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Abstract: Satellite remote sensing has become an important tool for monitoring and evaluating the
impacts of drought. In this study, a modeling framework aimed at estimating the time series of
evapotranspiration (ET), a key variable for drought monitoring, at a regional scale is presented. A
two-source energy balance (TSEB) model was used concurrently with Terra/Aqua MODIS data and
the ERA5 atmospheric reanalysis dataset. The modeling framework is based on the SEN-ET scheme
to calculate the surface energy balance of the soil-canopy-atmosphere continuum and estimate ET at
1 km spatial resolution. The model was applied for the whole Iberian Peninsula, and it was evaluated
with a pistachio orchard flux tower data in Lleida (NE Iberian Peninsula). Preliminary daily ET
evaluation results for the Terra dataset showed an RMSE, MBE, and R2 of around 1.43 W·m−2,
−1.27 W·m−2, and 0.56, respectively, and for the Aqua dataset were 1.05 W·m−2, −0.84 W·m−2 and
0.48, respectively within 100 days in 2022. Ongoing evaluation is being carried out on two forested
watersheds as well as mountain meadows and semi-arid vegetation flux towers.

Keywords: remote sensing; drought; evapotranspiration; two-source energy balance; water resource
management; MODIS

1. Introduction

Drought is a devastating, recurring, and globally natural hazard that causes extreme
damage to natural ecosystems, agriculture, economy, society, and health [1]. Drought is
characterized as a creeping phenomenon, gradually emerging over time. This gradual man-
ifestation makes drought prediction onsets and ends difficult and challenging [2]. However,
drought impacts are apparent in vegetation greenness and crop water requirements over
time [3].

Evapotranspiration (ET) is a key variable of the hydrologic cycle that leads to water
loss from the processes of transpiration and evaporation through plant canopy and soil,
respectively [4]. ET plays a critical role in the climate system as a nexus of the water,
energy, and carbon cycles and sequentially affects plant growth and yield [5,6]. Accurate
evaluation of ET is critical for estimating crop water requirements, planning irrigation,
enhancing efficient use of water resources, and monitoring and predicting drought [7,8].
Mediterranean areas, characterized by water-limited crop production, face accelerant cli-
mate change impacts associated with increasing extreme temperatures and decreasing
precipitation [9]. The Iberian Peninsula is among the most vulnerable areas of southern
Europe due to its Mediterranean climate and agricultural predominance [10]. Thus, ET
estimates can be an indicator for monitoring agricultural drought and assessing water use
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efficiency in these areas. Quantitative ET methods can be classified into ground observa-
tions and model-based estimation. Calculating ET with ground observation methods on
regional scales is difficult due to spatial heterogeneity [11]. Thermal-based surface energy
balance models are widely used to estimate ET through reflected and emitted energy from
the sun to the land surface [12]. Surface energy balance models can be categorized as
single-source and dual-source models. Single-source models assume the land surface as
a single system, but dual-source models differentiate soil and vegetation energy fluxes
separately [13]. The two-source energy balance (TSEB) model is a dual-source model that
shows better performance on vegetation-soilmixed surfaces [11,12].

Remote sensing data have revolutionized water resource management studies as
they address the limitations of ground observations by providing parameters at different
spatiotemporal resolutions. Remote sensing data have been widely used as input data to
estimate ET through surface energy balance models by providing numerous key parameters
such as land surface temperature, surface albedo, emissivity, and vegetation indices. Thus,
the integration of remote sensing data and thermal-based surface energy models enhances
our ability to understand and manage water resources effectively.

The moderate resolution imaging spectroradiometer (MODIS) onboard the Terra and
Aqua satellites is a critical instrument used in Earth observation and global-change research
that provides essential environmental parameters, including land surface temperature,
ocean color, vegetation cover, and atmospheric conditions. With a freely available long-term
dataset spanning more than 22 years for researchers and scientists worldwide, MODIS plays
a crucial role in monitoring climate change, ecosystem dynamics, and natural disasters.
MODIS cloud contamination and other gaps can lead to missing data and reducing data
quality. However, MODIS quality assessment (QA) data with gap-filling algorithms can be
applied to maximize the high-quality data effects and reduce and replace poor quality and
missing data.

The present study aims (1) to calculate smoothed and gap-filled MODIS biophysical
products as input for ET estimation; (2) to estimate the daily time series of remote sensing-
based ET using an integrated modeling framework on a regional scale with Terra/Aqua
MODIS images, the ERA5 atmospheric reanalysis dataset, and the TSEB model; and (3) to
evaluate the model performance over heterogeneous surfaces in the Mediterranean region.

2. Materials and Methods
2.1. Study Area

The Iberian Peninsula, located in southwestern Europe, is recognized as a climate
change “hotspot” within the Mediterranean region and it was selected for the model
application. As an ongoing model evaluation, the pistachio orchard flux tower (NE Iberian
Peninsula) was selected to evaluate the performance of the TSEB model (Figure 1).
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2.2. Brief Overview of the ET Modeling Framework

The model framework based on the SEN-ET was used, with some modifications
for the study areas, to estimate ET on a regional scale (model description can be found
at https://www.esa-sen4et.org/ accessed on 19 March 2023). The processing flow for
estimating energy heat flux using MODIS data and the TSEB model modifications are
shown in Figure 2.
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2.3. Remote Sensing and Meteorological TSEB Input Variables

Both optical and thermal data were extracted from Terra/Aqua MODIS sensors. Also,
meteorological data including air temperature, atmospheric vapor pressure, wind speed
above the canopy, atmospheric pressure, and total column water vapor were extracted
from the ERA5 reanalysis dataset. Instantaneous and daily incoming shortwave radiation
were computed using a DEM [14], water vapor, and aerosols from MODIS’ combined AOD
product (MCD19A2). Sun zenith angle was computed using the acquisition time in the LST
MODIS product.

2.4. Time Series of Vegetation Properties and Biophysical Data

TIMESAT was used to both temporally smooth and spatially complete biophysical
variables. This process transformed noisy signals (due to clouds and other atmospheric and
image acquisition artifacts) of remotely sensed vegetation indices including LAI, NDVI,
and FPAR into smooth seasonal curves by using MODIS QA data, providing a weighting
mechanism to reduce the influence of clouds and atmospheric noise on satellite data.

https://www.esa-sen4et.org/
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TIMESAT has three different smoothing functions to fit the time series data: double logistic,
asymmetric Gaussian, and Savitzky–Golay filtering [15].

3. Results

Time series of LAI, NDVI, and FPAR data were analyzed by TIMESAT (Figure 3).
High weights were assigned for higher quality retrievals and low weights for lower quality
retrievals; also, the double logistic smoothing method was selected since it showed a better
fit to the data. After the initial fit from TIMESAT, it failed to fit a curve to the time series
of LAI and FPAR products; therefore, a second run of TIMESAT was applied to LAI and
FPAR time series data, as Gao et al. suggested [16].
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Figure 3. LAI observations from 2002 to 2022 for a sample point (latitude: 39◦35.81′ N, longitude:
2◦24.63′ E).

TSEB evaluation for 2022 yielded an RMSE, MBE, proportion of error (PE), and R2

of around 1.43 W·m−2, −1.27 W·m−2, and 0.56, respectively, for the Terra dataset and
1.05 W·m−2, −0.84 W·m−2 and 0.48, respectively, for the Aqua dataset, in 100 days when
compared with daily ET measured by the pistachio flux tower Preliminary daily ET evalua-
tion results for the Terra dataset showed an RMSE, MBE, and R2 of around 1.43 W·m−2,
−1.27 W·m−2, and 0.56, respectively, and for the Aqua dataset were 1.05 W·m−2,
−0.84 W·m−2 and 0.48, respectively within 100 days in 2022. (Figures 4 and 5).
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4. Discussion

In this study, TIMESAT software was applied to smooth and fill the gaps in MODIS
time series data. The result showed that TIMESAT failed to fit a curve into LAI and FPAR
time series products after the initial process since there were many gaps or low-quality
data. Therefore, a second TIMESAT process was applied to LAI and FPAR images. The
results showed that the algorithm successfully smoothed and fitted data temporally and
spatially. A two-source energy balance model based on the SEN-ET modeling framework
was successfully applied using Terra/Aqua MODIS data and the ERA5 atmospheric re-
analysis dataset. The results showed that ET overestimated by the TSEB model, however,
remote sensing-based ET agreed well with the flux tower observations, capturing temporal
dynamics of daily ET over the study period. Hence, the modeling framework can be
applied both regionally and temporally to estimate spatiotemporal ET dynamics.

5. Conclusions

Drought is a complex environmental phenomenon with dynamic impacts that manifest
over time. Hence, to comprehensively understand its effects, it is essential to monitor it
using time series data of ET. In this study, an optimized modeling framework to estimate a
long time series of daily ET on a regional scale in the Iberian Peninsula was presented. The
modeling framework is based on the SEN-ET scheme and synergistically uses Terra/Aqua
MODIS data and the ERA5 atmospheric reanalysis dataset to estimate ET at 1 km spatial
resolution. Model evaluation with the pistachio orchard flux tower data in Lleida (NE
Iberian Peninsula) showed good performance of the modeling framework. The proposed
modeling framework provided a pathway to construct a daily time series of remote sensing-
based ET maps. Ongoing modeling framework evaluation is also being carried out on two
forested watersheds as well as mountain meadows and semi-arid vegetation flux towers.
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