CFTR Modulator Therapy for Rare CFTR Mutants
Abstract
:1. Introduction
2. The CFTR: A Unique Channel with Multiple Facets
3. The Breakthrough Era of CFTR Modulators
3.1. Modeling CF for the Screening of CFTR Modulators
3.2. Rare CFTR Variants Potentially Eligible for Approved CFTR Modulators
3.3. Investigational CFTR Modulators to Target Rare CFTR Mutations
3.3.1. CFTR Modulators by AbbVie/Galapagos
3.3.2. CFTR Modulators by Proteostasis
3.3.3. Ataluren (PTC124) from PTC Therapeutics
3.3.4. ELX-02 by Eloxx Pharmaceuticals
3.3.5. Icenticaftor by Novartis
3.3.6. Ensifentrine by Verona Pharma
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Fajac, I.; De Boeck, K. New horizons for cystic fibrosis treatment. Pharmacol. Ther. 2017, 170, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Mall, M.A.; Mayer-Hamblett, N.; Rowe, S.M. Cystic Fibrosis: Emergence of Highly Effective Targeted Therapeutics and Potential Clinical Implications. Am. J. Respir. Crit. Care Med. 2020, 201, 1193–1208. [Google Scholar] [CrossRef] [PubMed]
- Bierlaagh, M.C.; Muilwijk, D.; Beekman, J.M.; van der Ent, C.K. A new era for people with cystic fibrosis. Eur. J. Pediatr. 2021, 180, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.G.; Mall, M.A.; Drevinek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Fajac, I.; Sermet, I. Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators. Cells 2021, 10, 2793. [Google Scholar] [CrossRef]
- De Boeck, K.; Amaral, M.D. Progress in therapies for cystic fibrosis. Lancet Respir. Med. 2016, 4, 662–674. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castanos, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef][Green Version]
- Locher, K.P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 2016, 23, 487–493. [Google Scholar] [CrossRef][Green Version]
- Liu, X. ABC Family Transporters. Adv. Exp. Med. Biol. 2019, 1141, 13–100. [Google Scholar] [CrossRef]
- Guggino, W.B.; Stanton, B.A. New insights into cystic fibrosis: Molecular switches that regulate CFTR. Nat. Rev. Mol. Cell Biol. 2006, 7, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Csanady, L.; Vergani, P.; Gadsby, D.C. Structure, Gating, and Regulation of the Cftr Anion Channel. Physiol. Rev. 2019, 99, 707–738. [Google Scholar] [CrossRef]
- Amaral, M.D.; Hutt, D.M.; Tomati, V.; Botelho, H.M.; Pedemonte, N. CFTR processing, trafficking and interactions. J. Cyst. Fibros. 2020, 19 (Suppl. S1), S33–S36. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Estabrooks, S.; Brodsky, J.L. Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int. J. Mol. Sci. 2020, 21, 452. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lobo, M.J.; Amaral, M.D.; Zaccolo, M.; Farinha, C.M. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. J. Cell Sci. 2016, 129, 2599–2612. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mihalyi, C.; Iordanov, I.; Torocsik, B.; Csanady, L. Simple binding of protein kinase A prior to phosphorylation allows CFTR anion channels to be opened by nucleotides. Proc. Natl. Acad. Sci. USA 2020, 117, 21740–21746. [Google Scholar] [CrossRef]
- Boyle, M.P.; De Boeck, K. A new era in the treatment of cystic fibrosis: Correction of the underlying CFTR defect. Lancet Respir. Med. 2013, 1, 158–163. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Drevinek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef][Green Version]
- De Boeck, K.; Munck, A.; Walker, S.; Faro, A.; Hiatt, P.; Gilmartin, G.; Higgins, M. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J. Cyst. Fibros. 2014, 13, 674–680. [Google Scholar] [CrossRef][Green Version]
- Heltshe, S.L.; Rowe, S.M.; Skalland, M.; Baines, A.; Jain, M.; On behalf of the GOAL Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Ivacaftor-treated Patients with Cystic Fibrosis Derive Long-Term Benefit Despite No Short-Term Clinical Improvement. Am. J. Respir. Crit. Care Med. 2018, 197, 1483–1486. [Google Scholar] [CrossRef]
- Semaniakou, A.; Croll, R.P.; Chappe, V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front. Pharm. 2018, 9, 1475. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McCarron, A.; Parsons, D.; Donnelley, M. Animal and Cell Culture Models for Cystic Fibrosis: Which Model Is Right for Your Application? Am. J. Pathol. 2021, 191, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Keiser, N.W.; Engelhardt, J.F. New animal models of cystic fibrosis: What are they teaching us? Curr. Opin. Pulm. Med. 2011, 17, 478–483. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fisher, J.T.; Zhang, Y.; Engelhardt, J.F. Comparative biology of cystic fibrosis animal models. Methods Mol. Biol. 2011, 742, 311–334. [Google Scholar] [CrossRef][Green Version]
- Gruenert, D.C.; Willems, M.; Cassiman, J.J.; Frizzell, R.A. Established cell lines used in cystic fibrosis research. J. Cyst. Fibros. 2004, 3 (Suppl. S2), 191–196. [Google Scholar] [CrossRef][Green Version]
- Rosen, B.H.; Chanson, M.; Gawenis, L.R.; Liu, J.; Sofoluwe, A.; Zoso, A.; Engelhardt, J.F. Animal and model systems for studying cystic fibrosis. J. Cyst. Fibros. 2018, 17, S28–S34. [Google Scholar] [CrossRef][Green Version]
- Barkauskas, C.E.; Chung, M.I.; Fioret, B.; Gao, X.; Katsura, H.; Hogan, B.L. Lung organoids: Current uses and future promise. Development 2017, 144, 986–997. [Google Scholar] [CrossRef][Green Version]
- Awatade, N.T.; Wong, S.L.; Hewson, C.K.; Fawcett, L.K.; Kicic, A.; Jaffe, A.; Waters, S.A. Human Primary Epithelial Cell Models: Promising Tools in the Era of Cystic Fibrosis Personalized Medicine. Front. Pharm. 2018, 9, 1429. [Google Scholar] [CrossRef][Green Version]
- Dekkers, J.F.; Wiegerinck, C.L.; de Jonge, H.R.; Bronsveld, I.; Janssens, H.M.; de Winter-de Groot, K.M.; Brandsma, A.M.; de Jong, N.W.; Bijvelds, M.J.; Scholte, B.J.; et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 2013, 19, 939–945. [Google Scholar] [CrossRef]
- Dekkers, J.F.; Berkers, G.; Kruisselbrink, E.; Vonk, A.; de Jonge, H.R.; Janssens, H.M.; Bronsveld, I.; van de Graaf, E.A.; Nieuwenhuis, E.E.; Houwen, R.H.; et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl Med. 2016, 8, 344ra84. [Google Scholar] [CrossRef]
- Clancy, J.P.; Cotton, C.U.; Donaldson, S.H.; Solomon, G.M.; VanDevanter, D.R.; Boyle, M.P.; Gentzsch, M.; Nick, J.A.; Illek, B.; Wallenburg, J.C.; et al. CFTR modulator theratyping: Current status, gaps and future directions. J. Cyst. Fibros. 2019, 18, 22–34. [Google Scholar] [CrossRef] [PubMed][Green Version]
- de Poel, E.; Lefferts, J.W.; Beekman, J.M. Intestinal organoids for Cystic Fibrosis research. J. Cyst. Fibros. 2020, 19 (Suppl. S1), S60–S64. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Firth, A.L.; Menon, T.; Parker, G.S.; Qualls, S.J.; Lewis, B.M.; Ke, E.; Dargitz, C.T.; Wright, R.; Khanna, A.; Gage, F.H.; et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015, 12, 1385–1390. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mou, H.; Zhao, R.; Sherwood, R.; Ahfeldt, T.; Lapey, A.; Wain, J.; Sicilian, L.; Izvolsky, K.; Musunuru, K.; Cowan, C.; et al. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 2012, 10, 385–397. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McCauley, K.B.; Hawkins, F.; Serra, M.; Thomas, D.C.; Jacob, A.; Kotton, D.N. Efficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling. Cell Stem Cell 2017, 20, 844–857.e846. [Google Scholar] [CrossRef][Green Version]
- Wong, A.P.; Chin, S.; Xia, S.; Garner, J.; Bear, C.E.; Rossant, J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat. Protoc. 2015, 10, 363–381. [Google Scholar] [CrossRef]
- Brewington, J.J.; Filbrandt, E.T.; LaRosa, F.J., 3rd; Moncivaiz, J.D.; Ostmann, A.J.; Strecker, L.M.; Clancy, J.P. Generation of Human Nasal Epithelial Cell Spheroids for Individualized Cystic Fibrosis Transmembrane Conductance Regulator Study. J. Vis. Exp. 2018, 134, e57492. [Google Scholar] [CrossRef]
- Calucho, M.; Gartner, S.; Barranco, P.; Fernandez-Alvarez, P.; Perez, R.G.; Tizzano, E.F. Validation of nasospheroids to assay CFTR functionality and modulator responses in cystic fibrosis. Sci. Rep. 2021, 11, 15511. [Google Scholar] [CrossRef]
- Reeves, S.R. Primary nasal epithelial cells from patients with cystic fibrosis hold promise for guiding precision medicine and expanding treatment. Eur. Respir. J. 2021, 58, 2102735. [Google Scholar] [CrossRef]
- Brewington, J.J.; Filbrandt, E.T.; LaRosa, F.J., 3rd; Moncivaiz, J.D.; Ostmann, A.J.; Strecker, L.M.; Clancy, J.P. Brushed nasal epithelial cells are a surrogate for bronchial epithelial CFTR studies. JCI Insight 2018, 3, e99385. [Google Scholar] [CrossRef][Green Version]
- Silva, I.A.L.; Railean, V.; Duarte, A.; Amaral, M.D. Personalized Medicine Based on Nasal Epithelial Cells: Comparative Studies with Rectal Biopsies and Intestinal Organoids. J. Pers. Med. 2021, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Bear, C.E. A Therapy for Most with Cystic Fibrosis. Cell 2020, 180, 211. [Google Scholar] [CrossRef] [PubMed]
- Griese, M.; Costa, S.; Linnemann, R.W.; Mall, M.A.; McKone, E.F.; Polineni, D.; Quon, B.S.; Ringshausen, F.C.; Taylor-Cousar, J.L.; Withers, N.J.; et al. Safety and Efficacy of Elexacaftor/Tezacaftor/Ivacaftor for 24 Weeks or Longer in People with Cystic Fibrosis and One or More F508del Alleles: Interim Results of an Open-Label Phase 3 Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 203, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Brandas, C.; Ludovico, A.; Parodi, A.; Moran, O.; Millo, E.; Cichero, E.; Baroni, D. NBD2 Is Required for the Rescue of Mutant F508del CFTR by a Thiazole-Based Molecule: A Class II Corrector for the Multi-Drug Therapy of Cystic Fibrosis. Biomolecules 2021, 11, 1417. [Google Scholar] [CrossRef]
- Fiedorczuk, K.; Chen, J. Mechanism of CFTR correction by type I folding correctors. Cell 2022, 185, 158–168.e111. [Google Scholar] [CrossRef]
- Laselva, O.; Bartlett, C.; Gunawardena, T.N.A.; Ouyang, H.; Eckford, P.D.W.; Moraes, T.J.; Bear, C.E.; Gonska, T. Rescue of multiple class II CFTR mutations by elexacaftor+tezacaftor+ivacaftor mediated in part by the dual activities of elexacaftor as both corrector and potentiator. Eur. Respir. J. 2021, 57, 2002774. [Google Scholar] [CrossRef]
- Rapino, D.; Sabirzhanova, I.; Lopes-Pacheco, M.; Grover, R.; Guggino, W.B.; Cebotaru, L. Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation. PLoS ONE 2015, 10, e0119796. [Google Scholar] [CrossRef][Green Version]
- Veit, G.; Roldan, A.; Hancock, M.A.; Da Fonte, D.F.; Xu, H.; Hussein, M.; Frenkiel, S.; Matouk, E.; Velkov, T.; Lukacs, G.L. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight 2020, 5, e139983. [Google Scholar] [CrossRef]
- Laselva, O.; Ardelean, M.C.; Bear, C.E. Phenotyping Rare CFTR Mutations Reveal Functional Expression Defects Restored by TRIKAFTA(TM). J. Pers. Med. 2021, 11, 301. [Google Scholar] [CrossRef]
- Molinski, S.V.; Gonska, T.; Huan, L.J.; Baskin, B.; Janahi, I.A.; Ray, P.N.; Bear, C.E. Genetic, cell biological, and clinical interrogation of the CFTR mutation c.3700 A > G (p.Ile1234Val) informs strategies for future medical intervention. Genet. Med. 2014, 16, 625–632. [Google Scholar] [CrossRef][Green Version]
- Molinski, S.V.; Ahmadi, S.; Ip, W.; Ouyang, H.; Villella, A.; Miller, J.P.; Lee, P.S.; Kulleperuma, K.; Du, K.; Di Paola, M.; et al. Orkambi(R) and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue. EMBO Mol. Med. 2017, 9, 1224–1243. [Google Scholar] [CrossRef] [PubMed]
- Laselva, O.; McCormack, J.; Bartlett, C.; Ip, W.; Gunawardena, T.N.A.; Ouyang, H.; Eckford, P.D.W.; Gonska, T.; Moraes, T.J.; Bear, C.E. Preclinical Studies of a Rare CF-Causing Mutation in the Second Nucleotide Binding Domain (c.3700A > G) Show Robust Functional Rescue in Primary Nasal Cultures by Novel CFTR Modulators. J. Pers. Med. 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Vertex Pharmaceuticals Incorporated. Trikafta. United States Prescr. Inf. 2021. Available online: https://www.vrtx.com/ (accessed on 23 February 2022).
- Veit, G.; Da Fonte, D.F.; Avramescu, R.G.; Premchandar, A.; Bagdany, M.; Xu, H.; Bensinger, D.; Stubba, D.; Schmidt, B.; Matouk, E.; et al. Mutation-specific dual potentiators maximize rescue of CFTR gating mutants. J. Cyst. Fibros. 2020, 19, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Phuan, P.W.; Tan, J.A.; Rivera, A.A.; Zlock, L.; Nielson, D.W.; Finkbeiner, W.E.; Haggie, P.M.; Verkman, A.S. Nanomolar-potency ‘co-potentiator’ therapy for cystic fibrosis caused by a defined subset of minimal function CFTR mutants. Sci. Rep. 2019, 9, 17640. [Google Scholar] [CrossRef] [PubMed]
- Veit, G.; Vaccarin, C.; Lukacs, G.L. Elexacaftor co-potentiates the activity of F508del and gating mutants of CFTR. J. Cyst. Fibros. 2021, 20, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, C.A.; Zeitlin, P.L.; Bratcher, P.E. Elexacaftor is a CFTR potentiator and acts synergistically with ivacaftor during acute and chronic treatment. Sci. Rep. 2021, 11, 19810. [Google Scholar] [CrossRef]
- Cui, G.; Stauffer, B.B.; Imhoff, B.R.; Rab, A.; Hong, J.S.; Sorscher, E.J.; McCarty, N.A. VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level. Sci. Rep. 2019, 9, 13460. [Google Scholar] [CrossRef][Green Version]
- de Wilde, G.; Gees, M.; Musch, S.; Verdonck, K.; Jans, M.; Wesse, A.S.; Singh, A.K.; Hwang, T.C.; Christophe, T.; Pizzonero, M.; et al. Identification of GLPG/ABBV-2737, a Novel Class of Corrector, Which Exerts Functional Synergy With Other CFTR Modulators. Front. Pharm. 2019, 10, 514. [Google Scholar] [CrossRef][Green Version]
- Galapagos, N.V. A Study to Assess Safety, Tolerability and Pharmacokinetics of GLPG2737 in Healthy Subjects. 2016. Available online: https://ClinicalTrials.gov/show/NCT03410979:2016 (accessed on 23 February 2022).
- Galapagos, N.V. A Study Looking at the Safety, Tolerability and Efficacy of the Combination of the Study Drugs GLPG2451 and GLPG2222 With or Without GLPG2737 in Patients With Cystic Fibrosis. 2018. Available online: https://ClinicalTrials.gov/show/NCT03540524:2018 (accessed on 23 February 2022).
- Galapagos, N.V. A Study to Evaluate Multiple Doses of GLPG2222 in Adult Subjects With Cystic Fibrosis. 2017. Available online: https://ClinicalTrials.gov/show/NCT03119649:2017 (accessed on 23 February 2022).
- Galapagos, N.V. A Study to Evaluate GLPG2222 in Ivacaftor-treated Subjects With Cystic Fibrosis. 2017. Available online: https://ClinicalTrials.gov/show/NCT03045523:2017 (accessed on 23 February 2022).
- Bell, S.C.; Barry, P.J.; De Boeck, K.; Drevinek, P.; Elborn, J.S.; Plant, B.J.; Minic, P.; Van Braeckel, E.; Verhulst, S.; Muller, K.; et al. CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials. J. Cyst. Fibros. 2019, 18, 700–707. [Google Scholar] [CrossRef][Green Version]
- Scanio, M.J.C.; Searle, X.B.; Liu, B.; Koenig, J.R.; Altenbach, R.; Gfesser, G.A.; Bogdan, A.; Greszler, S.; Zhao, G.; Singh, A.; et al. Discovery of ABBV/GLPG-3221, a Potent Corrector of CFTR for the Treatment of Cystic Fibrosis. ACS Med. Chem. Lett. 2019, 10, 1543–1548. [Google Scholar] [CrossRef] [PubMed]
- Laselva, O.; Eckford, P.D.; Bartlett, C.; Ouyang, H.; Gunawardena, T.N.; Gonska, T.; Moraes, T.J.; Bear, C.E. Functional rescue of c.3846G>A (W1282X) in patient-derived nasal cultures achieved by inhibition of nonsense mediated decay and protein modulators with complementary mechanisms of action. J. Cyst. Fibros. 2020, 19, 717–727. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Laselva, O.; Bartlett, C.; Popa, A.; Ouyang, H.; Gunawardena, T.N.A.; Gonska, T.; Moraes, T.J.; Bear, C.E. Emerging preclinical modulators developed for F508del-CFTR have the potential to be effective for ORKAMBI resistant processing mutants. J. Cyst. Fibros. 2021, 20, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Venturini, A.; Borrelli, A.; Musante, I.; Scudieri, P.; Capurro, V.; Renda, M.; Pedemonte, N.; Galietta, L.J.V. Comprehensive Analysis of Combinatorial Pharmacological Treatments to Correct Nonsense Mutations in the CFTR Gene. Int. J. Mol. Sci. 2021, 22, 1972. [Google Scholar] [CrossRef] [PubMed]
- Meoli, A.; Fainardi, V.; Deolmi, M.; Chiopris, G.; Marinelli, F.; Caminiti, C.; Esposito, S.; Pisi, G. State of the Art on Approved Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators and Triple-Combination Therapy. Pharmaceuticals 2021, 14, 928. [Google Scholar] [CrossRef] [PubMed]
- Proteostasis Therapeutics Safety, Tolerability, and Ph.harmacokinetics of PTI-808, PTI-801, and PTI-428 Combination Therapy in Subjects With Cystic Fibrosis. 2018. Available online: https://ClinicalTrials.gov/show/NCT03500263:2018 (accessed on 23 February 2022).
- Bardin, E.; Pastor, A.; Semeraro, M.; Golec, A.; Hayes, K.; Chevalier, B.; Berhal, F.; Prestat, G.; Hinzpeter, A.; Gravier-Pelletier, C.; et al. Modulators of CFTR. Updates on clinical development and future directions. Eur. J. Med. Chem. 2021, 213, 113195. [Google Scholar] [CrossRef] [PubMed]
- Michorowska, S. Ataluren-Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals 2021, 14, 785. [Google Scholar] [CrossRef]
- Proteostasis Therapeutics. PTC124 for the Treatment of Cystic Fibrosis. 2006. Available online: https://ClinicalTrials.gov/show/NCT00351078:2006 (accessed on 23 February 2022).
- Proteostasis Therapeutics. A Study of Ataluren in Pediatric Participants With Cystic Fibrosis. 2007. Available online: https://ClinicalTrials.gov/show/NCT00458341:2007 (accessed on 23 February 2022).
- ProteostasisTherapeutics. Study of Ataluren (PTC124) in Cystic Fibrosis. 2014. Available online: https://ClinicalTrials.gov/show/NCT02107859:2014 (accessed on 23 February 2022).
- Kerem, E. ELX-02: An investigational read-through agent for the treatment of nonsense mutation-related genetic disease. Expert Opin. Investig. Drugs 2020, 29, 1347–1354. [Google Scholar] [CrossRef]
- Xue, X.; Mutyam, V.; Tang, L.; Biswas, S.; Du, M.; Jackson, L.A.; Dai, Y.; Belakhov, V.; Shalev, M.; Chen, F.; et al. Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am. J. Respir. Cell Mol. Biol. 2014, 50, 805–816. [Google Scholar] [CrossRef][Green Version]
- Crawford, D.K.; Mullenders, J.; Pott, J.; Boj, S.F.; Landskroner-Eiger, S.; Goddeeris, M.M. Targeting G542X CFTR nonsense alleles with ELX-02 restores CFTR function in human-derived intestinal organoids. J. Cyst. Fibros. 2021, 20, 436–442. [Google Scholar] [CrossRef]
- Leubitz, A.; Vanhoutte, F.; Hu, M.Y.; Porter, K.; Gordon, E.; Tencer, K.; Campbell, K.; Banks, K.; Haverty, T. A Randomized, Double-Blind, Placebo-Controlled, Multiple Dose Escalation Study to Evaluate the Safety and Pharmacokinetics of ELX-02 in Healthy Subjects. Clin. Pharm. Drug Dev. 2021, 10, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Eloxx Pharmaceuticals, I. A Phase 2 Study to Evaluate the Safety, Tolerability, PK and PD of ELX-02 in Cystic Fibrosis Patients With G542X Allele. 2019. Available online: https://ClinicalTrials.gov/show/NCT04135495:2019 (accessed on 23 February 2022).
- Grand, D.L.; Gosling, M.; Baettig, U.; Bahra, P.; Bala, K.; Brocklehurst, C.; Budd, E.; Butler, R.; Cheung, A.K.; Choudhury, H.; et al. Discovery of Icenticaftor (QBW251), a Cystic Fibrosis Transmembrane Conductance Regulator Potentiator with Clinical Efficacy in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. J. Med. Chem. 2021, 64, 7241–7260. [Google Scholar] [CrossRef] [PubMed]
- Novartis Pharmaceuticals. Safety, Tolerability, Pharmacokinetics, and Preliminary Pharmacodynamics of QBW251 in Healthy Subjects and Cystic Fibrosis Patients. 2012. Available online: https://ClinicalTrials.gov/show/NCT02190604:2012 (accessed on 23 February 2022).
- Kazani, S.; Rowlands, D.J.; Bottoli, I.; Milojevic, J.; Alcantara, J.; Jones, I.; Kulmatycki, K.; Machineni, S.; Mostovy, L.; Nicholls, I.; et al. Safety and efficacy of the cystic fibrosis transmembrane conductance regulator potentiator icenticaftor (QBW251). J. Cyst. Fibros. 2021, 20, 250–256. [Google Scholar] [CrossRef]
- Rowe, S.M.; Jones, I.; Dransfield, M.T.; Haque, N.; Gleason, S.; Hayes, K.A.; Kulmatycki, K.; Yates, D.P.; Danahay, H.; Gosling, M.; et al. Efficacy and Safety of the CFTR Potentiator Icenticaftor (QBW251) in COPD: Results from a Phase 2 Randomized Trial. Int. J. Chron. Obs. Pulmon. Dis. 2020, 15, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Abbott-Banner, K.; Thomas, D.Y.; Hanrahan, J.W. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol. Ther. 2021, 224, 107826. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Luo, Y.; Thomas, D.Y.; Hanrahan, J.W. The dual phosphodiesterase 3/4 inhibitor RPL554 stimulates rare class III and IV CFTR mutants. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 318, L908–L920. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Matthes, E.; Billet, A.; Ferguson, A.J.; Thomas, D.Y.; Randell, S.H.; Ostrowski, L.E.; Abbott-Banner, K.; Hanrahan, J.W. The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L59–L70. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Singh, D.; Martinez, F.J.; Watz, H.; Bengtsson, T.; Maurer, B.T. A dose-ranging study of the inhaled dual phosphodiesterase 3 and 4 inhibitor ensifentrine in COPD. Respir. Res. 2020, 21, 47. [Google Scholar] [CrossRef][Green Version]
- Watz, H.; Rickard, K.; Rheault, T.; Bengtsson, T.; Singh, D. Symptom Improvement Following Treatment with the Inhaled Dual Phosphodiesterase 3 and 4 Inhibitor Ensifentrine in Patients with Moderate to Severe COPD—A Detailed Analysis. Int. J. Chron. Obs. Pulmon. Dis. 2020, 15, 2199–2206. [Google Scholar] [CrossRef]
- Ferguson, G.T.; Kerwin, E.M.; Rheault, T.; Bengtsson, T.; Rickard, K. A Dose-Ranging Study of the Novel Inhaled Dual PDE 3 and 4 Inhibitor Ensifentrine in Patients with COPD Receiving Maintenance Tiotropium Therapy. Int. J. Chron. Obs. Pulmon. Dis 2021, 16, 1137–1148. [Google Scholar] [CrossRef]
- Bjermer, L.; Abbott-Banner, K.; Newman, K. Efficacy and safety of a first-in-class inhaled PDE3/4 inhibitor (ensifentrine) vs salbutamol in asthma. Pulm. Pharmacol. Ther. 2019, 58, 101814. [Google Scholar] [CrossRef] [PubMed]
- Verona Pharma; Cystic Fibrosis Trust. A Study of RPL554 in Patients With Cystic Fibrosis. 2017. Available online: https://ClinicalTrials.gov/show/NCT02919995:2017 (accessed on 23 February 2022).
- Ratjen, F.; Bell, S.C.; Rowe, S.M.; Goss, C.H.; Quittner, A.L.; Bush, A. Cystic fibrosis. Nat. Rev. Dis. Primers. 2015, 1, 15010. [Google Scholar] [CrossRef] [PubMed]
- Konstan, M.W.; Flume, P.A. Clinical care for cystic fibrosis: Preparing for the future now. Lancet Respir. Med. 2020, 8, 10–12. [Google Scholar] [CrossRef]
- McCravy, M.S.; Quinney, N.L.; Cholon, D.M.; Boyles, S.E.; Jensen, T.J.; Aleksandrov, A.A.; Donaldson, S.H.; Noone, P.G.; Gentzsch, M. Personalised medicine for non-classic cystic fibrosis resulting from rare CFTR mutations. Eur. Respir. J. 2020, 56, 2000062. [Google Scholar] [CrossRef] [PubMed]
- Veit, G.; Velkov, T.; Xu, H.; Vadeboncoeur, N.; Bilodeau, L.; Matouk, E.; Lukacs, G.L. A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants. J. Pers. Med. 2021, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Pacheco, M. CFTR Modulators: The Changing Fac.ce of Cystic Fibrosis in the Era of Precision Medicine. Front. Pharm. 2019, 10, 1662. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kozlov, V.A.; Iarchuk, N.I. [Surgical treatment of non-gunshot wounds of the soft tissues of the face and neck]. Vestn. Khir. Im. II Grek. 1987, 139, 98–101. [Google Scholar]
- Bobadilla, J.L.; Macek, M., Jr.; Fine, J.P.; Farrell, P.M. Cystic fibrosis: A worldwide analysis of CFTR mutations--correlation with incidence data and application to screening. Hum. Mutat. 2002, 19, 575–606. [Google Scholar] [CrossRef]
- Hammoudeh, S.; Gadelhak, W.; AbdulWahab, A.; Al-Langawi, M.; Janahi, I.A. Approaching two decades of cystic fibrosis research in Qatar: A historical perspective and future directions. Multidiscip. Respir. Med. 2019, 14, 29. [Google Scholar] [CrossRef]
- Laselva, O.; Guerra, L.; Castellani, S.; Favia, M.; Di Gioia, S.; Conese, M. Small-molecule drugs for cystic fibrosis: Where are we now? Pulm. Pharmacol. Ther. 2022, 72, 102098. [Google Scholar] [CrossRef]
CFTR Variants | Experimental Models | CFTR Modulators | Results | Reference |
---|---|---|---|---|
S13F, R31C, G85E, E92K, V520F, M110K, N1303K | Primary HNE cells | VX-661, VX-445, VX-770 (ETI, Vertex Pharmaceuticals) | Rescue of CFTR functionality to therapeutically significant levels (>20% of WT-CFTR) | [48] |
M1101K, G85E, N1303K | HEK293T cells, primary HNE | VX-661, VX-445, VX-770 (ETI, Vertex Pharmaceuticals) | Responses comparable to, or inferior to, those observed for F508del-CFTR | [46] |
H609R, I1023_V1024del | HEK293T cells, | VX-661, VX-445, VX-770 (ETI, Vertex Pharmaceuticals) | Rescue of channel misprocessing and functionality | [49] |
I1234del, W1282X | HEK293T cells, 16HBE14o-, primary HNE | VX-661, VX-445, VX-770 (ETI, Vertex Pharmaceuticals) | Rescue of I1234del-CFTR to WT activity in HEK293T cells; rescue in gene-edited I1234-CFTR-expressing 16HBE14o- cells and in primary HNE cells from two CF patients heterozygous for I1234-R1239del/W1282X; No rescue in primary HNE cells homozygous for I1234-R1239del | [52] |
G551D, G1244E, Y1092X | CFBE41o-, primary HNE | VX-661, VX-445, VX-770 (ETI, Vertex Pharmaceuticals) | Acute VX-445 addition increased VX-770-potentiated CFTR current by ~70–85% in HNE cells homozygous for G551D-CFTR and heterozygous for G551D/Y1092X | [56] |
G551D, R117H | FRT cells | VX-661, VX-445, VX-770 (ETI, Vertex Pharmaceuticals) | VX-445 synergizes with VX-770 in potentiating CFTR activity in FRT cells heterologously expressing both G551D- and R117H-CFTR | [57] |
CFTR Variants | Experimental Models | CFTR Modulators | Results | Reference |
---|---|---|---|---|
V232D | HEK293T cells | ABBV/GLPG2737 (AbbVie/Galapagos) | CFTR rescue with higher potency than against the F508del-CFTR (EC50 of 161 nM) | [59] |
E92K, P67L, V232D | HEK293T cells | ABBV/GLPG2222 (AbbVie/Galapagos) | CFTR rescue with lower potency than against the F508del-CFTR (EC50 of 161 nM) | [59] |
I1234_R1239del | HEK293T cells, Primary HNE cells | AC1, AC2-2 (AbbVie/Galapagos) | CFTR rescue up to ~130% of the mean forskolin response in non-CF cultures | [52] |
I1234_R1239del/W1282X | Primary HNE cells | AC1, AC2-2 (AbbVie/Galapagos) | CFTR rescue up to ~50% of the mean Fsk response observed in non-CF cultures | [52] |
W1282X | HEK293T cells | AC1, AC2-2, AP2 (AbbVie/Galapagos) | Augmented residual cAMP-dependent channel activity | [66] |
W1282X | 16HBE14o- | AC1, AC2-2, AP2 (AbbVie/Galapagos) | Modest CFTR activation 50% rescue of wt-CFTR channel activity in combination with SMG1i | [66] |
M1101K, G85E | Primary HNE cells | AC1, AC2–1 (AbbVie/Galapagos) | 100–280% rescue of the mean Fsk response in non-CF cultures | [67] |
N1303K | Primary HNE cells | AC1, AC2–2, AP2 | Modest improvement in maturation; concomitant channel function rescue | [67] |
I1234_R1239del | HBE | PTI-428 (Proteostasis) | Increased CFTR mRNA; induction of CFTR expression in combination with VX-809; enhanced CFTR activity in combination with VX-809 compared to VX-809 alone | [51] |
I1234_R1239del | Primary HNE cells | PTI-428 (Proteostasis) | Increased CFTR channel upon Fsk and VX-770 stimulation in combination with VX-809 compared to VX-809 alone | [51] |
Heterozygous for class I nonsense mutation (W1282X and G542X more prevalent variants) | Phase 2 clinical trial | PTC124 (PTC Therapeutics) | Slight increase in FEV1; improvements in total Cl− transport | [73] |
Q493X, G542X, R553X, W846X, W882X, E1104X, R1162X, W1282, Q1313X | Phase 2 clinical trial in children | PTC124 (PTC Therapeutics) | Normal range of total Cl− transport in half of the patients | [74] |
R553X, R1162X, G542X, W1282X | Phase 3 clinical trial | PTC124 (PTC Therapeutics) | Smaller decrease in FEV1 compared to placebo | [75] |
R553X, R1162X, Y122X | 16HBE14o- | NB124 (Eloxx Pharmaceuticals) | Restored CFTR function | [68] |
R1162X, W1282X | CFBE41o− | NB124 (Eloxx Pharmaceuticals) | Increased CFTR function with VX-770 compared to NB124 alone | [77] |
G542X/G542X, G542X/W1282X G542X/MF | PDO | NB124 (Eloxx Pharmaceuticals) | Significant restoration of CFTR-dependent swelling upon Fsk | [78] |
G542X | FRT | NB124 (Eloxx Pharmaceuticals) | Restored full-length CFTR expression 2.5-fold increase in Cl− conductance | [77] |
G542X/delF508 | Primary HBE | NB124 (Eloxx Pharmaceuticals) | 2.5-fold increase in Cl− conductance CFTR rescue up to 7% of wt-CFTR | [68] |
G542X | CF mouse model | NB124 (Eloxx Pharmaceuticals) | Rescue of cAMP–activated transepithelial currents | [77] |
G542X/MF | Phase 2 clinical trial | NB124 (Eloxx Pharmaceuticals) Alone or in combination with VX-770 | Ongoing | [80] |
Class III or IV mutation | Phase 1/2 clinical trial | QBW251 (Novartis) | FEV1 improved by 6.46% compared to placebo Decrease in lung clearance index variation (LCI2,5) by 1.13 points Decrease in sweat Cl− by 8.36 mmol/L | [82] |
R334W, T338I | FRT | RPL554 (Verona Pharma) | Increased forskolin-stimulated Cl− currents | [86] |
G551D, S549R | FRT | RPL554 (Verona Pharma) | CFTR rescue in combination with VX-770 alone or together with VX-809 | [86] |
R117H/F508del | Primary HBE | RPL554 (Verona Pharma) | Increased CFTR-dependent ion secretion in response to VX-770 Increased cilia beat frequency | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mergiotti, M.; Murabito, A.; Prono, G.; Ghigo, A. CFTR Modulator Therapy for Rare CFTR Mutants. J. Respir. 2022, 2, 59-76. https://doi.org/10.3390/jor2020005
Mergiotti M, Murabito A, Prono G, Ghigo A. CFTR Modulator Therapy for Rare CFTR Mutants. Journal of Respiration. 2022; 2(2):59-76. https://doi.org/10.3390/jor2020005
Chicago/Turabian StyleMergiotti, Marco, Alessandra Murabito, Giulia Prono, and Alessandra Ghigo. 2022. "CFTR Modulator Therapy for Rare CFTR Mutants" Journal of Respiration 2, no. 2: 59-76. https://doi.org/10.3390/jor2020005