclampsia [70–72]. It is unclear whether nutritional restriction or diet modulation may
affect uNK cells in obese pregnant women. Conversely, the effects may be assumed to be
similar to those observed in mammary tumour-challenged mice [73].

6. NK Cells in Infectious Diseases in Pregnancy

Control of infectious diseases is essential during pregnancy since they can be life-
threatening for the embryo and fetus [74–76]. The most dangerous pathogens in pregnancy
are influenza, SARS CoV-2, malaria, toxoplasma, hepatitis, Zika virus, herpes simplex
virus, human cytomegalovirus, Ebola, dengue, measles, and smallpox [74–76]. In addition,
pregnant women may be more susceptible to pathogen infection, malaria infection, HIV
infection, and listeriosis. The susceptibility may be due to the tolerogenic environment
generated during pregnancy. For example, in SARS CoV2 infection, there seems to be an
increased activation of NK and T cell in the maternal-fetal interface, despite the absence of
virus in the tissue [77]. This effect may be due to inflammatory cytokines generated upon
viral infection.

In Listeria monocytogenes, the role of uterine NK cells seems to protect from the
infection, although it is not crucial for its response as observed in the mouse model [78].
However, other pathogens like mycobacteria have been barely studied. There has been a
proposal for a BCG vaccine for endometriosis since it is known that BCG activates NK and
NKT cells [79]; however, there have not been well-conducted trials to test that hypothesis.

One of the critical elements for the elimination of pathogens by NK cells is the pres-
ence of KIR. In an exciting analysis performed by Omosun and coworkers [80,81], KIR
receptors’ role in placental malaria and perinatal transmission of HIV-1 was analyzed.
Inhibitory KIR2DL2 and KIR2DL3, alleles of the same locus, negatively affect malaria
and malaria/HIV co-infection. Furthermore, the maternal KIR genes KIR2DL2, KIR2DL5,
KIR2DS5, and KIR2DS2, were associated with decreased HIV-1 transmission from mother
to child [80,81].

KIR expression is crucial in protecting the fetus and may play a pivotal role also with
preeclampsia associated with the inflammatory response generated by the pathogen [82–86].
An association between KIR/HLA class I mismatch and preeclampsia suggest that there
may be more than one mechanism involved between NK cell activation upon pathogen-
induced local inflammatory response and preeclampsia [85,86]. Future analysis should
be directed towards understanding the phenomenon, and probably using small HLA
inhibitory molecules HLA E/G could decrease the inflammatory burden. For example,
soluble HLA-G induces apoptosis of dNK cells after Toxoplasma gondii infection [87].

Innate immune antiviral response plays a crucial role in the response. In cytomegalovirus
infection, Tomac and coworkers [88] were able to show that low viral load and high viral
load affect the corpus luteum differently in a murine model. There is local inflammatory
activation at low viral load, but pregnancy continues; there is a massive immune response
at high viral load, leading to pregnancy loss. Moreover, in Zika virus infection, there
is evidence of memory-like NK cells, and the expression of CD27 characterizes it [89].
However, these experiments, carried in the mouse model of the disease, may not be parallel
to the infection in humans since the viral escape, in humans, seems to be dependent upon
upregulation of MHC class I [90]. Herpes simplex virus may induce embryo damage by
decreasing the expression of HLA G, critical in local tolerogenic responses [91].
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In patients with hepatitis B and recurrent pregnancy loss, the virus induces a decrease
in NK cell function in peripheral cells [92]. A similar impairment in NK cell cytotoxicity
was observed in hepatitis C virus-infected patients [93]. Furthermore, diminished NK
responses are also observed in dengue viral infection and may play a role in the disease [94].
Thus, dysregulation of NK cells in these viral infections may be significant for peripheral
NK cells and trNK cells.

NK cells are activated and can provide protecting memory responses in Ebola viral
infections [95]. This protective response seems to be essential for liver NK cells, a target
tissue. Thus, the protection against the virus may be critical also in uterine NK cells and
decrease cell mortality.

Only a few reports have described the local immune response against measles and
smallpox in pregnancy.

The differences in NK cell response to viral infection observed in the murine model
cannot be assumed to occur in humans, reviewed recently [96,97]. In particular, several
assumptions based upon the response of trNK cells may not be extrapolated since ILC cells
play an essential role in mice and a less prevalent role in humans.

7. Pharmacological Modulation of NK Cells

In general, normal pregnancy requires a tolerogenic response that is controlled at the
tissue level. Pharmacologic modulation of this effect is essential in order to achieve that
goal [98]. The therapy has been primarily based upon indirect knowledge from animal
models and in the analysis performed in patients with recurrent abortions due to non-
genetic or pathogenic events [98–100]. However, different medical conditions in which
therapy may substantially affect pregnancy outcomes may be related to NK function.

One crucial analysis is based on the fact that peripheral blood NK cells may not
be appropriate to determine treatment effect [98–100]. Variations, upon treatment, on
circulating cell quantities, and a decrease in cytotoxic responses may be due either to
changes in the activation markers or changes in subpopulations based upon cell maturation.
Due to the variety of receptors and signals involved in NK physiology, it is challenging
to determine which specific antigen or receptor could be a critical biomarker to ascertain
treatment responses.

NK cells in recurrent spontaneous abortion have been several pharmacological ther-
apies used [98–100]. Some therapies are based on a general anti-inflammatory rationale,
screening peripheral blood NK cells subpopulations and cytotoxic activity [98–100]. How-
ever, treatment efficiency depends on pregnancy success and complete pregnancy with
alive newborns [99,100]. In some cases, therapeutic modulation has been shown to in-
crease the number of genetic malformations and the possibility of preeclampsia, eclampsia,
or HELLP syndrome [98–100]. Hence, the modulation of tissue-resident NK cells and
conventional NK cells may alter the local biological response.

Table 2 summarizes different therapies involved in NK cells and their involvement
in pregnancy.

7.1. Progesterone

Progesterone is an essential hormone that may be given orally or applied topically for
pregnancy maintenance [101–103]. NK cells do not have receptors for this hormone; how-
ever, T cells do [102–104]. The factor induced by progesterone, PIBF, generates a tolerogenic
TH2 response in the endometrium and consequently may affect NK cell migration and re-
sponse [105]. Miko et al. [106] reported an inverse correlation between PIBF levels and local
leptin levels and leptin receptors involved in local progesterone production and trophoblast
growth. These results parallel that described blocking PIBF in an experimental mouse
model. PIBF inhibition significantly increased miscarriages despite successful implantation.
The increase in miscarriage was associated with an increase in NK activity [104–106]. In
the equine model, an exciting interaction between galectin and PIBF has been observed
protecting pregnancy [107]. Thus, the effect of progesterone is dependent upon glycodelin
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A and PIBF transcription and secretion. They, in turn, provide the critical tolerogenic milieu
for embryo implantation and pregnancy.

In the presence of progesterone, stromal and dendritic cells secrete IL-15 and IL-18
critical for NK cells [105,108]. A significant increase in IL-15 level is observed in the
secretory phase compared to the proliferative phase of the hormonal cycle and then during
early pregnancy in parallel to progesterone levels [105,108]. A negative correlation was
also found between IL-18 and the number of uNK [109]. Murata H and coworkers [110]
recently reported the importance of the heart- and neural crest derivatives-expressed
transcript 2 (HAND2) and inductor of IL-15 secretion by human endometrial stromal cells
induced by synthetic progesterone. Then, it is assumed that this IL-15 produced is critical
in the role of NK in the decidua.

In an interesting study involving in vitro fertilization, it was found that serum proges-
terone levels are critical for pregnancy success and termination, suggesting that modulation
of decidual cells by progesterone is crucial [111]. Furthermore, progesterone is required to
induce a tolerogenic milieu in the endometrium and the decidua.

The hormone is generally used as an immunosuppressor. There are therapeutic
guidelines to use in endometriosis, and it has been used to prevent abortion and preterm
delivery [112]. In general, there are three pharmacological approaches: oral formulation,
injections, and micronized hormone. It was hypothesized that progesterone absorption
through the vagina may downregulate the endometrium’s inflammatory milieu [112]. How-
ever, there are differences in pharmacodynamics depending on the hormone preparation.
The use of progesterone regulates glucose transport, enhancing endometrial receptivity to
the embryo [101].

Progesterone’s effect on different cell types and trophoblast, like the newly described
variety of trophoblast expressing HLA-G, is unknown [113]. However, in this case, the
critical element modulates inhibitory signals through the KIR receptors, which can be
crucial for embryo implantation and successful pregnancy.

7.2. Low Molecular Weight Heparin

Experiments ex vivo performed many years ago highlighted the role of heparin
decreasing cytotoxic response [114]. Heparin was also shown to increase fetus stability,
diminishing pregnancy loss. The effect of heparin is attributed to modulation of endothelial
cell responses, relaxing the vasculature, decreasing resistance, and hence protecting the
patient from preeclampsia [114–116]. However, ex vivo experiments using macrophages
and helper T cells stimulated with heparin were more inflammatory than tolerogenic [117].
This unanticipated result may be due to the lack of other cells that contribute to the cell
response. A recent report reveals that the effect of heparin as the antitumor drug does not
involve NK cell activation, suggesting that heparin instead activates Th1 and hence NK
cells are more cytotoxic against the tumour [118]. More research is required to ascertain the
importance of this drug on in vivo NK cell modulation in pregnancy.

Patients with antiphospholipid antibodies and with thrombotic pathologies are treated
with heparin during pregnancy. There are several hypotheses on the possible mechanisms
of heparin; however, none of them involved NK cell response [118,119]. Thus, heparin’s
role in preventing thrombotic events may be crucial for the embryo or fetal survival. The
use of heparin as an immunomodulator is complicated to envision; however, the effect of
heparin binding to receptors on different cell types and modulating cellular processes may,
in turn, affect NK cell response [118,119]. Therefore, more research should be performed to
ascertain the possible effect of this and other glycosaminoglycans on NK cell function.

7.3. Corticosteroids

Corticosteroids have been found to modulate the NK cell response [120]. Prednisolone
treatment of NK in vitro suppressed NK cells cytolytic activity against K562 cells [121]. This
suppressive effect of steroids was observed on the cytotoxic CD16+ NK cells [121]. Before
pregnancy, the effect of corticosteroids has been related to a decrease in the subclinical
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pro-inflammatory burden [122,123], and it may favor embryo implantation. However, it is
unclear what corticosteroids may affect local trNK cells or the migration of cNK cells.

A recent review by Li and coworkers [124] revised the PD1/PD1 L axis and pregnancy
role. When there is an increase in the expression of PD1 in endometriosis [125], there is
less probability of pregnancy maintenance. In cancer therapy, the difference in response
is clear using dexamethasone or prednisone involving PD1/PDL1 L axis [126]. Therefore,
this axis should be studied in more extensive trials. On the other hand, if steroids down
modulate PD1 and decrease the cytotoxic or pro-inflammatory responses of stimulated NK
cells, then embryo anidation and pregnancy will be successful.

7.4. Intravenous Immunoglobulins (IVIg)

The pharmacological mechanisms of IVIg enhancing embryo implantation and suc-
cessful pregnancy have not been studied thoroughly. In peripheral blood, it was reported: a
decrease in NK cytotoxic activity, a decreased amount of activated T and B cells, an increase
in tolerogenic T cells, along with a reduction of activated antigen-presenting cells [127]. A
decrease of autologous antigens upon treatment is suspected [127–129]. In a meta-analysis
of 13 trials, Christiansen et al. [129] were unable to determine the impact of IVIg on live
births. However, if the treatment started before conception, the results were better. Similar
outcomes were encountered by Abdolmohammadi-Vahid et al. [130] in four clinical trials.
More well designed clinical trials, including monitoring NK cell cytotoxic and tolerogenic
responses, are required.

Two exciting issues have not been well described in this treatment. First, it is believed
that intravenous immunoglobulins would decrease the number of antibodies against their
own ligands and decrease autoimmune responses [127–131]. Yet, it is unclear if IVIg
may enhance antibody-dependent cellular cytotoxicity on NK cells. Second, ADCC may
increase the elimination of unwanted cells in different tissues and consequently decrease
the inflammatory burden detrimental to embryo implantation and pregnancy maintenance.

7.5. Lipid Infusions

Lipid infusions, particularly Intralipid, have been suggested as alternative therapy
for recurrent abortions since these lipids seem to modulate NK cell function and promote
trophoblast invasiveness [132,133]. In mouse models and ex vivo studies, intralipid sup-
pressed abnormal NK cytotoxic [132–135]. However, the results of the meta-analysis have
not been conclusive. On the other hand, omega-3 fatty acid infusions decreased inflamma-
tory burden (TNF-α, IL-1, IL-6 or IL-8 [133–136]. However, again, the lack of adequately
designed trials has limited this therapy in recurrent abortions.

Our group reported an increase in NK proliferative and cytotoxic responses when
human NK cells were stimulated in vitro with chylomicrons [137]. In addition, the sup-
plementation with fatty acids modulated the expression of different receptors on the NK
membrane [138]. Probably, the use of intravenous intralipid would modulate NK subpopu-
lations and consequently favor NK maturation and migration.

7.6. Vitamin D

Several years ago, Evans and coworkers [139] reported that decidual cells could syn-
thesize 1,25-dihydroxy vitamin D3 and that this production is higher in the first trimester
of pregnancy. These results raised essential questions on local cell tolerance and the im-
portance of vitamin D in tolerogenic responses. Tamblyn and coworkers [140] showed
significant differences in vitamin D3 between uNK and peripheral blood NK cells, suggest-
ing different overall signal transduction responses. Even though the authors concluded
that uNK cells and peripheral blood NK cells are not the direct targets of vitamin D, the
difference in cell responses suggests that the uptake of vitamin D3 can be an accessory
signal for local uNK tolerogenic responses.

Vitamin D3 was shown to modulate NK cytotoxic response [141], an event that has
been linked to an increased success rate of pregnancy [142]. Ota and coworker [143] per-
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formed a gene polymorphism of methylenetetrahydrofolate reductase C677T in patients
with recurrent abortion [144]. Patients with the TT polymorphism had higher homocys-
teinemia levels, lower vitamin D3 levels, nevertheless, higher NK cell cytotoxic responses
against K562 cells [144]. These results suggest a relationship between folate metabolism
with vitamin D3 levels and NK cytotoxic responses. Supplementation of vitamin D3 and
methyl folate in these patients will probably increase pregnancy success.

In a recent review on vitamin D and pregnancy, Zhao et al. [144] discussed the
importance of this vitamin on pregnancy loss associated with antiphospholipid syndrome
and modulation of Th1/Th17 axis in recurrent pregnancy loss. It is suggested that the
effect of vitamin D disrupting this pro-inflammatory Th1/Th17 axis affect NK responses
and hence pregnancy maintenance. More research has to be done to verify this hypothesis.

7.7. Exosomes

Exosomes are extracellular vesicles that originate from the endosomal compartment
of cells. The structures contain protein, DNA, RNA, and/or miRNA of the cells that secrete
them. Exosomes have been used as biomarkers in different reproductive diseases [145–151].

Wu and coworkers [149] analyzed the miRNA in samples from patients with varying
types of endometriosis to understand the regulation of different pathways. They then were
able to explore the most relevant miRNA in endometriosis [148–150]. This information is
critical since directed therapies depending on endometriosis may provide new elements to
control the inflammatory disease and aid in fertilization [148–166]. In addition, exosomes
contain miRNA and other proteins. These miRNAs decrease the inflammatory burden
by blocking the transcription of inflammatory cytokines and, consequently, induce tissue
repair crucial for embryo annidation and pregnancy survival [149–151].

The use of endosomes for therapy has raised the interest of several groups in recent
years [145–149]. In addition, the experience with other disease has provided new tools for
generating individual and targeted analysis to decrease the inflammatory response and
provide the critical tissue milieu for implantation and pregnancy [145–151].

7.8. Other Therapies

A recent review by Busnelli et al. [104] revisited several procedures regarding recurrent
pregnancy loss. The intrauterine infusion of autologous peripheral blood mononuclear cells
(PBMC) seems to reduce endometriosis [105]. Also, platelets infusion can increase local
progesterone production, probably by releasing TGFβ [152]. Thus, the infused cells provide
a tolerogenic milieu for embryo implantation. Also, a mild positive effect of subcutaneous
G-CSF injection inducing clinical pregnancy post embryo implantation was observed [104].
One possible mechanism of tolerance induced by G-CSF is the inhibition of NK cytotoxicity
activity [104]. It is nevertheless unclear why the beneficial effect of G-CSF is subcutaneous
and not intrauterine.

Other therapies involve platelet-rich plasma in the uterine cavity and the use of
different stem cells [149–155]. The goal of the platelet-rich plasma is related to local TGFβ
release and consequently promote NK differentiation [149–155]. There have not been
conclusive studies using this therapy and other therapies involving various stem cells and
allostimulation [155]. There is still room for more directed treatments, which would increase
the recruitment and modulation of NK cells. However, it is essential to recognize that a
balance of NK subpopulations, cNK, uNK, and dNK, is required for normal physiological
responses. The immune vigilant role of NK cells is also crucial for eliminating pathogens
and abnormal cells, and non-viable embryos.

Modulation of PD1/PDL1 is also essential in understanding NK responses in the
endometrium and the possible role of this diad in preeclampsia [156–160]. This diad’s
mechanism may depend upon the inflammatory burden and the expression of markers
of downregulation on NK cells. The inflammatory response generated by pathogens
of tumour cells in the endometrium involves NfkB, which also seems vital in uterine
artery remodeling [160].
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Treatment like medroxyprogesterone acetate was shown to increase NK cell activ-
ity in menopause [161]. This modulation may also be relevant in other conditions like
polycystic ovary syndrome, in which hormonal dysregulation may affect endometrial NK
cell responses [158]. Waiyaput and coworkers [162] reported that treatment with com-
bined contraceptive pills increased the migration of NK cells, suppressive macrophages,
and tolerogenic T cells to the inflamed endometrium of menopause women. In addition,
protopanaxadiol, an antioxidant ginsenoside compound, was reported to induce the expres-
sion of tolerogenic antigens on NK cells [163]. Thus, hormone therapy radical scavenging
causes a protective response in the endometrium.

Interestingly, new therapeutic uses essentially for antitumor responses as LAIR-2
(LAIR-1 inhibitor) and P4H shRNA (collagen inhibitor) modulate NK cytotoxic responses
and may provide exciting options in the future for peripheral and trNK cells [164]. JAK
kinase inhibitors were shown to modulate peripheral NK and ILC1 cells with stimulating
effects on immune response regulation [165]. New studies may focus on the use of therapy
usually used for treating tumors. Aromatase inhibitors may also be relevant for combined
therapies in endometriosis.

The immunomodulatory effect of Mesenchymal Stem Cells (MSCs) on NK cells has
been a matter of discussion for several years [145,146]. In a mouse model of recurrent
abortion, when MSC cells were co-cultured with primed, inflammatory NK cells, MSC
induced a shift in cytokine production and tolerogenic responses [145]. This result suggests
that MSC cells may influence a tolerogenic microenvironment in early pregnancy. This
effect has to be assessed in clinical studies. It is unclear if another type of stem cell could
also be involved in the treatment.

Another promising target for therapy is G-CSF since the cytokine is modulated in the
endometrium and may facilitate the endometrial repair and NK cell migration. Studies of
the role of this cytokine in pregnancy and endometrial cancer are underway.

It can be concluded that the different therapeutic schemes should be concentrated
on the signal transduction responses of NK cells. Directed therapies would enhance
the expression and functions of tolerogenic molecules rather than activating molecules,
promoting embryo rejection and pregnancy termination. Figure 1 illustrates the crucial
pathways that should be modulated with new types of directed therapy. The role of
cytokines or other soluble factors may not be as effective as other factors, considering the
difference in peripheral NK cells compared with tissue NK cells. In addition, the reduction
of the inflammatory milieu has to be achieved, most probably with complementary therapy.
The effect of cytokines and fatty acids may depend on the NK cell type and the type
of fatty acid involved. Future research should be directed to study the mechanism of
NK modulation by using small molecules that would control specific signal transduction
pathways. Several therapies employed nowadays still require proper validation.
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8. Conclusions

There are several populations of NK cells that may play an essential role in immune
response in pregnancy. The presence of different subpopulations of NK cells in tissues and
its possible migration, dependent on hormonal stimulus, has raised important questions
concerning pregnancy’s physiological and pathological responses. However, screening the
peripheral blood NK cells number and cytotoxic function provides only partial informa-
tion concerning the tissue-specific effect. More research should be performed to identify
potential markers of therapy response that could be reliable and easily detectable.

Pathogens can activate local NK cell responses and can jeopardize the pregnancy.
Different viral, parasitic, and bacterial infections affect local NK cells, essential for the
embryo or fetal survival. Most of the responses can be modulated by KIR receptors, KIR
ligands, and small tolerogenic small HLA molecules. However, most of the studies have
been carried out either in the animal model with few cases in human counterparts, which
have to be analyzed carefully. More research should be focused on exploring the effect of
pathogens and therapy. In the current pandemic, new concepts of viral response, clearance
and use of vaccines have been achieved in the emergency. Some of this knowledge can be
extrapolated in other infectious.

Local hormones and other therapies seem to provide essential insights into pregnancy
outcome rather than lipid emulsions. Steroids are vital compounds for decreasing the
inflammatory burden and consequently modulate NK cell activity. However, new formula-
tions of steroids should be designed to enhance treatment efficiency and reduce unwanted
responses. Based on the analysis of endometrial biopsies, genetic and molecular analysis,
and NK cell populations, the categorization of patients may enhance treatment responses.

Further research should be performed to increase therapy efficiency. Exosomes and
mesenchymal stem cells could be essential for individualized therapy. Other strategies may
soon be available and will provide more insights into the role of NK in pregnancy outcome.
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Table 2. Pharmacologic modulation of NK cells. The table represents the significant finding with the different described
treatment for modulation of NK cell populations and functions.

Treatment Type Effect on Peripheral NK
Cells (Humans) Local Cells Animal Model References

Progesterone

Inhibition on NK
cytotoxicity by the

progesterone-induced
blocking factor

The indirect effect
through T lymphocyte
and stromal cell–cell

cytokine secretion
Progesterone-induced

blocking factor

Increase tolerogenic
response. There is an

indirect effect of T cells
and stromal cells.

[103–113]

Low molecular weight heparin No direct effect The indirect effect
through T cell? No direct reports [114–119]

Corticosteroids
Decrease in cell number

and decrease in
cytotoxic response.

Downregulation of
PD1/PD1L expression

Increase in
tolerogenic responses [120–126]

IVIg
Decrease in TH1

autoimmune cells.
Modulation of NK cells

Reduction of deficient
stromal cells. Not reported [127–131]

Lipid infusion

Decrease of the
inflammatory burden
and reduction in NK

cytotoxic activity

Reduction of local
transcription and
secretion of IL15

and IL18

Suppression
cytotoxicity in vitro [132–138]

Vitamin D Decrease of in vitro
cytotoxic response

Increase in
tolerogenic responses

Modulation of iNKT
cells which may affect

NK cells
[139–144]

Exosomes
Increase in cytotoxic

response against
tumour cells

Decrease inflammatory
burden

increase tolerance

Increase tolerogenic NK
cell responses [145–151]

Intrauterine PBMC Platelets Increase tolerogenic
response via TGFβ

Increase in local
tolerogenic response [152–155]

Medroxyprogesterone acetate Increase in NK
cell activity Local decrease of IL-15 Not described [161,162]

Other small molecule therapy Decrease peripheral NK
cytotoxic response Regulation of dNK Not described [164,165]

G-CSF There is an indirect effect
on NK cytotoxic response

Increase in
tolerogenic response

Increase in
tolerogenic response

Tim-3 dependent
[166]
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