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Abstract: Climate change has directly impacted Earth’s habitats, resulting in various adverse effects,
such as the desiccation of water bodies. The process of identifying such changes through field
observations is time-consuming and costly. By using remote sensing techniques, it has become easier
than ever to monitor changes in the environment. Radar satellites, unlike optics, can acquire data in
all weather conditions, regardless of the time of day. These data can provide valuable information
about the environment and surface roughness. Various methods have been proposed for detecting
changes, which can be divided into classic and deep learning methods. Classic methods only use
image information, such as radar backscatter, which cannot extract spatial information. Sentinel-1
(S1) is an Earth observation radar sensor that provides free access to SAR (Synthetic Aperture Radar)
images. This study aims to compare the performance of two classic methods, a ratio index (RI) and
Markov random field (MRF), with deep learning networks in detecting changes. As a deep network,
Inception CNN (convolutional neural network) is presented as an enhancement of the original CNN
to detect the changes. To evaluate methods, two instances of S1 images from Lake Poopó, located in
the Altiplano Mountains in Oruro Department, Bolivia, are used as a primary dataset. The results of
the comparison models were assessed using three evaluation metrics: Overall Accuracy (O.A), Missed
Error (M.E), and Kappa Coefficient (K). Based on the evaluations, the Inception CNN performed
exceptionally in all metrics, with O.A, K, and M.E rates of 97.35%, 90.28%, and 9%, respectively.
Meanwhile, the ratio index had poor performance, with 83.27%, 29.05%, and 75.03%, respectively, for
O.A, K, and M.E. These results indicated that the Inception CNN could provide better performance
in detecting changes from S1 images.

Keywords: inception; convolutional neural network; Markov random field; synthetic aperture
radar; waterbody

1. Introduction

Climate changes have significantly influenced human and animal habitats. As an
illustration of these changes, one notable example is the reduction in the widths of water
zones. Identifying changes in water zones is crucial for making informed decisions in
environmental protection and management [1]. Identification of such changes through
field observations is time-consuming and expensive. The utilization of remote sensing
techniques has significantly facilitated the monitoring of changes, surpassing the challenges
encountered in the past. Remote sensing images provide great information about the
Earth’s surfaces [2]. Unlike optical satellites, radar satellites can acquire data in all weather
conditions, day and night. These data are sensitive to surface roughness and can provide
comprehensive information about the environment. Water zones exhibit minimal surface
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roughness, particularly in the absence of strong winds, resulting in their appearance as
dark areas in radar images [3]. In remote sensing, detecting algorithms can be classified
into two groups: classical methods and deep learning models.

Classical methods rely on backscattered information, often leading to unsatisfactory
results with low accuracy. Liang et al. [4] presented a new local hierarchical regional
thresholding method for describing water using SAR images. Zhang et al. [5] introduced
a novel approach to assessing flood extent using multi-temporal Sentinel-1 data. An
automatic thresholding procedure generates initial land and water classification. Then, a
fuzzy logic-based method refines the initial classification. Experiments demonstrate that
using different polarizations as image bands cannot provide better results. To tackle this
issue, incorporating contextual information enhances the accuracy and reliability of the
classification outcomes [6]. Wang et al. [7] combined the threshold segmentation method
with Markov random fields (MRF) and integrated simulated annealing (SA) into the process
of image noise reduction. As a result, a water extraction method demonstrates high accuracy
in classification. In another study, Song et al. [8] introduced a method for selecting features
from SAR images, which relied on the correlation of sparse coefficients. The aim was to
enhance the precision of change detection (CD). However, these conventional methods still
need to be improved in terms of extracting spatial information properly.

Deep learning models have the advantage of effectively extracting spectral informa-
tion without being constrained by the limitations of classical approaches. In their paper,
Aghdami-Nia et al. [9] developed an automatic coastline extraction framework by modify-
ing the Standard U-Net model to enhance sea-land segmentation. In another study, Lin
et al. [10] proposed a novel approach utilizing a Fully Convolutional Neural Network to
detect water in Sentinel-1 SAR images accurately. The overall detection performance is
enhanced by incorporating the spatial information of neighboring pixels and analyzing the
corresponding pixel intensities.

The performance of classical methods and deep networks in CD using Sentinel-1
images has been investigated to determine which approach yields superior results. In
this study, the Ratio Index (RI) is employed as a fundamental classical method, while
the MRF is utilized as an enhanced version of this method. In addition, an improved
form of CNN called Inception CNN is introduced as a deep network to detect waterbody
changes effectively. This network can consider the different scales of image objects within
the network.

The structure of the current investigation is as follows: The second section introduces
the research methodology. Section 3 presents the experimental result. Finally, in Section 4,
we summarize the conclusions.

2. Methodology

In this section, we present the three mentioned CD methods. An overview of the
workflow is shown in Figure 1.
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Figure 1. The flowchart of generating change results (CD stands for Change Detection).

Figure 1 illustrates the stepwise process of CD. In general, the research method has
four steps. Initially, the images undergo preprocessing, including geocoding, radiometric
calibration, and filtering using the Lee Sigma filter. Afterward, the preprocessed images
are subjected to three methods to produce the desired difference image. The final step
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is to evaluate the change maps created. In the following sections, these methods will be
introduced in detail.

2.1. Ratio Index

If we let It1 and It2 represent the SAR intensity images in t1 and t2 times, the RI, which
looks like a log ratio index, can be defined as follows:

RI = log ((It1 + eps)/(It2 + eps)) (1)

where eps represents a minimal decimal value, and refers to a small constant value known
as “epsilon” or “small parameter”. This parameter is employed to avoid computational
issues arising from division by zero. The equation’s robustness and results are improved,
especially when the values of It1 and It2 tend towards zero. This study sets eps to 5, and the
Otsu thresholding technique is employed [11] to generate the change map.

2.2. MRF

The MRF algorithm is an influential image-processing technique employed to model
and analyze intricate structures within images. Using probability theory, the MRF can
estimate the likelihood of a particular state occurring in each pixel. Imagine receiving a
change index image representing a collection of N pixel vectors X = {x1, x2, . . . , xN}.
The labels of the difference image are denoted by L = {l1, l2}. The maximum a posteriori
(MAP) estimation determines the pixels’ labels. For a given pixel x, the formulation can be
described as follows [12]:

L∗ = argmax{P(L)P(p|L)} (2)

where P(x|c) represents the conditional probability distribution within the Gaussian distri-
bution model, and P(c) denotes the prior probability distribution of the label layer. Based
on the Bayesian inference principle, one can achieve the maximum value in the poste-
rior probability by minimizing the total energy function. The detailed investigations in
reference [12] can be referred to for further details.

2.3. Inception CNN

Deep learning models such as CNNs are applied to image recognition, classification,
and CD. These networks enable accurate predictions or classifications by automatically
learning and extracting relevant features from input images. The distinguishing character-
istic of CNNs is the capability to execute convolution operations. Convolution involves
sliding a small kernel over the input image to extract spatial information. By getting deeper
layers, CNNs can generate complex features. The process and operations carried out in this
layer can be described as follows:

zk
l = [

ml−1

∑
n=1

wk.n
l

⊗
xn

l−1

]
+ bk

l (3)

where zk
l denotes the output feature vector of layer l. ml represents the number of convolu-

tional filters in layer l of the network and xn
l−1 corresponds to the nth input vector of layer

l. bk
l represents the bias vector and wk.n

l shows the filter connecting the nth feature map in
the previous layer (l−1) to the kth feature map in layer l. The

⊗
denotes the convolution

operator [13].
Using a fixed kernel size in the initial layers of CNNs can lead to disregarding the

varying scale of objects in an image. To address this, the Inception module has been applied
in this study. The Inception module aims to capture features at multiple spatial scales
using parallel convolutional operations of different filter sizes within the same layer. This
allows the model to learn and combine diverse features simultaneously. The Inception
module simultaneously applies max pooling and three convolutions to the input data. All
generated feature maps are merged to serve as inputs for the next layer.
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The proposed deep network receives the stacked bi-temporal SAR VV polarization
images as input and produces the change map in the output layer. Patch-based processing
is the fundamental approach to utilizing image data in CNNs. Therefore, the input image
is divided into dimensions of 25 × 25 × 2 and used as input for the network. The numbers
of filters are arranged in the following order: [16, 32, 64, 128, 256], and the kernel size is set
as 3 × 3. The learning rate and the cost function are set to 0.001 and Adam, respectively.
The network architecture, as shown in Figure 2, illustrates the desired configuration.
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3. Experimental Result
3.1. Study Area and Dataset

For comparing the performance of classical methods and the proposed deep network,
two Sentinel-1 SAR images were acquired from Lake Poopó, which is located in the Oruro
Department of Bolivia in South America, with a geographical longitude of 67◦02′50.4′′ W
and a geographical latitude of 18◦49′26.84′′ S, taken in the years 9 July 2018 and 15 August
2020. Figure 3 visually illustrates the location of the studied area.
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Figure 3. The geographical location of the study area in South America, specifically Bolivia, along
with the employed SAR images. (a) VV polarization image acquired in 2018, and (b) VV polarization
image acquired in 2020.
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3.2. Result Analysis

The visual representation in Figure 4 showcases the outcomes of RI, MRF, and Incep-
tion CNN methods. The ground truth changes have been obtained experimentally and
manually by visually examining the changes in the study area. The RI, which divides
the pixels of the second image by the first image to obtain changes, does not provide
satisfactory results. The poor performance of this method depends on the use of only the
polarization information and thresholding output.
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The MRF model can consider the pixel neighborhood that improves the detection
outcomes. The MRF algorithm improved the detection results by considering the pixels’
neighborhood. However, finding and selecting an appropriate number of iterations and
window sizes can be time-consuming and challenging. On the other hand, Inception CNN
can extract deep spatial features from the image pixels. In addition, the trained network
has a high level of automation compared to classical methods. This results in a notable
enhancement in CD performance.

To conduct a comprehensive and numerical assessment of the change results, the
following precision evaluation indices were utilized: Overall Accuracy (O.A), Missed Error
(M.E), and Kappa Coefficient (KC). Based on the evaluation indices presented in Table 1, the
accuracy of the proposed deep network in detecting waterbody changes has been 97.35%,
which is the highest OA accuracy. In contrast, the RI has exhibited the worst performance
at 83.27%.

Table 1. Accuracy assessment of three methods in generating a water zone change map.

Method OA (%) KC (%) ME (%)

RI 83.27 29.05 75.03
MRF 95.07 84.85 12.53

Inception CNN 97.35 90.28 9

4. Conclusions

The advancement of remote sensing techniques has made it easier to monitor envi-
ronmental changes, such as the depletion of water zones. This progress has significantly
enhanced our ability to understand and address ecological transformations. This study
compares the performance of classical methods and deep learning approaches in identifying
water zone changes from Sentinel-1 images. As examples of classical methods, the research
employed RI and MRF. Moreover, Inception CNN was utilized as an alternative to deep
learning networks to enhance the CD performance. The MRF algorithm improved detection
results by taking into account pixel neighborhoods. However, the time-consuming task lies
in determining suitable iterations and window sizes. On the other hand, Inception CNN
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integrates a multi-scale approach directly within its architecture, enabling the extraction
of reliable spatial features. Experimental findings validate the efficacy of incorporating
these features for CD. Contrary to the common belief that simple features like water can
be swiftly identified using simple algorithms, this study revealed the limitations of such
a perspective. The results underscore the indispensability of leveraging deep learning
networks to attain significantly improved accuracy levels.

We will develop a multi-source architecture based on CNN, utilizing Sentinel-1 and -2
images to detect changes in future work.
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