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Abstract: This study presents a novel approach to address challenges regarding data acquisition for
object detection and tracking purposes by enhancing UAV path planning specifically designed for
fruit detection in woody crops trained on vertical trellises, considering the biophysical environment
of the field. The proposed method implements the Ant Colony Optimization (ACO) algorithm and
enables single and multiple UAVs to fly synchronously while ensuring a safe distance between
platforms. The results highlight that ACO is able to generate optimal and safe routes, considering the
vegetation and covering the whole agricultural area. Moreover, it shows potential to solve partial leaf
occlusion for fruit identification.
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1. Introduction

There is a current trend in precision agriculture which is focused on woody crops,
such as vineyards [1] and fruit orchards [2], with a strong emphasis on using deep learning
for fruit detection [3–5]. However, these studies primarily study object detection, computer
vision methods, and their metrics without considering the method used for data acquisition
or the most efficient path to collect it.

Path planning involves finding a suitable route from a starting point to a goal point
while considering obstacles to avoid collisions [5]. In the context of aerial path planning for
unmanned aerial vehicles (UAVs), optimization is critical due to limited autonomy and
energy consumption constraints [6–8]. Unlike ground robots used in agricultural fields,
UAVs can fly above obstacles and do not need to consider the topography [9,10], since they
are not affected by those constrains. Furthermore, aerial path planning can be executed
using one or multiple UAVs working cooperatively. In Precision Agriculture, where large
fields need to be covered efficiently, employing multiple UAVs can reduce the mission time
and increase the area coverage. However, it is relevant to take into account during the
whole mission the safety distance between platforms, which is influenced by flight speed
and UAV size [11].

All in all, it is relevant to change the focus of attention from deep learning algorithms
and their metrics to a step prior to that: the proper and efficient acquisition of the datasets
to be employed. The importance of carefully planning missions and paths in real-world
environments is emphasized, as many fruit detection algorithms are trained under artificial
conditions, such as plants with leaf-removal [12,13], making them less robust in challenging
and realistic settings. This study presents a novel approach for path planning that has the
potential to improve fruit detection and assessment in vineyards trained in vertical trellis.
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2. Materials and Methods

In order to customize multiple-UAV path planning, the first step is to identify the
biophysical environment of the field through a nadir UAV flight, from which an orthomosaic
will be computed to extract a Canopy Height Model (CHM). Once the specific characteristics
of the field have been identified, the actual path planning can be designed, which will be
executed during a second UAV mission.

2.1. Data Acquisition

The vineyard (Vitis vinifera cv. Loureiro) utilized for this study is located in ‘Tomiño,
Pontevedra’, Galicia, Spain (X: 517186.7, Y: 4645072.3; ETRS89/UTM zone 29 N), and
is owned by ‘Bodegas Terras Gauda, S.A’. The distance between plants and rows was
2.5 m × 3 m, respectively. The first flight, also called the survey flight, was carried out in
2021 at 30 meters above sea level. The platform used was a DJI Matrice 210 (DJI Sciences and
Technologies Ltd., Shenzhen, Guangdong, China), equipped with a Micasense RedEdge 3
multispectral camera (AgEagle Sensor Systems Inc., Wichita, KS, USA).

2.2. Survey Flight

The survey flight’s purpose is to identify regions of interest, above which the UAV will
acquire data, and obstacles or regions without interest, above which the UAV will not fly nor
collect data. For that, the CHM was derived from the orthomosaic, and only areas between
0.5 and 2 meters were selected since those include the minimum and maximum heights of
the vine plants. The rows which had missing plants or high trees surrounding them were
selected as Forbidden, whereas the other areas were marked as regions of interest (ROI).

The next step was to design the optimal path, considering the ROIs and the Forbidden
areas. An Ant Colony Optimization (ACO) algorithm [14] was selected for this study as the
algorithm to identify the most optimal route that connects the ROIs without flying over
the Forbidden areas since it has already been successfully applied to other agricultural field
operations [15,16]. A requirement of the algorithm is to select the starting position and the
number of platforms that will carry out the mission while simultaneously keeping a safety
distance between UAVs during the whole trajectory.

3. Results

In order to collect data from a row, the UAV flew on top of the adjacent row and
captured images from the left and right sides of the canopy of each vine plant. Figure 1
includes six rows of the vineyard above which the UAV would fly. However, since the
canopy needs to be recorded from both sides, only the inner four rows are the ones which
had images taken from the two laterals. Figure 1a shows the CHM of the vineyard, with
the Forbidden areas marked in red. Those areas did undergo data collection, and hence, the
UAV did not fly above both the top and bottom adjacent rows. For areas of agronomic
interest, the UAV flew to the specific waypoint marked in Figure 1b, captured an image of
that side of the canopy, and rotated 180◦ to collect images of the other side of the canopy.
The path designed to capture data from three UAVs flying simultaneously can be observed
in Figure 1b, where each UAV path is marked with a different color.

The length of the route designed implementing ACO was 36.89 m, and compared to
the length proposed with path planning without optimization, the length obtained was
38.48 m, which represents a decrease in path length of 4.32%.
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Figure 1. Path planning design for the area of interest. (a) Canopy Height Model of the vineyard (in
gray) along with the areas with obstacles or without agronomic interest, marked with red squares.
Coordinates in UTM zone: 29N (EPSG: 25829). (b) Path designed using Ant Colony Optimization to
capture data from both sides of the canopy of the four inner rows. The green and red dots indicate
the starting and landing points of each UAV.

4. Discussion and Conclusions

The methodology studied in this project provides a solution to optimal data acquisition
by considering the biophysical environment of the field in order to design an optimized
path plan to boost object detection and tracking in vineyards. It requires two flights:
(1) a survey mission to obtain insights into the specific characteristics of the field and
(2) the actual path designed using ACO to enhance object detection and tracking purposes.

The proposed method, implementing Ant Colony Optimization, was able to improve
fruit detection by selectively avoiding data collection from unnecessary areas, reducing the
path length by up to 4.32% compared to traditional path planners without optimization
algorithms. The optimization of the flight allows the flight time and the usage of the
batteries to be minimized [17,18], which are two of the limiting factors of UAV missions [6,7],
while improving the collection of crucial data from a vineyard, such as fruit images. This
optimization might lead to higher fruit detection and tracking accuracy, which is a current
issue that research carried out in commercial vineyards is facing when no leaf removal is
executed [19].

Another strength of this method is that it only requires an RGB sensor to carry out
both the survey and second flights. This is an advantage since these sensors are more
affordable and might be more attractive to the final stakeholders in the study: technicians
and farmers. Nevertheless, this methodology has not yet been tested on a field. To enable
further research on the topic, the code written in MATLAB has been made available to the
scientific community: https://github.com/saidlab-team/Drone-ACO-ACPP (accessed on
10 October 2023).

Future work should focus on executing these flights in several vineyards with multiple
levels of difficulty regarding the number of Forbidden areas present in the field to validate
the robustness of the proposed method.

Author Contributions: Conceptualization, M.A.-S., S.V., R.G.V. and J.V.; methodology, M.A.-S., S.V.,
R.G.V. and J.V.; software, M.A.-S., S.V., R.G.V. and J.V.; validation, M.A.-S., S.V., R.G.V. and J.V.; formal
analysis, M.A.-S., S.V., R.G.V. and J.V.; investigation, M.A.-S., S.V., R.G.V. and J.V.; resources, M.A.-S.,
S.V., R.G.V. and J.V.; data curation, M.A.-S., S.V., R.G.V. and J.V.; writing—original draft preparation,
M.A.-S.; writing—review and editing, M.A.-S., S.V., R.G.V. and J.V.; visualization, M.A.-S. and J.V.;
supervision, S.V. and J.V.; project administration, J.V.; funding acquisition, J.V. All authors have read
and agreed to the published version of the manuscript.

https://github.com/saidlab-team/Drone-ACO-ACPP


Environ. Sci. Proc. 2024, 29, 57 4 of 4

Funding: This research was funded by the European Commission in the scope of its H2020 program
(contract number: 101017111).

Acknowledgments: This work was carried out in the scope of the H2020 FlexiGroBots project, which
was funded by the European Commission in the scope of its H2020 program (contract number:
101017111, https://flexigrobots-h2020.eu/). The authors acknowledge the valuable help and contri-
butions from ‘Bodegas Terras Gauda, S.A.’ and all partners of the project. The authors would like to
thank MathWorks, Inc. (Natick, MA, USA) for their support.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of the data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Vélez, S.; Ariza-Sentís, M.; Valente, J. Mapping the Spatial Variability of Botrytis Bunch Rot Risk in Vineyards Using UAV

Multispectral Imagery. Eur. J. Agron. 2023, 142, 126691. [CrossRef]
2. Di, J.; Li, Q. A Method of Detecting Apple Leaf Diseases Based on Improved Convolutional Neural Network. PLoS ONE 2022,

17, e0262629. [CrossRef] [PubMed]
3. Santos, T.; de Souza, L.L.; dos Santos, A.A.; Avila, S. Grape Detection, Segmentation and Tracking Using Deep Neural Networks

and Three-Dimensional Association. Comput. Electron. Agric. 2020, 170, 105247. [CrossRef]
4. Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard Management with Small Unmanned Aerial Vehicles: A Survey of

Sensing and Analysis Approaches. Precis. Agric. 2021, 22, 2007–2052. [CrossRef]
5. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path Planning and Trajectory Planning Algorithms: A General Overview.

In Motion and Operation Planning of Robotic Systems: Background and Practical Approaches; Carbone, G., Gomez-Bravo, F., Eds.;
Mechanisms and Machine Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–27. ISBN 978-3-319-14705-5.

6. Aggarwal, S.; Kumar, N. Path Planning Techniques for Unmanned Aerial Vehicles: A Review, Solutions, and Challenges. Comput.
Commun. 2020, 149, 270–299. [CrossRef]

7. Oksanen, T.; Visala, A. Coverage Path Planning Algorithms for Agricultural Field Machines. J. Field Robot. 2009, 26, 651–668.
[CrossRef]

8. Alyassi, R.; Khonji, M.; Karapetyan, A.; Chau, S.C.-K.; Elbassioni, K.; Tseng, C.-M. Autonomous Recharging and Flight Mission
Planning for Battery-Operated Autonomous Drones. IEEE Trans. Autom. Sci. Eng. 2023, 20, 1034–1046. [CrossRef]

9. Santos, L.C.; Aguiar, A.S.; Santos, F.N.; Valente, A.; Ventura, J.B.; Sousa, A.J. Navigation Stack for Robots Working in Steep
Slope Vineyard. In Intelligent Systems and Applications; Arai, K., Kapoor, S., Bhatia, R., Eds.; Advances in Intelligent Systems and
Computing; Springer International Publishing: Cham, Switzerland, 2021; pp. 264–285.

10. Santos, L.C.; Santos, F.N.; Valente, A.; Sobreira, H.; Sarmento, J.; Petry, M. Collision Avoidance Considering Iterative Bézier Based
Approach for Steep Slope Terrains. IEEE Access 2022, 10, 25005–25015. [CrossRef]

11. Zhang, W.; Ning, Y.; Suo, C. A Method Based on Multi-Sensor Data Fusion for UAV Safety Distance Diagnosis. Electronics 2019,
8, 1467. [CrossRef]

12. Nuske, S.; Wilshusen, K.; Achar, S.; Yoder, L.; Narasimhan, S.; Singh, S. Automated Visual Yield Estimation in Vineyards. J. Field
Robot. 2014, 31, 837–860. [CrossRef]

13. Rose, J.C.; Kicherer, A.; Wieland, M.; Klingbeil, L.; Töpfer, R.; Kuhlmann, H. Towards Automated Large-Scale 3D Phenotyping of
Vineyards under Field Conditions. Sensors 2016, 16, 2136. [CrossRef] [PubMed]

14. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 1996, 26, 29–41. [CrossRef] [PubMed]

15. Bakhtiari, A.A.; Navid, H.; Mehri, J.; Bochtis, D.D. Optimal route planning of agricultural field operations using ant colony
optimization. Agric. Eng. Int. CIGR J. 2011, 13, 1–10. Available online: https://cigrjournal.org/index.php/Ejounral/article/
view/1939 (accessed on 9 June 2023).

16. Wang, H.-J.; Fu, Y.; Zhao, Z.-Q.; Yue, Y.-J. An Improved Ant Colony Algorithm of Robot Path Planning for Obstacle Avoidance.
J. Robot. 2019, 2019, e6097591. [CrossRef]

17. Kumar, K.; Kumar, N. Region Coverage-Aware Path Planning for Unmanned Aerial Vehicles: A Systematic Review. Phys.
Commun. 2023, 59, 102073. [CrossRef]

18. Valente, J.; Del Cerro, J.; Barrientos, A.; Sanz, D. Aerial Coverage Optimization in Precision Agriculture Management: A Musical
Harmony Inspired Approach. Comput. Electron. Agric. 2013, 99, 153–159. [CrossRef]

19. Ariza-Sentís, M.; Baja, H.; Vélez, S.; Valente, J. Object Detection and Tracking on UAV RGB Videos for Early Extraction of Grape
Phenotypic Traits. Comput. Electron. Agric. 2023, 211, 108051. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://flexigrobots-h2020.eu/
https://doi.org/10.1016/j.eja.2022.126691
https://doi.org/10.1371/journal.pone.0262629
https://www.ncbi.nlm.nih.gov/pubmed/35104299
https://doi.org/10.1016/j.compag.2020.105247
https://doi.org/10.1007/s11119-021-09813-y
https://doi.org/10.1016/j.comcom.2019.10.014
https://doi.org/10.1002/rob.20300
https://doi.org/10.1109/TASE.2022.3175565
https://doi.org/10.1109/ACCESS.2022.3153496
https://doi.org/10.3390/electronics8121467
https://doi.org/10.1002/rob.21541
https://doi.org/10.3390/s16122136
https://www.ncbi.nlm.nih.gov/pubmed/27983669
https://doi.org/10.1109/3477.484436
https://www.ncbi.nlm.nih.gov/pubmed/18263004
https://cigrjournal.org/index.php/Ejounral/article/view/1939
https://cigrjournal.org/index.php/Ejounral/article/view/1939
https://doi.org/10.1155/2019/6097591
https://doi.org/10.1016/j.phycom.2023.102073
https://doi.org/10.1016/j.compag.2013.09.008
https://doi.org/10.1016/j.compag.2023.108051

	Introduction 
	Materials and Methods 
	Data Acquisition 
	Survey Flight 

	Results 
	Discussion and Conclusions 
	References

