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Abstract: Coastal areas gather increasing hazards, exposures, and vulnerabilities in the context of
anthropogenic changes. Understanding their spatial responses to acute and chronic drivers requires
ultra-high spatial resolution that can only be achieved by UAV-based sensors. UAV lasergrammetry
constitutes, to date, the best observation of the xyz variables in terms of resolution, precision, and
accuracy, allowing coastal areas to be reliably mapped. However, the use of lidar reflectivity (or
intensity) remains poorly examined for mapping purposes. The added value of the lidar-derived
near-infrared (NIR) was estimated by comparing the classification results of nine coastal habitats
based on the blue–green–red (BGR) passive and BGR-NIR passive–active datasets. A gain of 4.14%
was found at the landscape level, while habitat-scaled improvements were highlighted for the “salt
marsh” and “soil” habitats (4 and 4.56% for producer’s accuracy, PA, and user’s accuracy, UA; and
8.95 and 9.48% for PA and UA, respectively).

Keywords: salt marsh; lidar near-infrared intensity; DJI L1

1. Introduction

Coastal areas play a key role in the adaptation of ocean-climate change due to their
land–sea interface [1]. The mapping and monitoring of their use and cover are crucial
to understanding where the most exposed and vulnerable zones are located and how to
manage them in a sustainable way [2]. The finest spatial resolution possible is required
to empower the diagnosis and prognosis of coastal objects subject to current and future
erosion and/or submersion risks. To date, unmanned aerial vehicles (UAVs) consist of the
best platforms to bear sensors capable of providing centimeter-scale 2D and 3D coastal
information [3]. The active lidar instrument scans coastal landscapes at a rate of hundreds
of thousands of points per second, propagating at the speed of light [4]. UAV-based lidar
products enable the best accuracy and precision in xyz data among the airborne/spaceborne
tools. However, lidar intensity remains poorly harnessed in Earth observation from satellite
to drone, despite its obvious added value in terms of spectral information [5].

This study aims to assess the contribution of the UAV-based lidar-derived near-infrared
(NIR) intensity to the overall accuracy (OA) and kappa coefficient (κ) of the classification of
a coastal landscape, provided with nine representative natural, semi-natural, and anthro-
pogenic habitats. The lidar NIR contribution is quantified in the light of blue–green–red
(BGR) passive imagery, whose camera is co-located with the lidar sensor.
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2. Methodology
2.1. Study Site

The study site is located along the bay of Mont Saint-Michel, midway between the
most extended salt marshes in northern France and rural polders (Figure 1).
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Figure 1. Blue–green–red composite imagery of the study site and its global location
(11,385 × 5538 pixels; 0.01 m pixel size; 23,626,927 points).

This site was selected based on the diversity of the habitats, namely salt marsh, grass,
dry grass, shrub, tree, soil, sediment, road, and car (Table 1). Every class was represented
by 4600 pixels, which were split into 2300 calibration and 2300 validation pixels. Both sub-
datasets were spatially disjointed to avoid spatial autocorrelation. A total of 41,400 pixels
were therefore used for, first, training the probabilistic maximum likelihood learner, then
for testing its predictability.

Table 1. Habitat name, description, and blue–green–red derived thumbnails.

Habitat Name Habitat Description Habitat Thumbnail

Salt marsh High-salt marsh herbaceous stratum
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Table 1. Cont.

Habitat Name Habitat Description Habitat Thumbnail

Sediment Mineral-bare ground
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linked with a DJI D-RTK2 high precision Global Navigation Satellite System (GNSS) station
base. The flight mission followed these navigational parameters: 50 m height, 4 m/s
speed, 12 min time, 2.04 km path length, 0.30 km2, 233 BGR pictures, and 0.013 m ground
sample distance.

The Zenmuse L1 sensor is designed to have a 905 nm Livox Avia laser, a 200 Hz
inertial measurement unit, and a 1-inch RGB camera (20 Mp), all mounted on a 3-axis
gimbal provided with a DJI Skyport (DJI, Shenzhen, China), enabling the synchronization
of the lidar RTK positioning with the Matrice 300 RTK system. The point sampling rate
was fixed at 240 kHz in the dual return mode, and the line scanning pattern was selected
(repetitive field-of-view: 70.4◦ horizontal × 4.5◦ vertical). The lidar mission followed these
specific parameters: 80% front overlapping, 70% side overlapping, and an average density
point of 2 477 points/m2. The DJI native (but proprietary) lidar format was implemented
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reached 84.57% and 0.8264 for the BGR and 88.71% and 0.8730 for the BGR-NIR datasets,
respectively (Figure 3).

Table 2. Confusion matrix derived from the blue–green–red classification.

Salt Marsh Grass Dry Grass Shrub Tree Soil Sediment Road Car

Salt marsh 1955 0 0 0 0 0 0 0 0
Grass 0 2298 0 0 0 0 0 0 0

Dry grass 334 2 1966 157 368 0 42 0 0
Shrub 0 0 240 2143 0 0 0 0 793
Tree 0 0 88 0 1932 0 0 0 0
Soil 0 0 0 0 0 2176 2 133 0

Sediment 0 0 3 0 0 78 2138 776 0
Road 0 0 3 0 0 46 118 1391 0
Car 11 0 0 0 0 0 0 0 1507

Table 3. Confusion matrix derived from the blue–green–red + lidar-derived near-infrared
classification.

Salt Marsh Grass Dry Grass Shrub Tree Soil Sediment Road Car

Salt marsh 2250 0 0 0 0 0 0 0 14
Grass 0 2298 0 0 0 0 0 0 0

Dry grass 39 2 1920 145 108 2 54 779
Shrub 0 0 236 2155 0 0 0 0 0
Tree 0 0 141 0 2192 0 0 0 0
Soil 0 0 0 0 0 2214 2 78 0

Sediment 0 0 3 0 0 78 2230 625 0
Road 0 0 0 0 0 6 14 1597 0
Car 11 0 0 0 0 0 0 0 1507
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Figure 3. Classification of the nine classes in the coastal landscape based on (a) blue–green–red
imagery and (b) lidar-derived near-infrared + blue–green–red imageries (11,385 × 5538 pixels, 0.01 m
pixel size).

3.2. Habitat Scale

Regarding the producer’s accuracy (PA), the habitats that most benefited from the NIR
addition were “road”, “grass”, and “soil”, whereas “tree” lost a little detection.

About the user’s accuracy (UA), “soil”, “tree”, and “salt marsh” gained in discrimina-
tion, whereas “road” and “grass” were less classified (Table 4).

Table 4. Results of the producer’s accuracy and user’s accuracy differences between BGR and
BGR-NIR classifications.

Habitat Name Producer’s Accuracy User’s Accuracy

Salt marsh 4 4.56
Grass 11.3 −1.68

Dry grass 1.65 2.35
Shrub 0.53 0.2
Tree −2 9.28
Soil 8.95 9.48

Sediment 0 0
Road 12.83 −0.62
Car 0 0

The consistent augmentation for “salt marsh” and “soil” might be explained by the
higher and lower reflectance in the NIR spectrum, respectively. High salt marsh vegetation,
such as Puccinellia, Festuca, Aster, Limione, or Elymus genera, displays a tangible higher NIR
reflectance in the summer season [6], while the “soil” investigated here corresponded to
the transitional wet-to-dry area just above a pond, thus the lower NIR reflectance due to
the moisture.

4. Conclusions

The contribution of the UAV-borne lidar-derived NIR intensity to the classification of a
coastal landscape (provided with nine representative habitats) was evaluated by comparing
OA, PA, and UA results associated with a passive BGR dataset and a combination of a
passive–active BGR-NIR dataset using a probabilistic maximum likelihood classifier. At
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the landscape level, the addition of the lidar NIR intensity to the BGR reference increased
OA by 4.14%. At the habitat level, “salt marsh” and “soil” gained 4 and 8.95% in PA,
respectively, and 4.56 and 9.48% in UA, respectively. It is therefore recommended to add
the lidar-derived intensity into classification when front and side overlaps at least reach 80
and 70%, respectively.
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