Current Knowledge and Challenges of Particle Size Measurements of Mainstream E-Cigarette Aerosols and Their Implication on Respiratory Dosimetry
Abstract
:1. Introduction
2. Particle Size Characterization
2.1. Particle Size Parameters
2.2. Instruments to Measure the Particle Size and Size Distribution
2.3. The Impact of Experimental Conditions on Measurements of PSD
3. Comparison among E-Cigarettes, HnB, and Combustible Cigarettes
3.1. Particle Number Concentration
3.2. Particle Mass Concentration
3.3. Particle Sizes
3.4. Modes of PSD
4. Factors Affecting PSD of E-Cigarette Emissions
4.1. Puff Behavior
4.2. Device Features
4.2.1. Device Generation
4.2.2. Device Refill Type
4.2.3. Operation Power
4.2.4. Coil Aging
4.3. E-Liquid
4.3.1. PG/VG Ratio
4.3.2. Flavoring
4.3.3. Nicotine Strength
4.3.4. Nicotine Form
5. Particle Formation, Dynamics, and Deposition Modeling
6. Knowledge Gap Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, M.; Talbot, P. Design Features in Multiple Generations of Electronic Cigarette Atomizers. Int. J. Environ. Res. Public Health 2019, 16, 2904. [Google Scholar] [CrossRef][Green Version]
- Protano, C.; Avino, P.; Manigrasso, M.; Vivaldi, V.; Perna, F.; Valeriani, F.; Vitali, M. Environmental Electronic Vape Exposure from Four Different Generations of Electronic Cigarettes: Airborne Particulate Matter Levels. Int. J. Environ. Res. Public Health 2018, 15, 2172. [Google Scholar] [CrossRef][Green Version]
- Krüsemann, E.J.Z.; Havermans, A.; Pennings, J.L.A.; de Graaf, K.; Boesveldt, S.; Talhout, R. Comprehensive overview of common e-liquid ingredients and how they can be used to predict an e-liquid’s flavour category. Tob. Control 2021, 30, 185. [Google Scholar] [CrossRef] [PubMed][Green Version]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on the Review of the Health Effects of Electronic Nicotine Delivery Systems. Public Health Consequences of E-Cigarettes; Eaton, D.L., Kwan, L.Y., Stratton, K., Eds.; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Wilson, M.D.; Prasad, K.A.; Kim, J.S.; Park, J.H. Characteristics of metallic nanoparticles emitted from heated Kanthal e-cigarette coils. J. Nanopart. Res. 2019, 21, 156. [Google Scholar] [CrossRef][Green Version]
- Ingebrethsen, B.J.; Cole, S.K.; Alderman, S.L. Electronic cigarette aerosol particle size distribution measurements. Inhal. Toxicol. 2012, 24, 976–984. [Google Scholar] [CrossRef]
- Cheng, T. Chemical evaluation of electronic cigarettes. Tob. Control 2014, 23, ii11. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, A.B.; Ranpara, A.C.; Virji, M.A.; LeBouf, R.F. Influence of E-Liquid Humectants, Nicotine, and Flavorings on Aerosol Particle Size Distribution and Implications for Modeling Respiratory Deposition. Front. Public Health 2022, 10, 782068. [Google Scholar] [CrossRef] [PubMed]
- Harvanko, A.M.; Havel, C.M.; Jacob, P.; Benowitz, N.L. Characterization of Nicotine Salts in 23 Electronic Cigarette Refill Liquids. Nicotine Tob. Res. 2020, 22, 1239–1243. [Google Scholar] [CrossRef]
- Marini, S.; Buonanno, G.; Stabile, L.; Ficco, G. Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide. Toxicol. Appl. Pharmacol. 2014, 278, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, F.C.; Buonanno, G.; Stabile, L.; Vigo, P. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ. Pollut. 2014, 184, 523–529. [Google Scholar] [CrossRef]
- Zhang, Y.; Sumner, W.; Chen, D.-R. In vitro particle size distributions in electronic and conventional cigarette aerosols suggest comparable deposition patterns. Nicotine Tob. Res. 2013, 15, 501–508. [Google Scholar] [CrossRef]
- Belka, M.; Lizal, F.; Jedelsky, J.; Jicha, M.; Pospisil, J. Measurement of an electronic cigarette aerosol size distribution during a puff. EPJ Web Conf. 2017, 143, 02006. [Google Scholar] [CrossRef][Green Version]
- Lampos, S.; Kostenidou, E.; Farsalinos, K.; Zagoriti, Z.; Ntoukas, A.; Dalamarinis, K.; Savranakis, P.; Lagoumintzis, G.; Poulas, K. Real-Time Assessment of E-Cigarettes and Conventional Cigarettes Emissions: Aerosol Size Distributions, Mass and Number Concentrations. Toxics 2019, 7, 45. [Google Scholar] [CrossRef][Green Version]
- Pellegrino, R.M.; Tinghino, B.; Mangiaracina, G.; Marani, A.; Vitali, M.; Protano, C.; Osborn, J.F.; Cattaruzza, M.S. Electronic cigarettes: An evaluation of exposure to chemicals and fine particulate matter (PM). Ann. Ig. 2012, 24, 279–288. [Google Scholar]
- Alderman, S.L.; Song, C.; Moldoveanu, S.C.; Cole, S.K. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency. Contrib. Tob. Nicotine Res. 2015, 26, 183–190. [Google Scholar] [CrossRef][Green Version]
- Lerner, C.A.; Sundar, I.K.; Watson, R.M.; Elder, A.; Jones, R.; Done, D.; Kurtzman, R.; Ossip, D.J.; Robinson, R.; McIntosh, S. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols. Environ. Pollut. 2015, 198, 100–107. [Google Scholar] [CrossRef][Green Version]
- Baassiri, M.; Talih, S.; Salman, R.; Karaoghlanian, N.; Saleh, R.; El Hage, R.; Saliba, N.; Shihadeh, A. Clouds and “throat hit”: Effects of liquid composition on nicotine emissions and physical characteristics of electronic cigarette aerosols. Aerosol Sci. Technol. 2017, 51, 1231–1239. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sundahl, M.; Berg, E.; Svensson, M. Aerodynamic particle size distribution and dynamic properties in aerosols from electronic cigarettes. J. Aerosol Sci. 2017, 103, 141–150. [Google Scholar] [CrossRef]
- Holbrook, L.T.; Zeman, K.L.; Burke, A.; Jaspers, I.; Bennett, W.D. Radiolabeling an Electronic Cigarette Aerosol Using Technetium Carbon Ultrafine Particles. J. Aerosol Med. Pulm. Drug Deliv. 2018, 32, 47–53. [Google Scholar] [CrossRef]
- Montigaud, Y.; Manzotti, B.; Chevrel, S.; Leclerc, L.; Sarry, G.; Clotagatide, A.; Pourchez, J.; Prévôt, N. Aerosol regional deposition of electronic cigarette emissions using an original ex vivo respiratory model. J. Aerosol Sci. 2021, 151, 105633. [Google Scholar] [CrossRef]
- Kane, D.B.; Li, W. Particle size measurement of electronic cigarette aerosol with a cascade impactor. Aerosol Sci. Technol. 2021, 55, 205–214. [Google Scholar] [CrossRef]
- Oldham, M.J.; Zhang, J.; Rusyniak, M.J.; Kane, D.B.; Gardner, W.P. Particle size distribution of selected electronic nicotine delivery system products. Food Chem. Toxicol. 2018, 113, 236–240. [Google Scholar] [CrossRef]
- Mulder, H.A.; Patterson, J.L.; Halquist, M.S.; Kosmider, L.; Turner, J.B.M.; Poklis, J.L.; Poklis, A.; Peace, M.R. The Effect of Electronic Cigarette User Modifications and E-liquid Adulteration on the Particle Size Profile of an Aerosolized Product. Sci. Rep. 2019, 9, 10221. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schaller, J.-P.; Keller, D.; Poget, L.; Pratte, P.; Kaelin, E.; McHugh, D.; Cudazzo, G.; Smart, D.; Tricker, A.R.; Gautier, L.; et al. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul. Toxicol. Pharmacol. 2016, 81, S27–S47. [Google Scholar] [CrossRef][Green Version]
- Dalrymple, A.; Ordoñez, P.; Thorne, D.; Walker, D.; Camacho, O.M.; Büttner, A.; Dillon, D.; Meredith, C. Cigarette smoke induced genotoxicity and respiratory tract pathology: Evidence to support reduced exposure time and animal numbers in tobacco product testing. Inhal. Toxicol. 2016, 28, 324–338. [Google Scholar] [CrossRef] [PubMed][Green Version]
- St. Helen, G.; Jacob Iii, P.; Nardone, N.; Benowitz, N.L. IQOS: Examination of Philip Morris International’s claim of reduced exposure. Tob. Control 2018, 27, s30. [Google Scholar] [CrossRef]
- Pacitto, A.; Stabile, L.; Scungio, M.; Rizza, V.; Buonanno, G. Characterization of airborne particles emitted by an electrically heated tobacco smoking system. Environ. Pollut. 2018, 240, 248–254. [Google Scholar] [CrossRef]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PloS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Murphy, J.; Liu, C.; McAdam, K.; Gaça, M.; Prasad, K.; Camacho, O.; McAughey, J.; Proctor, C. Assessment of tobacco heating product THP1.0. Part 9: The placement of a range of next-generation products on an emissions continuum relative to cigarettes via pre-clinical assessment studies. Regul. Toxicol. Pharmacol. 2018, 93, 92–104. [Google Scholar] [CrossRef]
- Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Mallock, N.; Pieper, E.; Hutzler, C.; Henkler-Stephani, F.; Luch, A. Heated Tobacco Products: A Review of Current Knowledge and Initial Assessments. Front. Public Health 2019, 7, 287. [Google Scholar] [CrossRef][Green Version]
- Son, Y.; Mishin, V.; Laskin, J.D.; Mainelis, G.; Wackowski, O.A.; Delnevo, C.; Schwander, S.; Khlystov, A.; Samburova, V.; Meng, Q. Hydroxyl Radicals in E-Cigarette Vapor and E-Vapor Oxidative Potentials under Different Vaping Patterns. Chem. Res. Toxicol. 2019, 32, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cui, H.; Chen, L.; Fan, M.; Cai, J.; Guo, J.; Yurteri, C.U.; Si, X.; Liu, S.; Xie, F. Modeled respiratory tract deposition of smoke aerosol from conventional cigarettes, electronic cigarettes and heat-not-burn products. Aerosol Air Qual. Res. 2021, 21, 200241. [Google Scholar] [CrossRef]
- Nazmy, H.; Mostafa, M.; Zhukovsky, M. Particle size distribution of e-cigarette aerosols in indoor air. J. Radiat. Nucl. Appl. 2018, 3, 111–117. [Google Scholar] [CrossRef]
- Başaran, R.; Güven, N.M.; Eke, B.C. An Overview of iQOS(®) as a New Heat-Not-Burn Tobacco Product and Its Potential Effects on Human Health and the Environment. Turk. J. Pharm. Sci. 2019, 16, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Yannovits, N.; Sarri, T.; Voudris, V.; Poulas, K. Nicotine Delivery to the Aerosol of a Heat-Not-Burn Tobacco Product: Comparison with a Tobacco Cigarette and E-Cigarettes. Nicotine Tob. Res. 2018, 20, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Delaval, M.; Egli, D.; Schüpfer, P.; Benarafa, C.; Geiser, M.; Burtscher, H. Novel instrument to generate representative e-cigarette vapors for physicochemical particle characterization and in-vitro toxicity. J. Aerosol Sci. 2019, 129, 40–52. [Google Scholar] [CrossRef]
- Papaefstathiou, E.; Bezantakos, S.; Stylianou, M.; Biskos, G.; Agapiou, A. Comparison of particle size distributions and volatile organic compounds exhaled by e-cigarette and cigarette users. J. Aerosol Sci. 2020, 141, 105487. [Google Scholar] [CrossRef]
- Soulet, S.; Duquesne, M.; Toutain, J.; Pairaud, C.; Mercury, M. Impact of Vaping Regimens on Electronic Cigarette Efficiency. Int. J. Environ. Res. Public Health 2019, 16, 4753. [Google Scholar] [CrossRef][Green Version]
- Behar, R.Z.; Hua, M.; Talbot, P. Puffing Topography and Nicotine Intake of Electronic Cigarette Users. PLoS ONE 2015, 10, e0117222. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Romagna, G.; Tsiapras, D.; Kyrzopoulos, S.; Voudris, V. Evaluation of Electronic Cigarette Use (Vaping) Topography and Estimation of Liquid Consumption: Implications for Research Protocol Standards Definition and for Public Health Authorities’ Regulation. Int. J. Environ. Res. Public Health 2013, 10, 2500. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Pyrgiotakis, G.; Demokritou, P. Development and characterization of electronic-cigarette exposure generation system (Ecig-EGS) for the physico-chemical and toxicological assessment of electronic cigarette emissions. Inhal. Toxicol. 2016, 28, 658–669. [Google Scholar] [CrossRef][Green Version]
- Mikheev, V.B.; Ivanov, A.; Lucas, E.A.; South, P.L.; Colijn, H.O.; Clark, P.I. Aerosol size distribution measurement of electronic cigarette emissions using combined differential mobility and inertial impaction methods: Smoking machine and puff topography influence. Aerosol Sci. Technol. 2018, 52, 1233–1248. [Google Scholar] [CrossRef]
- Son, Y.; Mainelis, G.; Delnevo, C.; Wackowski, O.A.; Schwander, S.; Meng, Q. Investigating E-Cigarette Particle Emissions and Human Airway Depositions under Various E-Cigarette-Use Conditions. Chem. Res. Toxicol. 2020, 33, 343–352. [Google Scholar] [CrossRef]
- Ranpara, A.; Stefaniak, A.B.; Fernandez, E.; LeBouf, R.F. Effect of Puffing Behavior on Particle Size Distributions and Respiratory Depositions from Pod-Style Electronic Cigarette, or Vaping, Products. Front. Public Health 2021, 9, 1812. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Nelson, J.; Dada, O.; Pyrgiotakis, G.; Kavouras, I.G.; Demokritou, P. Assessing electronic cigarette emissions: Linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhal. Toxicol. 2018, 30, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Talih, S.; Balhas, Z.; Eissenberg, T.; Salman, R.; Karaoghlanian, N.; El Hellani, A.; Baalbaki, R.; Saliba, N.; Shihadeh, A. Effects of user puff topography, device voltage, and liquid nicotine concentration on electronic cigarette nicotine yield: Measurements and model predictions. Nicotine Tob. Res. 2015, 17, 150–157. [Google Scholar] [CrossRef]
- Sousan, S.; Pender, J.; Streuber, D.; Haley, M.; Shingleton, W.; Soule, E. Laboratory determination of gravimetric correction factors for real-time area measurements of electronic cigarette aerosols. Aerosol Sci. Technol. 2022, 56, 517–529. [Google Scholar] [CrossRef]
- Noël, A.; Verret, C.M.; Hasan, F.; Lomnicki, S.; Morse, J.; Robichaud, A.; Penn, A.L. Generation of Electronic Cigarette Aerosol by a Third-Generation Machine-Vaping Device: Application to Toxicological Studies. J. Vis. Exp. 2018, 138, 58095. [Google Scholar] [CrossRef][Green Version]
- Dunkhorst, W.; Lipowicz, P.; Koch, W. Characterization of highly concentrated organic aerosols by optical extinction in the mid infrared regime: Application to e-cigarettes. J. Aerosol Sci. 2016, 94, 33–42. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Voudris, V.; Poulas, K. E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions. Addiction 2015, 110, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Gillman, I.G.; Kistler, K.A.; Stewart, E.W.; Paolantonio, A.R. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 2016, 75, 58–65. [Google Scholar] [CrossRef][Green Version]
- Bertrand, P.; Bonnarme, V.; Piccirilli, A.; Ayrault, P.; Lemée, L.; Frapper, G.; Pourchez, J. Physical and chemical assessment of 1,3 Propanediol as a potential substitute of propylene glycol in refill liquid for electronic cigarettes. Sci. Rep. 2018, 8, 10702. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lalo, H.; Leclerc, L.; Sorin, J.; Pourchez, J. Aerosol droplet-size distribution and airborne nicotine portioning in particle and gas phases emitted by electronic cigarettes. Sci. Rep. 2020, 10, 21707. [Google Scholar] [CrossRef] [PubMed]
- Pourchez, J.; de Oliveira, F.; Perinel-Ragey, S.; Basset, T.; Vergnon, J.-M.; Prévôt, N. Assessment of new-generation high-power electronic nicotine delivery system as thermal aerosol generation device for inhaled bronchodilators. Int. J. Pharm. 2017, 518, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Pourchez, J.; Parisse, S.; Sarry, G.; Perinel-Ragey, S.; Vergnon, J.-M.; Clotagatide, A.; Prévot, N. Impact of power level and refill liquid composition on the aerosol output and particle size distribution generated by a new-generation e-cigarette device. Aerosol Sci. Technol. 2018, 52, 359–369. [Google Scholar] [CrossRef][Green Version]
- Zhou, Y.; Irshad, H.; Dye, W.W.; Wu, G.; Tellez, C.S.; Belinsky, S.A. Voltage and e-liquid composition affect nicotine deposition within the oral cavity and carbonyl formation. Tob. Control 2021, 30, 485. [Google Scholar] [CrossRef]
- Floyd, E.L.; Queimado, L.; Wang, J.; Regens, J.L.; Johnson, D.L. Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. PLoS ONE 2018, 13, e0210147. [Google Scholar] [CrossRef][Green Version]
- Larcombe, A.N.; Janka, M.A.; Mullins, B.J.; Berry, L.J.; Bredin, A.; Franklin, P.J. The effects of electronic cigarette aerosol exposure on inflammation and lung function in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L67–L79. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Prévôt, N.; de Oliveira, F.; Perinel-Ragey, S.; Basset, T.; Vergnon, J.-M.; Pourchez, J. Nicotine delivery from the refill liquid to the aerosol via high-power e-cigarette device. Sci. Rep. 2017, 7, 2592. [Google Scholar] [CrossRef] [PubMed]
- Zervas, E.; Litsiou, E.; Konstantopoulos, K.; Poulopoulos, S.; Katsaounou, P. Physical characterization of the aerosol of an electronic cigarette: Impact of refill liquids. Inhal. Toxicol. 2018, 30, 218–223. [Google Scholar] [CrossRef]
- Lechasseur, A.; Altmejd, S.; Turgeon, N.; Buonanno, G.; Morawska, L.; Brunet, D.; Duchaine, C.; Morissette, M.C. Variations in coil temperature/power and e-liquid constituents change size and lung deposition of particles emitted by an electronic cigarette. Physiol. Rep. 2019, 7, e14093. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, Y.; Li, L.; Guo, Y.; Cetintas, E.; Zhu, Y.; Ozcan, A. Dynamic imaging and characterization of volatile aerosols in E-cigarette emissions using deep learning-based holographic microscopy. ACS Sens. 2021, 6, 2403–2410. [Google Scholar] [CrossRef]
- Ji, E.H.; Sun, B.; Zhao, T.; Shu, S.; Chang, C.H.; Messadi, D.; Xia, T.; Zhu, Y.; Hu, S. Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes. PLoS ONE 2016, 11, e0154447. [Google Scholar] [CrossRef][Green Version]
- Scungio, M.; Stabile, L.; Buonanno, G. Measurements of electronic cigarette-generated particles for the evaluation of lung cancer risk of active and passive users. J. Aerosol Sci. 2018, 115, 1–11. [Google Scholar] [CrossRef][Green Version]
- Mikheev, V.B.; Brinkman, M.C.; Granville, C.A.; Gordon, S.M.; Clark, P.I. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis. Nicotine Tob. Res. 2016, 18, 1895–1902. [Google Scholar] [CrossRef][Green Version]
- Laube, B.L.; Afshar-Mohajer, N.; Koehler, K.; Chen, G.; Lazarus, P.; Collaco, J.M.; McGrath-Morrow, S.A. Acute and chronic in vivo effects of exposure to nicotine and propylene glycol from an E-cigarette on mucociliary clearance in a murine model. Inhal. Toxicol. 2017, 29, 197–205. [Google Scholar] [CrossRef][Green Version]
- Manigrasso, M.; Buonanno, G.; Fuoco, F.C.; Stabile, L.; Avino, P. Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ. Pollut. 2015, 196, 257–267. [Google Scholar] [CrossRef]
- Manigrasso, M.; Buonanno, G.; Fuoco, F.C.; Stabile, L.; Avino, P. Electronic cigarettes: Age-specific generation-resolved pulmonary doses. Environ. Sci. Pollut. Res. Int. 2017, 24, 13068–13079. [Google Scholar] [CrossRef][Green Version]
- Kaiser, A.J.; Salem, C.; Alvarenga, B.J.; Pagliaro, A.; Smith, K.P.; Valerio, L.G., Jr.; Benam, K.H. A robotic system for real-time analysis of inhaled submicron and microparticles. iScience 2021, 24, 103091. [Google Scholar] [CrossRef]
- Li, L.; Lee, E.S.; Nguyen, C.; Zhu, Y. Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Sci. Technol. 2020, 54, 1270–1281. [Google Scholar] [CrossRef]
- Ma, T.; Wang, X.; Li, L.; Sun, B.; Zhu, Y.; Xia, T. Electronic cigarette aerosols induce oxidative stress-dependent cell death and NF-κB mediated acute lung inflammation in mice. Arch. Toxicol. 2021, 95, 195–205. [Google Scholar] [CrossRef]
- El-Hellani, A.; El-Hage, R.; Baalbaki, R.; Salman, R.; Talih, S.; Shihadeh, A.; Saliba, N.A. Free-Base and Protonated Nicotine in Electronic Cigarette Liquids and Aerosols. Chem. Res. Toxicol. 2015, 28, 1532–1537. [Google Scholar] [CrossRef][Green Version]
- David, G.; Parmentier, E.A.; Taurino, I.; Signorell, R. Tracing the composition of single e-cigarette aerosol droplets in situ by laser-trapping and Raman scattering. Sci. Rep. 2020, 10, 7929. [Google Scholar] [CrossRef]
- Li, Y.; Burns, A.E.; Tran, L.N.; Abellar, K.A.; Poindexter, M.; Li, X.; Madl, A.K.; Pinkerton, K.E.; Nguyen, T.B. Impact of e-liquid composition, coil temperature, and puff topography on the aerosol chemistry of electronic cigarettes. Chem. Res. Toxicol. 2021, 34, 1640–1654. [Google Scholar] [CrossRef]
- Aszyk, J.; Woźniak, M.K.; Kubica, P.; Kot-Wasik, A.; Wasik, A. Concentration levels of selected analytes in the gas phase of an e-cigarette aerosol. Microchem. J. 2019, 148, 717–724. [Google Scholar] [CrossRef]
- Seeman, J.I.; Fournier, J.A.; Paine, J.B.; Waymack, B.E. The Form of Nicotine in Tobacco. Thermal Transfer of Nicotine and Nicotine Acid Salts to Nicotine in the Gas Phase. J. Agric. Food Chem. 1999, 47, 5133–5145. [Google Scholar] [CrossRef]
- Pichelstorfer, L.; Winkler-Heil, R.; Boy, M.; Hofmann, W. Aerosol dynamics simulations of the anatomical variability of e-cigarette particle and vapor deposition in a stochastic lung. J. Aerosol Sci. 2021, 158, 105706. [Google Scholar] [CrossRef]
- Gholap, V.V.; Kosmider, L.; Golshahi, L.; Halquist, M.S. Nicotine forms: Why and how do they matter in nicotine delivery from electronic cigarettes? Expert Opin. Drug Deliv. 2020, 17, 1727–1736. [Google Scholar] [CrossRef]
- Brown, J.S.; Zeman, K.L.; Bennett, W.D. Ultrafine Particle Deposition and Clearance in the Healthy and Obstructed Lung. Am. J. Respir. Crit. Care Med. 2002, 166, 1240–1247. [Google Scholar] [CrossRef][Green Version]
- Martuzevicius, D.; Prasauskas, T.; Setyan, A.; O'Connell, G.; Cahours, X.; Julien, R.; Colard, S. Characterization of the Spatial and Temporal Dispersion Differences Between Exhaled E-Cigarette Mist and Cigarette Smoke. Nicotine Tob. Res. 2019, 21, 1371–1377. [Google Scholar] [CrossRef]
- Sosnowski, T.R.; Odziomek, M. Particle Size Dynamics: Toward a Better Understanding of Electronic Cigarette Aerosol Interactions with the Respiratory System. Front. Physiol. 2018, 9, 853. [Google Scholar] [CrossRef]
- Carvalho, T.C.; Peters, J.I.; Williams, R.O. Influence of particle size on regional lung deposition—What evidence is there? Int. J. Pharm. 2011, 406, 1–10. [Google Scholar] [CrossRef]
- Rissler, J.; Gudmundsson, A.; Nicklasson, H.; Swietlicki, E.; Wollmer, P.; Löndahl, J. Deposition efficiency of inhaled particles (15–5000 nm) related to breathing pattern and lung function: An experimental study in healthy children and adults. Part. Fibre Toxicol. 2017, 14, 10. [Google Scholar] [CrossRef][Green Version]
- Sturm, R. Total deposition of ultrafine particles in the lungs of healthy men and women: Experimental and theoretical results. Ann. Transl. Med. 2016, 4, 3. [Google Scholar] [CrossRef][Green Version]
- Hofmann, W. Regional Deposition: Deposition Models. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 239–248. [Google Scholar] [CrossRef]
- Hofmann, W. Modelling inhaled particle deposition in the human lung—A review. J. Aerosol Sci. 2011, 42, 693–724. [Google Scholar] [CrossRef]
- Wang, C.-S. (Ed.) Chapter 9 Deposition models. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2005; Volume 5, pp. 127–148. [Google Scholar]
- Martonen, T.B.; Rosati, J.A.; Isaacs, K.K. Modeling Deposition of Inhaled Particles Chapter 8. In Aerosols Handbook: Measurement, Dosimetry, and Health Effects; Ruzer, L.S., Harley, N.H., Eds.; CRC Press LLC: Boca Raton, FL, USA, 2005; pp. 113–155. [Google Scholar]
- Hofmann, W.; Winkler-Heil, R.; Balásházy, I. The Effect of Morphological Variability on Surface Deposition Densities of Inhaled Particles in Human Bronchial and Acinar Airways. Inhal. Toxicol. 2006, 18, 809–819. [Google Scholar] [CrossRef]
- Pichelstorfer, L.; Winkler-Heil, R.; Hofmann, W. Lagrangian/Eulerian model of coagulation and deposition of inhaled particles in the human lung. J. Aerosol Sci. 2013, 64, 125–142. [Google Scholar] [CrossRef][Green Version]
- Pichelstorfer, L.; Hofmann, W.; Winkler-Heil, R.; Yurteri, C.U.; McAughey, J. Simulation of aerosol dynamics and deposition of combustible and electronic cigarette aerosols in the human respiratory tract. J. Aerosol Sci. 2016, 99, 125–132. [Google Scholar] [CrossRef][Green Version]
- Pichelstorfer, L.; Hofmann, W. Modeling aerosol dynamics of cigarette smoke in a denuder tube. J. Aerosol Sci. 2015, 88, 72–89. [Google Scholar] [CrossRef]
- Tillman, D.A.; Duong, D.N.B.; Harding, N.S. Chapter 7—Modeling and Fuel Blending. In Solid Fuel Blending; Tillman, D.A., Duong, D.N.B., Harding, N.S., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2012; pp. 271–293. [Google Scholar]
- Feng, Y.; Zhao, J.; Hayati, H.; Sperry, T.; Yi, H. Tutorial: Understanding the transport, deposition, and translocation of particles in human respiratory systems using Computational Fluid-Particle Dynamics and Physiologically Based Toxicokinetic models. J. Aerosol Sci. 2021, 151, 105672. [Google Scholar] [CrossRef]
- Haghnegahdar, A.; Feng, Y.; Chen, X.; Lin, J. Computational Analysis of Deposition and Translocation of Inhaled Nicotine and Acrolein in the Human Body with E-cigarette Puffing Topographies. Aerosol Sci Technol 2018, 52, 483–493. [Google Scholar] [CrossRef][Green Version]
- Manigrasso, M.; Buonanno, G.; Stabile, L.; Morawska, L.; Avino, P. Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environ. Pollut. 2015, 202, 24–31. [Google Scholar] [CrossRef][Green Version]
- Sosnowski, T.R.; Kramek-Romanowska, K. Predicted Deposition of E-Cigarette Aerosol in the Human Lungs. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 299–309. [Google Scholar] [CrossRef]
- Pourhashem, H.; Owen, M.P.; Castro, N.D.; Rostami, A.A. Eulerian modeling of aerosol transport and deposition in respiratory tract under thermodynamic equilibrium condition. J. Aerosol Sci. 2020, 141, 105501. [Google Scholar] [CrossRef]
- Ranpara, A.; Stefaniak, A.B.; Williams, K.; Fernandez, E.; LeBouf, R.F. Modeled Respiratory Tract Deposition of Aerosolized Oil Diluents Used in Delta(9)-THC-Based Electronic Cigarette Liquid Products. Front. Public Health 2021, 9, 744166. [Google Scholar] [CrossRef]
- Das, D.; Alam El Din, S.-M.; Pulczinski, J.; Mihalic, J.N.; Chen, R.; Bressler, J.; Rule, A.M.; Ramachandran, G. Assessing variability of aerosols generated from e-Cigarettes. Inhal. Toxicol. 2022, 34, 90–98. [Google Scholar] [CrossRef]
- Su, W.-C.; Lin, Y.-H.; Wong, S.-W.; Chen, J.Y.; Lee, J.; Buu, A. Estimation of the dose of electronic cigarette chemicals deposited in human airways through passive vaping. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 1008–1016. [Google Scholar] [CrossRef]
Category | Principle | Typical Equipment | Range | Upper Limit | Dilution | Real-Time/Offline | Pros | Cons |
---|---|---|---|---|---|---|---|---|
Impactors | Impaction | Microorifice uniform deposit impactor (MOUDI) | 0.056–18 µm | – | No need | Offline | Low cost | Low size resolution |
Quartz crystal microbalance (QCM) MOUDI impactor | nanogram to microgram per unit area | 130 µg for solid particles and 2 µg for liquid particles | Sample dependent | Real-time and Offline |
| Require strong adhesion between particles and resonating sensor. Need frequent cleanings of the crystal electrode. | ||
Electrical low pressure impactor (ELPI) | 6 nm to 10 µm | – | Sample dependent | Real-time and Offline |
| Low capacity for high concentration aerosol. | ||
Electro mobility sizers | A measurement-based on electrical mobility | Scanning mobility particle sizer (SPMS) | 1 nm up to 1 µm | 107 particles/cm3 | Sample dependent | Real-time |
| Insufficient resolution time (~3 min) |
Fast mobility particle sizer (FMPS) | 5.6 to 560 nm | Size dependent, up to 107 dN/d(logdp)/cm3 | Sample dependent | Real-time | Less size resolution than SMPS | |||
Engine exhaust particle sizer (EEPS) | 5.6 to 560 nm | Size dependent, up to 107 dN/d(logdp)/cm3 | Sample dependent, 10–500 | Real-time | Low size resolution | |||
Differential mobility spectrometer (DMS) | several nm to several μm | ≈ 1011 dN/d(logdp) /cm3 | 1–3000 | Real-time | Less size resolution than SMPS | |||
Laser diffraction | Mie theory of light scattering | Optical particle counter (OPC) | hundreds nanometers to micrometers (0.3 to 20 μm) | ~106 particles/litre | Sample dependent | Real-time |
| No information on nanoparticles |
Condensation particle counter (CPC) | 0.01 to 1 μm | 105 particles/cm3 | Sample dependent | Real-time | No information on PSD | |||
Laser aerosol spectrometer (LAS) | 0.09–7.50 µm | ~18,000 particles/cc | Sample dependent | Real-time | No information on nanoparticles |
Type | Semi-Empirical Regional Compartment Model | One-Dimensional Cross-section or “Trumpet’ Models | Deterministic Symmetric Generation or ‘‘Single-Path’’ Model | Deterministic Asymmetric Generation or ‘‘Multiple-Path’’ | Stochastic Multiple-Path Model | Single-Path Computational Fluid and Particle Dynamics Model |
---|---|---|---|---|---|---|
Representative model | ICRP model | Weibel’s model A | NCRP model, DEPOS model | MPPD model | IDEAL model | CFPD model |
Characteristics | Empirical | Analytical | Deterministic, Analytical | Deterministic, Analytical | Stochastic, Analytical | Analytical/Numerical |
Principle | The morphometric structure of the lung consists of four anatomical regions. | The airway system is modeled as a one-dimensional, variable cross-section channel. The cross-sections are determined by the generation number. | All airways in a given airway generation have identical linear dimensions. The particle deposition fractions are identical in each sequence of the airways, thus all pathways can be represented by a single path. | It is based on realistic lung geometry, physiology, and deposition mechanisms. The multiple-path MPPD model considers the branching asymmetry of airways and related flow rates. | The transport of each individual particle is simulated by randomly selecting a sequence of airways. | The model prediction is based on computational fluid dynamics. The solutions derived from computational fluid dynamics are coupled with the solution of particle trajectory equations derived from Newton’s Second Law. |
Major pros | The models are based on experimental data in human objects. The models are relatively simple and do not require sophisticated computer programming. | The models are easily conducted and provide clean mathematical solutions to differential equations describing transport and deposition phenomena. | The models are characterized by geometric simplicity. | The models provide exact solutions to the mass balance equations in a realistic lung geometry. | The models have a realistic airway geometry. | The models allow realistic flow and particle transport conditions. |
Major cons | The morphometry is greatly simplified. | The models do not consider the internal airway structure and cannot simulate the asymmetric effects of airway geometry and related flow rates. | They cannot be applied to predict the realistic deposition patterns in asymmetric and variable lung structures. | They do not include dynamics of particles during transport. | They have limited anatomical and physiological variability. | They are based on a simplified lung structure and are restricted to predict the deposition in the bronchial region. |
Can include dynamic process | Yes | Yes | No | No | Yes | Yes |
Take volatility into account | No | No | No | No | Yes | No |
Single airway deposition | No | Yes | Yes | Yes | Yes | Yes |
Public access | Yes | Yes | Yes | Yes | No | Yes |
Reference | Model | Major Findings |
---|---|---|
Manigrasso et al. (2015) [69] | MPPD | The greatest contribution was due to particles in the range from 93 nm to 165 nm were deposited in the alveolar region at the 18th and 22nd airway generation for the 1st and the 60th size percentile of the stochastic human lungs. |
Manigrasso et al. (2015) [98] | MPPD | The total deposited e-cigarette particles are more than double the dose compared to conventional cigarettes. Twice as many particles deposited in the right upper lung lobe than in the left upper lobe. About 20% more in the right lower lobe than in the left lower lobe for both tracheobronchial and alveolar regions. |
Pichelstorfer et al. (2016) [94] | IDEAL | About 99% of the nicotine is deposited by the vapor phase for cigarette aerosols, while only a minute fraction is deposited by the particle phase. |
Sosnowski et al. (2016) [99] | MPPD | Predicted total lung deposition of the mainstream aerosol was 15–45% depending on the breathing scheme. E-cigarettes are characterized by high inhalation resistance, so they require strong physical effort to transfer a cloud of droplets to the lungs, compared to a dry powder inhaler. |
Manigrasso et al. (2017) [70] | MPPD | Individuals 9 years of age received a total number of doses (Dtot) 20% more than the other ages. Dtot from e-cigarettes is about double those from conventional cigarettes, greatly contributed by the deposition at the 22nd and 23rd airway generation. Maximum deposition densities per airway generation and daily volume of e-cigarette liquid deposited per unit surface area are estimated upper in the respiratory tree, suggesting the higher susceptibility of lobar bronchi towards noxious agents. |
Sundahl et al. (2017) [19] | MPPD | 75–90% of the nicotine droplets were exhaled and 10–25% deposited in the respiratory system. |
Haghnegahdar et al. (2018) [97] | CFPD | Most of the vaporized nicotine and acrolein are absorbed in the upper airway from the mouth to Generation 1. In contrast, e-cigarette aerosol particle deposition occurs in all regions from mouth to Generation 3. Both particulate and vapor forms of nicotine and acrolein contribute to the deposition and translocation in the human body. The puff volume and holding time can contribute to the variation in the nicotine and acrolein plasma concentration due to enhanced aerosol deposition in the lung. |
Lechasseur et al. (2019) [63] | ICRP | E-cigarette particles mainly deposit in the alveoli region. Conditions generating larger particle sizes lead to a reduction in predicted lung deposition. |
Pourhashem et al. (2020) [100] | CFPD | The total deposition of aerosol constituents (e.g., glycerol, nicotine, and PG) is dominated by diffusive vapor transport. Glycerol with low vapor pressure and low vapor concentration has the lowest total deposition compared to nicotine and PG. |
Son et al. (2020) [45] | MPPD | Estimated e-cigarette particle mass deposition fractions in the tracheobronchial and bronchoalveolar regions were 50.4–54.1% and 7.3–30.6%, respectively. Both e-cigarette and conventional cigarette particles tend to have a higher deposition fraction of the tracheobronchial region than the pulmonary region. The deposited mass of e-cigarette particles is an order of magnitude lower than that of cigarette particles. |
Li et al. (2021) [34] | MPPD | E-cigarette particles mostly deposit in the pulmonary region, followed by the trachebronchil region and head airway. E-cigarettes have a higher deposition fraction in the respiratory tract than conventional cigarette and HnB products. The right lower lob has the highest number deposition fraction of other lung lobes. The highest deposition fraction occurred in the 20th and 23rd-generation airways. Small particles are more easily deposited in all regions of the respiratory tract. |
Montigaud et al. (2021) | MPPD | Over 70% of the aerosol is exhaled. Particles are deposited throughout the respiratory tract, including the head, tracheobronchial and pulmonary region. |
Pichelstorfer et al. (2021) [79] | IDEAL | Inhaled e-cigarette aerosols are significantly modified in the oral cavity prior to inhalation into the lungs. Total particle mass is preferentially deposited in the alveolar region of the lung during inhalation. Nicotine deposits prevail in the condensed phase for the “lower pH” case (nicotine salt), but vapor phase deposition dominates the “no acid” case (freebase). |
Ranpara et al. (2021) [46] | MPPD | 30–40% of the particles from a pod-style e-cigarette are estimated to deposit in the pulmonary region. |
Ranpara et al. (2021) [101] | MPPD | Irrespective of the statistical differences between MMADs, dosimetry modeling resulted in the similar regional and lobular deposition of particles for all e-liquids in the respiratory tract. The highest (0.08 or more) fractional deposition was predicted in the pulmonary region, which is consistent as the site of injury among EVALI cases. |
Stefaniak et al. (2022) [8] | MPPD | A portion of inhaled particles deposit throughout the respiratory tract. Statistical differences in aerosol MMADs do not translate into large differences in deposition estimates. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Gao, X.; Gao, Y.; Liu, Y. Current Knowledge and Challenges of Particle Size Measurements of Mainstream E-Cigarette Aerosols and Their Implication on Respiratory Dosimetry. J. Respir. 2023, 3, 7-28. https://doi.org/10.3390/jor3010003
Jiang H, Gao X, Gao Y, Liu Y. Current Knowledge and Challenges of Particle Size Measurements of Mainstream E-Cigarette Aerosols and Their Implication on Respiratory Dosimetry. Journal of Respiration. 2023; 3(1):7-28. https://doi.org/10.3390/jor3010003
Chicago/Turabian StyleJiang, Huanhuan, Xiang Gao, Yong Gao, and Yatao Liu. 2023. "Current Knowledge and Challenges of Particle Size Measurements of Mainstream E-Cigarette Aerosols and Their Implication on Respiratory Dosimetry" Journal of Respiration 3, no. 1: 7-28. https://doi.org/10.3390/jor3010003