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a Centralized Model: Real-World Data to Suggest It Is Time to
Reconsider Testing Options
Alison Finall

Cellular and Molecular Pathologist, Morriston Hospital, Swansea Bay University Health Board,
Swansea SA6 6NL, UK; alisonfinall3@wales.nhs.uk

Abstract: Best practice in the management of non-squamous, non-small-cell lung cancer patients
involves somatic testing for a range of molecular markers. Actionable oncogenic drivers of
malignancy are increasingly being detected using RNA-based next-generation sequencing in
the UK by referral to centralized genomic laboratory hubs. Recent audit data from the author’s
case work have demonstrated an RNA sequencing failure rate of 35%. This article examines the
real-world context, which may account for this failure rate, and discusses alternative options for
patient care pathways.
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1. Introduction

Lung cancer is the most common cause of death from cancer worldwide [1]. The
United Kingdom (UK) has the some of the worst survival outcomes of developed na-
tions across the world and Europe [1–3]. It is important for all healthcare professionals
to understand factors that may be contributing to these poor outcomes for our patients.
This commentary examines the role molecular biomarker detection may have in the
care of patients with non-small-cell lung cancer (NSCLC) in the UK.

In the UK, patients’ cases are discussed at multidisciplinary team meetings (MDT
/tumour board meetings) to sense-check diagnostic information from radiology and
pathology with the clinical context and to determine the best management plan for each
individual patient according to their wider health and circumstances [4,5]. Predictive
molecular biomarkers are needed to inform patient management options and for the
consideration of targeted oncological agents [6,7]. The array of biomarkers needed to
inform the best management plan for non-squamous NSCLC has evolved at pace in
recent years [8]. At the time of writing, programmed death ligand-1 (PD-L1) expres-
sion is assessed by immunohistochemical methods, providing sufficient malignant
tissue is available, followed by somatic tumour mutations in Kirsten rat sarcoma viral
proto-oncogene (KRAS), V-raf murine sarcoma viral oncogene homologue B (BRAF),
epidermal growth factor receptor (EGFR) analysis by DNA next-generation sequencing
(NGS) [9–15]. Gene fusion events in anaplastic lymphoma receptor tyrosine kinase
(ALK1), ROS proto-oncogene tyrosine-protein kinase (ROS1), neurotrophic receptor
tyrosine kinase 1, 2 and 3 (NTRK1/2/3), RET proto-oncogene, receptor tyrosine kinase
(RET) and skipping lesions in exon 14 of the MET proto-oncogene receptor tyrosine
kinase (MET) can be identified using ribonucleic acid (RNA)-based next-generation
sequencing (NGS) in somatic tissue [16,17]. RNA sequencing is preferable to deoxyri-
bose nucleic acid (DNA) sequencing for large structural rearrangements in somatic
genes where there are large intronic sequences in the DNA of the gene of interest,
NTRK1 being a good example [17,18]. Sequencing spliced messenger RNA transcripts
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that consist solely of exons allows for more accurate detection of fusion events by
current bioinformatic analytical methods [18,19]. The incidence of gene fusion events
in lung cancer is low [20]. ALK1 rearrangements occur in approximately 3% of Western
populations with primary lung adenocarcinomas, whereas ROS1 is the cancer driver in
less than 1% of cases [21]. RET and NTRK1,2 and NTRK3 fusions and MET 14 skipping
variants in NSCLC are also uncommon [15,22–27].

Our local practice is to send tissue sections on charged glass slides to an exter-
nal laboratory for molecular testing as our cellular pathology department lacks the
molecular-grade medical laboratory facilities and biomedical scientist (BMS) staff
required to conduct DNA and RNA extraction from tissues. This process is best com-
menced at the same time the formalin-fixed paraffin-embedded (FFPE) tissue block
is cut to prepare the haematoxylin and eosin (H&E)-stained slide for morphological
assessment by a histopathologist [28]. Cutting the FFPE block requires re-facing each
time a BMS attempts to cut a section of tissue in order to ensure the surface is smooth
and appropriately orientated to give a full slice representing all areas in the FFPE block.
This process of re-facing inevitably involves the loss of small amounts of tissue for
accuracy of slide production. Limiting slide processing to one single step and cutting
all possible required slides up front to prevent waste is clearly an ideal step to prevent
any valuable tumour tissue from being wasted [29]. This is no more important than in
the care of lung cancer patients, where small samples such as bronchoscopic biopsies
and endoscopic ultrasound-guided (EBUS) fine needle aspiration cytology can yield
very small amounts of tumour tissue (see Figure 1) but a large amount of molecu-
lar information is required for diagnosis and treatment [30–32]. Funding issues and
staffing shortages mean that we are currently unable to offer upfront slide sectioning.
Pathologists with expertise in thoracic pathology are well advised to limit diagnostic
immunohistochemistry (IHC) use in such cases to just two protein markers: p40, an
antibody recognizing the deltaNp63 isoform of p63 protein, and thyroid transcrip-
tion factor-1 (TTF1) for subtyping squamous cell carcinomas and adenocarcinomas,
respectively [4,29].
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Figure 1. Photomicrographic examples of histopathological tissue biopsies containing scarce or no 
malignant tissue. (a) Photomicrograph of bronchial biopsy (×4 magnification) showing the limited 
nature of some samples. This is small-cell neuroendocrine carcinoma (haematoxylin and eosin 
(H&E) stain). (b) Some CT-guided core biopsies may not contain malignancy but rather necrotic 
material, as in this example (×4, H&E). (c) Endobronchial ultrasound-guided (EBUS) fine needle 
aspiration cytology of mediastinal lymph nodes. EBUS samples often yield small amounts of tissue 
on a background of blood. A small fragment of carcinoma is highlighted in the black square (×4, 
H&E). (d) Photomicrograph illustrating a small deposit of metastatic carcinoma (black square) in a 
lymph node. Bulk RNA extraction from this section, without microdissection, is likely to yield large 
amounts of wild-type signal from lymphocyte nuclei. (e) An example of low-volume malignancy 
with a CT-guided core biopsy of lung highlighted in the black square. There is fibrosis and chronic 
inflammation (arrow) present in the background (×4, H&E). 

This paper will examine factors to consider for best patient care in predictive molec-
ular biomarker identification in lung non-squamous NSCLC, adenocarcinoma being the 
most common type, and consider whether there is a need to change current practice and 
how that might be achieved. 
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This paper will examine factors to consider for best patient care in predictive molecular
biomarker identification in lung non-squamous NSCLC, adenocarcinoma being the most
common type, and consider whether there is a need to change current practice and how
that might be achieved.
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2. RNA Sequencing: The Real-World Experience of a Centralized Model of Clinical
Somatic Testing
2.1. Failure Rate of RNA Sequencing

Sending tissue sections to a centralized external laboratory is part of an agreed local
care pathway. RNA NGS sequencing is requested at the same time as DNA NGS for time
efficiency. One could wait for the DNA NGS panel to be reported and only request RNA
NGS if a somatic driver mutation is not found. This would mean considerable delays in
starting targeted therapy if a gene fusion is identified on RNA NGS. A “salvage” method
was built into the RNA sequencing strand of the molecular biomarker pathway to address
cases that fail to yield sufficient RNA. This salvage pathway requires additional tissue
sections be sent upfront to the external laboratory upon RNA NGS request to mitigate
against the extended time interval in requesting further tissue from the referring pathology
laboratory. Performing IHC to detect overexpression of ALK1 and ROS1 protein early in
the pathway with PD-L1 helps identify most patients with a gene fusion in these two genes
and is actionable in the case of ALK1 [6].

An internal audit of the author’s cases reported as adenocarcinoma of primary pul-
monary origin between Nov 2021 and Jan 2022 (n = 20) showed that RNA sequencing failed
in 35% of requests. This failure rate is in keeping with another UK study, which showed that
34% of samples (n = 111) that had a negative DNA NGS panel for driver mutations were not
suitable for subsequent RNA NGS due to either insufficient remaining tissue, poor RNA
quality or a failed analysis [33]. A further recent study in the United States gives similar
data, with 33% of cases tested for NTRK fusion by RNA sequencing being inadequate [34].
Samples with insufficient material are not sent for RNA NGS, and this is defined as samples
with less than 100 malignant cells [35]. This high failure rate seems at odds with recently
reported data regarding RNA-based next-generation sequencing (NGS) from an Italian
referral centre that successfully produced results for 95.8% of their patient samples (n = 48)
using a customized gene fusion panel [16]. The assay validation study by de Luca and
colleagues, however, is not comparable with our experience as the authors only included
cases where the desired RNA quality and quantity thresholds had already been met [16].
Another recent study of RNA-based NGS using cytology samples (n = 129) processed into
formalin-fixed paraffin-embedded (FFPE) cell blocks found a success rate of 91% using a
hybrid capture method of RNA sequencing [35]. Just one sample had insufficient RNA
extracted, and eight were of insufficient cellularity [35]. The success of their cytological
method may relate to minimal fixation in 10% neutral buffered formalin (10 min). We
utilize cytology specimens for sequencing wherever there is sufficient cellularity to do so
and with good results.

2.2. Pre-Analytical Considerations

Tissue specimens submitted to cellular pathology laboratories are fixed in forma-
lin for between 6 and 72 h to meet standard operating procedures for quality in IHC
techniques [36]. Formalin fixation causes the cross linking of proteins within tissue to
prevent tissue breakdown in archives [37]. Formalin causes the direct degradation of
RNA molecules and can also detrimentally interact with chemical agents used in RNA
extraction [38]. RNA extraction is said to be more successful from fresh or frozen tissue
samples rather than FFPE tissue samples, particularly if they have not been archived for
long periods of time [39–41]. Clinicians may ask the question, “Why don’t we just move to
using fresh tissue?”, which, on the face of it, seems to be a reasonable suggestion. That is,
until one considers the huge logistical changes that would be required of histopathology
laboratories to support such a change. It would involve change in practice by surgical
theatre staff and porters. Some authors advocate using alternative fixation methods to
preserve tissue, such as the PAXgene (BD Biosciences, Haryana, India) solution [42–44].
The morphological appearances of haematoxylin and eosin (H&E) tissue sections generated
after fixation in PAXgene are excellent and comparable with FFPE [42,43]. However, the
costs of such a change would be prohibitive in a public-funded, UK National Health Service
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(NHS) setting. Five litres of 10% formalin costs in the region of GBP 13, whereas 50 mL of
PAXgene (servicing small specimens only) will cost in the region of GBP 150. The enhanced
cost would also be compounded by a need to invest in new, dedicated tissue processors
compatible for use with PAXgene in cellular pathology laboratories [45].

2.3. Timeliness of RNA Sequencing

The time taken to report RNA NGS from an external laboratory is the same as that for
DNA sequencing in our experience. We have shown previously that a DNA sequencing
report took 17 days from the time tissue was sent from our laboratory [46]. If one includes
the time taken to cut tissue sections in the turnaround time calculation, NGS takes 23 calen-
dar days to be reported [46]. As stated, more than a third of patients require fluorescence in
situ hybridization (FISH) salvage testing as a result of the failure rate in RNA sequencing
according to a recent audit. This means an average (mean) additional wait of 2 weeks for
FISH reporting, which only includes NTRK, ALK1 and ROS1 biomarkers. The reasons for
the length of time taken to report FISH at the referral laboratory are not clear, and many
centres are able to report FISH in 2–3 days. We have already shown that patients with stage
4 disease are at risk of rapid clinical deterioration and that a third of this group are sadly
deceased by the time DNA NGS reports are available [46]. The additional wait for FISH
results in more than a third of samples is only likely to increase this proportion of deceased
patients at the time of reporting. Further work is required to evidence this point.

Given that the majority of patients show a good objective response to tyrosine kinase
inhibitors (TKIs) and that these drugs can give substantial increases in progression-free
survival measured in years, it is imperative that we identify appropriate patients whilst
they are alive and well enough to receive such treatments [47,48]. Furthermore, a recent
retrospective observational study of stage 4 NSCLC outcomes has provided evidence
that survival advantages are lost if patients are switched to TKIs after receiving standard
chemotherapy +/− checkpoint inhibitors whilst waiting for somatic malignancy NGS
to be completed [49]. Systems and processes designed to care for lung cancer patients,
particularly those with stage 4 disease, need to factor in timeliness of reporting into their
choice of testing methodology to ensure that patient care is not compromised and to avoid
accusations of unethical clinical practice [50].

2.4. Tissue Consumption

Tissue consumption is a major issue in the care of lung cancer patients when only
small amounts of diagnostic biopsy material are available for testing. This difficulty is com-
pounded as the range of biomarkers required for lung adenocarcinoma expands [8,30,51].
Immunohistochemistry, though only available for use in a clinical diagnostic setting as a
single-plex tool, offers the advantages of being fast, cheap, reliable and easy to perform on
automated, large-throughput platforms. Tissue consumption for each antibody is 3–4 µm
of FFPE tissue and offers the additional asset of marker assessment in a spatial context.
That is to say, one can be sure that the protein biomarker of interest specifically relates to
the malignant cells of interest and, thereby, enhances diagnostic confidence. That level
of data granularity is lost in bulk sequencing assays using DNA or RNA extraction from
tissue where there are nuclei with wild-type DNA and RNA species in connective tissue,
inflammatory cells and normal background epithelium within the tissue section [52] (see
Figure 1). Macro-dissection from the glass slide can help enrich samples for tumour nuclear
content, but this may not be possible in centralized molecular laboratories with no resident
cellular pathologist expertise.

NGS offers the advantage of multiplex detection of molecular biomarkers but requires
a much greater input of tissue for assessment than some rapid polymerase chain reaction
(PCR) assays available for clinical use. For example, the IdyllaTM Gene Fusion (Biocartis,
Mechelen, Belgium) assay uses 5–15 µm of FFPE tissue as compared with at least 50 µm
for each sequencing panel available to our patients [46]. When one considers that rescue
FISH for failed RNA sequencing samples requires an additional 8 µm of tissue per marker,
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not using such a rapid assay becomes difficult to defend in a setting of a small amount of
available tissue [46]. The IdyllaTM Gene Fusion cartridge covers all the actionable gene
fusion events for detection that may guide treatment decisions in lung adenocarcinoma
patients [53–55]. Interestingly, Sorber et al. found that RNA from fresh tissue was of poorer
quality than that extracted from FFPE blocks [53]. Some of the fresh tissue samples used in
the Sorber study were kept in frozen storage for as long as 9 years, and this may account
for this difference.

The option to test for NTRK fusions also applies to all other solid malignancies where
standard oncological options have failed [56,57]. It would be beneficial to utilize the
infrastructure in place for NSCLC cases for the wider oncology patient community where
appropriate. Beyond NSCLC, however, it may be more cost effective to screen all solid
malignancies by using NTRK IHC before confirmation of positive findings using automated
FISH rather than using the gene fusion cartridge by IdyllaTM (Biocartis) as a first-choice
method [58,59]. The additional fusions of ALK1 ROS1, Met14 skipping and RET may not be
indicated in malignancies other than NSCLC, so it may not be economically viable to use
the IdyllaTM Gene Fusion cartridge in this setting. NTRK protein IHC is fast and cheap and
consumes just 3–4 µm of FFPE tissue [59].

2.5. Further Consequences of Failed RNA NGS

The consequences of not having a report of gene fusion events in NSCLC at the time
of outpatient appointment with an oncologist is a waste of a valuable appointment slot
and the time of the hospital staff. There are additional knock-on effects to consider such as
patient dissatisfaction, anxiety, staff morale and, most importantly, missed opportunities to
start effective treatments in patients at risk of rapid clinical deterioration [60]. As discussed,
TKI treatments should be started in the therapy-naïve setting [49]. In addition, if an
opportunity to start TKI therapy is missed, the patient loses an opportunity to receive an
oral therapy in the community, an option that can relieve some workload of secondary
care. The consequence is that more patients wait for intravenous chemotherapy drug
administration as day case patients in hospital facilities with limited capacity.

2.6. Why Does RNA Sequencing Fail So Frequently in Our Experience?

RNA sequencing can fail for many and varied reasons. Limited tissue and the impact
of formalin fixation have been highlighted, but little discussed is the specimen exposure to
environmentally ubiquitous RNA degradation enzymes [61]. There are RNA degradation
enzymes in the air, on our hands and work surfaces that can cause the destruction of RNA
within FFPE tissue sections. Indeed, it is surprising that RNA sequencing works at all
given the nature of the processing occurring in the histopathology laboratory upstream
of receipt by the molecular lab. FFPE tissue specimens are cut in a large, open room with
no special sterile air flows or compartmentalization. Sections are floated on a water bath
prior to mounting on glass slides with the inherent risk, though much guarded against, of
contamination. Slides are then packed into a plastic, non-sterile slide mailer and standard
packaging for postage to the external laboratory by courier. These are less than optimal
conditions for handling and preserving RNA for sequencing and may account for why so
many RNA NGS assays fail, in our experience.

2.7. Practical Alternatives to Centralized NGS Testing

Genomic technologies are advancing in capability and at a pace beyond which NHS
cellular and molecular pathology laboratories can evolve. As such, it is understandable
that some molecular laboratories have invested in NGS for the advantage of being able to
expand the repertoire of gene variants reported in a quick and responsive way without
additional capital expenditure. Automated technologies are now available that can reduce
the turnaround time for reporting NGS samples with a 50-gene panel. Sheffield et al.
showed they could generate biomarker NGS-based reports using the GenexusTM (Thermo
Fisher Scientific, Waltham, MA, USA) platform in as little as three working days [62].



J. Mol. Pathol. 2022, 3 313

Using this technique may represent an opportunity for local histopathology laboratories to
incorporate fully automated NGS reporting alongside morphological and IHC data in one
step [63]. This assay requires a minimum of eight samples per run. A need for batching
could have detrimental consequences for turnaround time in laboratories with small
numbers of patient requests. This could be overcome by the use of automated rapid PCR
systems such as the IdyllaTM (Biocartis) platform, which do not require batching [53,54].
The IdyllaTM platform provides the ability to give clinicians same-day biomarker results in
urgent cases and could salvage outpatient appointments where NGS reports are not yet
available [64]. The IdyllaTM Gene Fusion assay (Biocartis) has the added advantage of being
a multiplex assay [53,54]. A recent multicentre European study of this assay obtained valid
results in 98% of their patient in as little as 3 h with good sensitivity and specificity [54].
This compares very favourably to our current experience of valid results in just 65% of
patients using RNA-based NGS as the first-line option.

Although fluorescence in situ hybridization (FISH) is single plex and potentially time
consuming to conduct, this technique is well established and reliable for clinical use. There
have been advances in FISH technologies in recent years with use of computer algorithms
to count fluorescence signals with the effect of reducing the turnaround times and human
resource requirements of traditional FISH. This could be a very valuable adjunct to the
use of rapid PCR or IHC for screening out negative cases. IHC, being a rapid, cheap and
easily automated technique, makes it an ideal starting point for screening for uncommon
gene fusion events, given that it has a high negative predictive value in low-incidence
settings. This may be a particularly attractive approach for histopathology laboratories
with well-established expertise in IHC practice and sufficient case throughput to justify
testing by this method in the majority of cases. Certainly, in resource-limited settings,
such as the UK NHS, IHC should be considered as a robust option in NTRK testing for all
solid malignancies.

2.8. Suggestions for Improved Care Pathways Incorporating Molecular Biomarker Identification

We have previously described an actionable oncogenic driver identification pathway
for NSCLC patients that uses rapid PCR for the identification of common, known somatic
mutations in stage 4 patients to prevent missed opportunities for starting TKIs in treatment-
naïve patients [46]. It may be best practice, however, to extend the use of rapid PCR to
assess for gene fusion events in all cases where molecular testing is indicated on small
biopsies (see Figure 2). This could prevent the waste of valuable tissue, given that, in our
area, RNA-based NGS has a failure rate of 35% and the gene fusion cartridge has a much
lower failure rate, in the region of 2% [54].
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3. Conclusions

Cellular and molecular pathologists working in the public sector have a duty to
consider the best use of often limited tissue samples to achieve maximum information
for patient care. Pathologists, with the tissue morphology before them, are best suited
to make the best choices regarding testing modality. Reflex requesting of biomarkers in
NSCLC recognizes the role the pathologist can play in saving time for reporting of such
biomarkers [65]. A recent audit of RNA sequencing reports a failure rate of 35%. There
are a number of alternative testing strategies to consider that could improve biomarker
identification in NSCLC patients in our region, including FISH, rapid PCR and fully
automated rapid NGS workflows that could be harnessed in-house with the added benefit
of integration alongside morphological and immunohistochemistry findings in one report.
The timeliness of reporting both cellular and molecular pathology findings in tissue biopsies
is of paramount importance in the care of our lung cancer patients. Rapid near-patient
testing methods could positively impact up to a fifth of stage 4 patients and make a
difference in overall progression-free survival [46]. This is of particular need in the UK,
where we lag behind our European colleagues who have a wider range of molecular testing
capabilities at their fingertips and greater control over choice of testing method based
on individual patient needs [2,3,54]. However, whether the pathologist holds the key to
closing the gap in survival outcome data for lung cancer patients in the UK remains to be
seen. Pathologists should at least be given the opportunity to try.
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