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Abstract: Zostera marina L. is a flowering plant of great ecological interest as a breeding, nursery,
and feeding place for many species. However, its spatial location implies strong competition with
human uses (boating, fishing, etc.). Regular monitoring at a very high spatial and temporal resolution
by a drone has been initiated to study the spatio-temporal and ecological dynamics of the seagrass
meadow. Three drone campaigns per year were carried out in 2021 and 2022, totaling six spatial
models. A pixel-oriented classification was performed to determine the overall envelope and to
analyze the fragmentation of the meadow, which is likely caused by anchorage. A yearly loss of
465.18 m2 was measured (envelope area) and a difference of 12.15 m2 was observed between 2021
and 2022 (fragmented envelope area).
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1. Introduction

Seagrass meadows play a key socio-ecological role as attested by the ecosystem ser-
vices they provide to society in terms of their support, supply, regulation, and cultural
services [1].

Protected by international, European, and local acts, Zostera marina L. meadows, made
up of a marine flowing plant (angiosperm), are subject to considerable human pressure
related to their geographical distribution: abrasion of anchor chains tied to recreational
boat fishing [2], trawling due to professional fishing, and trampling due to foot fishing at
low tide [3].

Regular, annual, and seasonal monitoring is required to study and explain the seagrass
meadow dynamics. Satellite monitoring techniques, such as Sentinel 2, have demon-
strated their ability to identify seagrass meadows, but at the expense of a coarse spatial
resolution [4].

Fine spatial and temporal resolution is required to study coastal habitats. Drones
provide this opportunity and are able to deliver natural color images (Red-Green-Blue;
RGB) at a centimeter scale [5].

This study is part of the European Life Impact project, which aims to assess the
disturbance/stress caused by human activity on a subtidal seagrass bed through an image
machine learning classification algorithm. The aim of this study is to monitor the surface
evolution and fragmentation of the seagrass meadow on a fine spatial and temporal scale
using a drone.
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2. Materials and Methods
2.1. Study Site

The study site was at La Varde (48◦40′59 N; 1◦59′13 W) in the commune of Saint-Malo
in Brittany on the subtidal seagrass meadow, Zostera marina L. (Figure 1).
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2.2. Data Collection

Three drone campaigns per year were carried out between 2021 and 2022. DJI’s P4
Pro V2 drone equipped with a 20 M pixel camera was used to collect 188 Red-Green-Blue
images (Figures 2 and 3). A flight plan that was created previously provided 80% front
overlapping and 70% side overlapping. The drone flew at a constant height of 50 m.
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Figure 3. Orthomosaics Red-Green-Blue of the seagrass meadow of La Varde on 1 March 2021 (A),
27 May 2021 (B), 6 September 2021 (C), 3 February 2022 (D), 16 May 2022 (E) and 11 October 2022 (F).

Six ground control points were distributed over the terrestrial part of the survey area
and geolocated using a GNSS RTK Emlid reach RS2+.

During the same timeframe as the drone surveys, underwater truths were collected
by snorkeling.

2.3. Machine Learning Algorithm

Six classes were identified: immersed seagrass, emerged/immersed macroalgae,
emerged/immersed sediment, and emerged rock (Table 1).

A machine learning algorithm, namely the probabilistic maximum likelihood,
was employed.

Table 1. Classes identified to classify the study site.

Class Name Thumbnail

Immersed seagrass
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3. Results and Discussion
3.1. Classification Results

The overall accuracy of the machine learning classification (ML) reached 73.31%,
87.82%, 90.3%, 65.83%, 73.35% and 84.03% in March, May and September 2021 and in
February, May and October 2022, respectively.

Seagrass identification is better in spring and summer, and more imprecise in winter.
These results corroborate the phenology of the seagrass meadows; they are more sparse in
winter, with increasing density in spring, and full flowering in summer [6].

3.2. Annual and Seasonal Dynamics

Results have revealed a 465.18 m2 loss in the seagrass meadow on an annual scale
between 2021 and 2022 (Table 2).

Table 2. Annual evolution of the seagrass meadow (in m2).

Year Area (m2)

2021 15,138.25
2022 14,673.07

Analysis of the results on a seasonal scale highlights a shrinkage of the meadow
during the winter period and an expansion during the summer period, i.e., a differential of
382.4 m2 between March and September 2021, and 370.64 m2 between February 2022 and
October 2022 (Figure 4). These temporal variations might be explained by the sensitivity of
the Zostera marina L. species to variations in sedimentation and turbidity, which are more
pronounced in winter due to the higher level of hydrodynamism at this period of year [7].
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Figure 4. Histogram of the seasonal variation in the envelope of the seagrass meadow at La Varde
(Saint-Malo).

3.3. Fragmentation Analysis

Seagrass meadow fragmentation was measured (fragmented envelope area) and
highlights a difference of −12.15 m2 between 2021 and 2022.

In addition, two ecological anchorages (InnoBlanc and InnoRouge) have been installed
in the seagrass zone, with the particularity of reducing the scraping of the seabed. Over the
2021–2022 study period, the results of seagrass fragmentation revealed that 10% and 7% of
fragmentation is attributed to InnoBlanc and InnoRouge respectively, and that 34% and
47% of fragmentation is driven by traditional anchorages REF01 and REF02, respectively
(Figures 5 and 6).
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Figure 6. Map of the seagrass meadow fragmentation, innovative anchor vs. traditional anchor.

Regarding fragmentation, the seagrass meadow recovery can be explained by the
protection measures adopted, such as restricting fishing on foot and setting up ecologi-
cal anchorages.

4. Conclusions

The evolution of the seagrass meadow at la Varde (Saint-Malo) has been evaluated
thanks to monitoring carried out three times a year in 2021 and 2022 by a drone equipped
with an RGB sensor. Based on the easy-to-transfer maximum likelihood algorithm, the
overall accuracy was evaluated, and the seagrass meadow envelope was extracted, repre-
senting a loss of 465.18 m2 between 2021 and 2022. Subsequently, based on this information,
the analysis of the anthropogenic impact on the meadow revealed a significant difference
between two types of anchorages (traditional and ecological) with consequences for the
fragmentation of the meadow: 36 m2 and 172 m2 in 2021, and 35 m2 and 161 m2 in 2022
between ecological and traditional anchorages, respectively.
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