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Abstract: Thermal anomalies detected by Earth observation satellites have been widely used to
identify active fires, even though there has been a high percentage of misclassified fire pixels. A
total of about 75,000 Fire Radiative Power (FRP) pixels have been spatially and temporally combined
with the EFFIS Burned Areas Database, distributed under the Copernicus Emergency Management
Service, in order to identify thermal anomaly hotspots misclassified as fire pixels. The proposed
approach uses a cluster analysis to partition the FRP pixels dataset into discrete subsets, based on
defined distance measures like the spatial distance of the pixel centroids and the temporal frequencies.
Later, zonal statistics were performed in order to evaluate fractional land cover within each identified
hotspot. Results demonstrate that misclassified large surfaces, like industrial areas, can be identified
from both spatial and temporal patterns, while other FRP false alarms are smaller in size.

Keywords: fire radiative power; thermal anomalies; wildfires

1. Introduction

Wildfires are frequent across Italy, and satellite observation represents a valid tool to
detect and assess the spread of wildfires. Unfortunately, only a fraction of fires are observed
by satellites, many of which are too small to be detected or are masked by clouds. In
addition, in some cases the duration of fires is too short as compared to satellites’ revisit time.
In most cases, the energy emitted through radiative processes released during combustion
(Fire Radiative Power—FRP) can be associated with fire intensity [1] and used as a proxy
for the fire. On the other hand, active fire data assessments of FRP anomalies, other than
fire burning due to both anthropogenic structures (like industrial areas, photovoltaic fields,
and bright reflective roofs) and natural processes (such as volcanoes) can lead to false
positives in the detection of active fires [2]. Permanent false-positive FRP pixels may recur
during active fire detection due to their similarity to fires in brightness, temperature, and
spectral reflectance.

Thermal anomalies detected by Earth’s observation satellites have been widely used
to identify active fires. FRP can be estimated from the radiance at medium wave infrared
(3–5 µm) wavelengths, measured by multiple polar-orbiting and geostationary satellite
sensors, and represents the instantaneous radiative energy that is released from actively
burning fires. FRP has been used to support the mapping of burned scars, by identifying
core areas and estimating trace gas and aerosol rates of emissions, hence strengthening the
monitoring of wildfire activities and their impact on the environment and ecosystems [3].
Algorithms to operationally generate FRP products from Earth’s observation satellite acqui-
sitions in near real time account for background window statistics, corrections, adjustments,
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and tests to eliminate false alarms, in order to distinguishing fire pixels from non-fire
pixels. Nevertheless, a high percentage of thermal anomalies are misclassified as possible
fire pixels.

This research study aims at presenting a methodological approach to identify thermal
anomaly hotspots, misclassified as fire pixels. FRP products over Italian National territory,
generated for the period 2022–2023 from SLSTR, MODIS and VIIRS satellite sensors and dis-
tributed by Copernicus, EUMETSAT and NASA FIRMS, have been collected and analyzed.
Characteristics of FRP anomalies, other than fire-related combustion, were investigated in
order to establish an approach for discriminating false-positive active fires, and to improve
their recognition through spatio-temporal analysis. The experiment was carried out for the
year 2022 and for the first seven months of the year 2023 (the latter period was used for a
comparison exercise).

2. Materials and Methods

To carry out this study, two datasets for the period January 2022–July 2023 were
used. The first one contains the active fire pixel data from the Fire Radiative Power–
Near Real Time Database (FRP-NRTD), consisting of a list of geographic coordinates of
individual active fire pixels centroids, hereafter named FRP points, combining various
datasets (Table 1). FRP represents emissive estimates of thermal anomalies, derived from
data acquired during daytime and nighttime satellite overpasses using passive optical
sensors at medium wavelengths (3–5 µm). FRP provides quantitative information on the
measurement of radiant heat, and is widely used as a proxy for fire events [4].

Table 1. Satellites and relative sensors used to generate the FRP-NRTD database (URLs accessed on
26 September 2023).

Satellite Sensor Resolution URL

Aqua (EOS PM-1) MODIS 1000 m https://firms.modaps.eosdis.nasa.gov

Terra (EOA AM-1) MODIS 1000 m https://firms.modaps.eosdis.nasa.gov

SNPP VIIRS 375 m https://firms.modaps.eosdis.nasa.gov

Sentinel-3 SLSTR 1000 m https://www.eumetsat.int/S3-NRT-FRP

The second dataset that was used was the Burnt Areas Database–Italian Terrestrial
Ecosystems (BAD-ITE), a geodatabase containing spatially explicit information, which
allows the quantitative analysis of the impact of the main fires in the spatial and temporal
dimensions, with a specific focus on natural protected areas and terrestrial ecosystems in the
Italian national territory. The BAD-ITE database was generated from the real-time updated
Burnt Areas database, distributed by EFFIS (https://effis.jrc.ec.europa.eu, accessed on 26
September 2023), which contains spatial polygons that delimit the areas affected by fire,
identified from satellite sensor acquisitions (MODIS Aqua, MODIS Terra, and Sentinel-
2 MSI at spatial resolutions of 250 and 20 m), and contains time information related to
fire events.

In addition, the Corine Land Cover Backbone 2018 thematic mapping product was
used to perform zonal statistics for different land covers.

The first step used for clustering analysis (Figure 1) consists of labelling each of the
about 75,000 FRP pixel points with a class, belonging to a legend reported in Table 2. Space
is the leading dimension used for FRP point labelling, and each point is first checked as
spatially residing within burned areas. Later, time information of burned areas, available
from fields named ‘FIREDATE’ and ‘LASTUPDATE’ in BAD-ITE, is used to identify FRP
points that occurred temporally during each mapped fire event (Figure 2). On the one
hand, FRP products in Near Real-Time (NRT) mode may have spatial displacement, due to
approximated estimates of azimuth angle and satellite positioning [5], spatially collocating
FRP points outside actual burned area polygons. On the other hand, burned area polygons
may have been mapped using a change detection method from satellite images acquired
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few days after the fire took place, resulting in temporal information lagging behind the
actual fire date. To find the best spatial buffer radius and time lag values, accounting for
the above-mentioned constraints, a sensitivity analysis of FRP point labelling with respect
to burned areas’ spatial buffer radius (range 0–2000 m) and temporal lag (range 0–96 h)
was performed.
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The second step used for clustering analysis allowed the FRP points dataset to be
partitioned into discrete subsets, based on a statistical analysis of the points’ spatial distance
and temporal frequencies. For each FRP point, a spatial buffer with a radius 1000 m
was used to identify the group of surrounding FRP points and compute group statistics.
Specifically, variables used for clustering were the number of FRP points within the spatial
buffer and the number of singular days of year that each FRP point in the group had
been sensed by satellites. For each variable, a threshold value was selected by comparing
variable values’ distributions for the different FRP points classes, in order to spatially
identify points clusters that can be considered thermal anomaly hotspots, misclassified
as fire pixels. For each points cluster, the corresponding spatial convex hull has been
generated. Later, with the aim of refining thermal anomaly hotspot borders, avoiding
more isolated points, only areas with more than 3 overlapping convex hulls were used to
generate the final hotspots polygons.

Finally, zonal statistics were performed in order to evaluate fractional land cover
within each identified hotspot.

3. Results and Discussion

Based on sensitivity analysis results, the spatial buffer radius from burned area poly-
gons used for subsequent analysis was set to 400 m, and the time lag set to 26 h (Figure 3).
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Figure 3. Spatial buffer radius and time lag sensitivity analysis plots.

The combination of the spatio-temporal information of burned area polygons and FRP
points allowed us to assign each point to a specific class, identifying which FRP points
are potentially related to the fire and which others are false positives. Results reported in
Table 2 show that about 85% of FRP points did not match any fire event.

Table 2. Statistics for FRP point class legend.

Class Description Count Percentage

FRP−S Outside burned area polygon 42,670 83.61

FRP+S−TL Inside burned area polygon, outside fire event time lag 329 0.64

FRP+S+T Inside burned area polygon, within fire event time range 2397 4.70

FRP+S+TL Inside burned area polygon, within fire event time lag 1590 3.12

FRP+SB−TL Inside burned area buffer polygon, outside fire event time lag 1590 1.17

FRP+SB+T Inside burned area buffer polygon, within fire event time range 1510 2.96

FRP+SB+TL Inside burned area buffer polygon, within fire event time lag 1939 3.80

From the spatial intersection between the burned area polygons and FRP points, with
corresponding spatial buffer and time lag, 79.01% of burned areas had an FRP point sensed
by satellites during fire events in 2022. A comparison exercise with January 2023–July 2023
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acquisitions resulted in 77.88% of corresponding points (77.67% from the same year period
in 2022).

Based on variable values distributions for the different FRP points classes, threshold
value for the number of points in a group was set to 100 and the threshold value for the
number of singular days of year was set to 10 (Figure 4). Overlay statistics of convex hulls
allowed us to finally identify 120 thermal anomaly hotspots misclassified as fire pixels.
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Identified hotspots (Figure S1), although they are a small number and correspond
to about 165 km2 (0.05% of Italian national territory), allow the removal of about 40% of
misclassified FRP points (Table 3). A comparisons exercise using 2023 data showed that
four FRP points fell within burned areas in 2023, which overlapped the thermal anomalies
hotspot of misclassified fire pixels identified from the 2022 data analysis. These points were
located in a single grassland area where a fire event occurred in the surroundings of a large
industrial area.

Table 3. Number of FRP points and statistics on removed misclassified FRP points.

Temporal Period FRP Points
Number

Number of
Misclassified FRP Points

(FRP−S FRP+S−TL FRP+SB−TL)

Number of Removed
Misclassified FRP Points

(FRP−S FRP+S−TL FRP+SB−TL)

Percentage of Removed
Misclassified FRP Points

(FRP−S FRP+S−TL FRP+SB−TL)

1 January 2022
31 December 2022 51,033 43,597 16,428 37.68

1 January 2022
31 July 2022 32,732 27,485 11,637 42.34

1 January 2023
31 July 2023 23,386 18,817 7686 40.85
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From a comparison with land cover classes (Figure 5), identified thermal anomaly
hotspots were characterized by a high cover percentage of a sealed surface. From a visual
inspection of the geolocation of the hotspots, it has been possible to observe that they are
mainly located in correspondence with industrial areas, metallurgical industries, cement
factories, warehouses, and volcanoes. Herbaceous cover had higher cover percentage
values compared to other vegetation cover classes, suggesting that trying to use exclusively
sealed surfaces to generate a mask to remove FRP pixels in anthropic areas could not
be sufficient. This likely happened because of approximated estimates of azimuth angle
and satellite positioning in the NRT product, which may generate FRP point horizontal
displacements in the order of hundreds of meters.
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The presented approach shows the capability for identifying thermal anomaly hotspots
and reducing by about 40% the number of misclassified fire pixels in order to generate
static masks for FRP products post-processing, improving the capacity of FRP products
in providing prompt and accurate information for operational services addressing the
monitoring of wildfires and their impact on the environment and ecosystems.
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