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Abstract: This paper presents a meticulous exploration of advanced machine learning techniques
for precise forest type classification using multi-temporal remote sensing data within a woodland
environment. The study comprehensively evaluates a diverse range of models, ranging from ad-
vanced (ensemble) machine learning (ML) methods to several finely tuned support vector machine
(SVM) variants, with a specific focus on Bayesian-optimized SVM with a radial basis function (RBF)
kernel. Our findings highlight the robust performance of the Bayesian-optimized SVM, achieving a
high accuracy of up to 94.27% and average precision and recall of 94.46% and 94.27%, respectively.
Notably, this accuracy aligns with the levels attained by acclaimed ensemble techniques such as
random forest and CatBoost while also surpassing those of XGBoost and LightGBM. These results
highlight the potential of these methodologies to significantly enhance forest type mapping accuracy
compared to traditional (linear) SVM and black-box neural networks. This, in turn, can enable
the reliable identification and quantification of key services, including carbon storage and erosion
protection, intrinsic to the forest ecosystem. The findings of our comparative study emphasize the
profound impact of employing and fine-tuning ML approaches in the realm of remote sensing-based
environmental analysis.

Keywords: forest type mapping; remote sensing; machine learning; ensemble learning; support
vector machine; Bayesian optimization

1. Introduction

The accurate identification of different forest types is important for effective envi-
ronmental management practices. The use of remote sensing technology for classifying
forest types down to the individual-tree-species level has numerous applications, such as
sustainable forest management [1], biological studies and surveillance [2], the monitoring of
invasive species [3], and even advancing the monitoring of sustainable development goals
(SDG) [4]. Forests are among the largest reservoirs of carbon on land that are the most vul-
nerable to land use and land cover change (LULC) [5], and they play a critical role in global
carbon cycling and ecological stability. They also contribute to mitigating climate change,
thus enhancing the environment and ensuring ecological security. Therefore, the precise
mapping of forest types is crucial for assessing factors like carbon storage, minimizing
damage, and enhancing resources. Traditional methods of surveying forests usually involve
labor-intensive fieldwork and often fall short when it comes to covering the vast and di-
verse landscapes of forests. Hence, remote sensing technology emerges as a game-changer
and offers a solution to efficient data acquisition in challenging terrains. Specifically, the use
of multi-temporal remote sensing data provides perceptions into the dynamics of forests.

Environ. Sci. Proc. 2024, 29, 9. https://doi.org/10.3390/ECRS2023-15848 https://www.mdpi.com/journal/environsciproc

https://doi.org/10.3390/ECRS2023-15848
https://doi.org/10.3390/ECRS2023-15848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com
https://orcid.org/0000-0003-1942-4826
https://orcid.org/0000-0002-3926-1270
https://ecrs2023.sciforum.net/
https://doi.org/10.3390/ECRS2023-15848
https://www.mdpi.com/journal/environsciproc
https://www.mdpi.com/article/10.3390/ECRS2023-15848?type=check_update&version=2


Environ. Sci. Proc. 2024, 29, 9 2 of 5

Such data collected at different time intervals have the potential to unveil evolving patterns
and relationships within the forest ecosystems. Utilizing this potential, along with the
capabilities of techniques such as ML, offers an innovative approach to accurate forest type
mapping. Although previous studies have investigated different remote sensing datasets
for this purpose, this research utilized a publicly available dataset comprising data derived
from remote sensing investigations that encompass unique spectral attributes within the
visible-to-near infrared spectrum carried out using ASTER satellite imagery. The analysis in
this research involves a comparative evaluation of multiple machine and ensemble learning
algorithms, highlighting their effectiveness in handling multi-temporal data.

2. Related Work

A study by Rodríguez-Galiano et al. (2012) [6] investigated the use of the random
forest (RF) classifier for land cover monitoring through remotely sensed data. The per-
formance of the model on complex land cover classification using Landsat-5 data for
14 categories in Spain yielded 92% accuracy, a Kappa index of 0.92, and good robustness
to data reduction and noise. The RF model significantly outperformed a single decision
tree in the experiment. Liu et al. (2018) [7] explored the use of freely available multi-source
imagery for accurately identifying forest types using an object-based RF algorithm. The
research, conducted in Wuhan, China, used datasets including Sentinel-2A, Sentinel-1A,
Shuttle Radar Topographic Mission Digital Elevation Model (DEM), and Landsat-8 images.
Results showed that combining Sentinel-2 data with DEM and multi-temporal Landsat-8
imagery significantly improved accuracy, to 82.78%. Zhang et al. (2019) [8] presented
the challenges in classifying tropical natural forests due to their intricate structures and
challenging weather conditions. The study focused on Hainan, China, and utilized multi-
temporal synthetic aperture radar (SAR) and optical images from Sentinel-1 and Landsat-8
satellites, respectively. The research proposed a two-stage classification strategy using
SVM, incorporating various remote sensing data to identify different types of tropical
forests. The approach achieved an overall accuracy of 90% in mapping Hainan’s tropical
forests. Cheng et al. (2019) [9] introduced an adapted version of dynamic time warping
called time-weighted dynamic time warping (TWDTW) for classifying forest types using
Sentinel-2 and Landsat-8 time-series images in Southern China. Compared to established
ML algorithms like RF and SVM, TWDTW demonstrated superior performance with higher
accuracy (93.81%) and stronger agreement (kappa coefficient of 0.93) in mountainous forest
type classification. Hościło et al. (2019) [10] addressed the lack of comprehensive research
on regional or national forest status and composition using Sentinel-2 satellite data. They
demonstrated the successful classification of forest cover and forest types (broadleaf and
coniferous) and the identification of tree species in a mountainous area in southern Poland.
The RF classifier employed achieved high accuracy in forest/non-forest mapping and forest
type classification (98.3% and 94.8%, respectively), while the inclusion of topographic data
improved the accuracy in identifying eight tree species from 75.6% to 81.7% (approach
1) and up to 89.5% for broadleaf and 82% for coniferous species (approach 2). Guo et al.
(2021) [11] developed a novel deep fusion uNet model which utilizes both multi-temporal
imagery and the deep uNet model’s features. The model demonstrated competitive per-
formance in forest classification, achieving an overall accuracy of 93.30% and a Kappa
coefficient of 0.9229 for China’s Gaofen-2 satellite data. The model further successfully
maps specific plantation species like Chinese pine and Larix principis.

In this paper, we explore the utilization of diverse base and advanced (ensemble) ML
techniques on multi-temporal remote sensing data for accurate forest type mapping. We
further attempt to optimize the hyperparameters of a promising base algorithm (SVM) with
the aim to improve the classification results. Lastly, the paper provides a comprehensive
evaluation and comparison of the different methods, showcasing their effectiveness in
achieving high accuracy and robust performance.
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3. Materials and Methods
3.1. Data Acquisition

We utilized the forest type mapping dataset [12] from the UCI Irvine ML repository for
our analysis. This dataset comprises multi-temporal remote sensing data of a forested area
in Japan aiming to categorize different types of forests using spectral data. It was derived
from a remote sensing project that employed ASTER satellite imagery to map various forest
types based on their spectral properties within the visible-to-near infrared wavelength
range. Hence, the primary outcome of this endeavor is a forest type map, which can serve
to identify and quantify the ecosystem services offered by the forest, such as carbon storage
and erosion protection. The attributes information of the dataset are categorized by forest
classes (‘s’ for ‘Sugi’ forest, ‘h’ for ‘Hinoki’ forest, ‘d’ for ‘Mixed deciduous’ forest, and ‘o’
for ‘Other’ non-forest land).

3.2. Feature Extraction

We utilized all 27 features of the dataset for our analysis and included the following:

• b1 to b9: These are bands of spectral information captured by ASTER imagery encom-
passing the green, red, and near-infrared wavelengths, acquired on three different
dates (26 September 2010; 19 March 2011; and 8 May 2011).

• pred_minus_obs_S_b1 to pred_minus_obs_S_b9: These values represent the difference
between the spectral values predicted through spatial interpolation and the actual
spectral values for the ‘s’ class across bands b1 to b9.

• pred_minus_obs_H_b1 to pred_minus_obs_H_b9: Similarly, these values denote the
variance between the predicted spectral values obtained via spatial interpolation and
the actual spectral values for the ‘h’ class across bands b1 to b9.

3.3. Model Training

The various ML models were trained by feeding the above features to the models and
allowing them learn the relationships between the features and the forest types. We used
70% of the data for model training and the remaining 30% for testing. The training process
was carried out using basic SVM with no kernel (linear SVM), SVM with polynomial-3
kernel (Poly-SVM), SVM with a radial basis function kernel (RBF-SVM), RBF-SVM with hy-
perparameter optimization using grid search (Grid-RBF-SVM), and Bayesian optimization
(Bayes-SVM), RF, XGBoost, LightGBM, CatBoost, and artificial neural network (ANN).

3.4. Model Evaluation

The trained models were validated on the test data and performance was evaluated
using metrics such as accuracy, precision, recall, and F1 score.

3.5. SVM Parameter Optimization

For the Grid-RBF-SVM variant, we defined a grid of potential hyperparameters (C:
[1 × 10−6, 1 × 10−3, 1, 10, 100, 1 × 103, 8 × 106]; gamma: [1 × 10−6, 1 × 10−3, 1, 10,
100, 1 × 103, 8 × 106]) where we varied the regularization parameter (C) and gamma
values. The grid search technique exhaustively tested all possible combinations of these
hyperparameters within the specified ranges. Also, we utilized Bayesian optimization,
which is a probabilistic model-based optimization approach to efficiently searching for
optimal hyperparameters by learning from previous evaluations.

4. Results and Discussion

A comprehensive view of the performance of the different ML models is presented in
Table 1 and graphically plotted in Figure 1.



Environ. Sci. Proc. 2024, 29, 9 4 of 5

Table 1. Performance of the different ML models.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Linear SVM 86.62 86.72 86.62 86.62
Poly-SVM 91.08 91.66 91.08 91.17
RBF-SVM 90.45 91.25 90.45 90.54
Grid-RBF-SVM 93.63 93.81 93.63 93.68
Bayes-SVM 94.27 94.46 94.27 94.32
Random Forest 94.27 94.36 94.27 94.28
XGBoost 93.63 93.88 93.63 93.67
LightGBM 91.72 91.95 91.72 91.76
CatBoost 94.27 94.37 94.27 94.28
ANN 91.08 91.47 91.08 91.09
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From Table 1 and Figure 1, one observation that stands out is the consistent high
performance of ensemble methods, specifically RF and CatBoost. These models achieved
an overall classification accuracy of 94.27%, indicating their efficacy in capturing complex
and intricate patterns present in the remote sensing data. Furthermore, they exhibited high
precision, recall, and F1-scores, with values above those achieved using other methods,
reinforcing their effectiveness.

Another noteworthy finding is the significant performance boost obtained through
hyperparameter tuning, particularly with Bayesian optimization. This was evident in
the improvement in the SVM models, with Bayes-SVM reaching an impressive accuracy
of 94.27% and the overall best precision and recall of 94.46% and 94.27%, respectively,
which is comparable to those of the top-performing ensemble methods. This demonstrates
the importance of fine-tuning the model hyperparameters to obtain the best possible
performance from machine learning algorithms.

Additionally, comparing the performances of Poly-SVM and RBF-SVM against linear
SVM also highlights the advantages of nonlinear SVM variants in capturing complex
relationships in data.

5. Conclusions

In conclusion, this paper demonstrates the effectiveness of several ML models for
forest type mapping, with ensemble methods, particularly RF and CatBoost, yielding ex-
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ceptional classification performance. Furthermore, hyperparameter tuning with Bayesian
optimization was used to enhance the SVM model’s performance. XGBoost and LightGBM
also proved to be dependable alternative models with good performance. These findings
highlight the critical role of advanced (ensemble) schemes and hyperparameter optimiza-
tion in achieving superior results in remote sensing applications. The choice in the final
model should be based on a holistic view of performance, computational demands, and
practical utilization.
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