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Abstract: Crop growth and yield often vary, not only between farms, but also at the sub-field level.
These variations can stem from sub-field heterogeneities of soil and plant biophysical parameters.
This means that soil and plant biophysical data can be used to predict intra-field crop growth and
yield variability. This study used soil properties and vegetation indices (VIs) derived from unmanned
aerial vehicle (UAV) imagery as predictor variables, and monthly measurements of crop height (cm)
as a response variable to predict crop growth rate in two winter wheat farms in South Africa. These
datasets were analyzed using two regression models including Gaussian process regression (GPR)
and ensemble learning that uses least-squares boosting (LSboost) and bagging (Bag) in MATLAB.
The results showed that soil properties, particularly Ca, Mg, K and clay, were more important than
VIs in predicting actual crop growth. Furthermore, GPR (R2 = 0.68 to 0.75, RMSE = 15.85 to 18.38 cm)
performed slightly better than LSboost-Bag-ER (R2 = 0.64 to 0.70 and RMSE = 17.26 to 19.34 cm) in
predicting crop growth. These findings are useful for crop agronomic management.

Keywords: wheat; UAV; vegetation indices; soil properties; Gaussian process regression; least-squares
boosting and bagging regression

1. Introduction

Wheat is one of the most widely grown cereal crops around the world [1]. Approx-
imately 36% of the world human population consume wheat products [2]. Due to the
inevitable human population growth, there is a rapid increase in demand for cereal pro-
duction and supply. Achieving food security and meeting the growing human population
demands requires improvements in crop yields. Crop yield-related factors such as soils and
plant biophysical parameters are spatially heterogeneous, and their complex interactions
greatly affect crop growth rate and yields [3]. This heterogeneity can occur at an intra-field
level; hence, it is important to investigate and understand the influence of soil properties
and plant biophysical parameters on crop development and crop yields.

Soil physical and chemical properties including texture, phosphorus (P), nitrogen (N),
potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), and pH influence crop growth.
The essential soil physio-chemical properties for crops occur in low concentration levels
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within arid and semi-arid environments, which has a negative impact on crop growth [4].
Other factors that impede crop development include droughts, frost, waterlogging, salinity,
high temperatures, diseases, weeds, and pests infestation [4].

Vegetation indices (VIs) are good indicators of plant health, and they can be used to
monitor intra-field crop stress [4]. UAVs provide high-resolution remote sensing images
that can be used for the intra-field monitoring of crop fields. In addition to UAV-derived
high-resolution imagery, machine learning algorithms have been used for estimating the
biophysical parameters of crops [5]. This study explores kernel-based GPR and non-kernel-
based LSboost-Bag-ER machine learning for modelling wheat growth variability from UAV
and soil property data fusion. The aim of this study was to investigate the contribution of
soil properties and UAV data to improve the modelling accuracy of intra-field crop growth
variability for winter wheat. The following objectives helped to achieve the overall aim
of the study: (1) investigate and understand the contribution of soil properties and VIs
in the modelling of crop height of winter wheat in a dryland environment; (2) assess the
prediction accuracy of a VI-only scenario, and a scenario involving the combination of
Vis and soil properties, (3) compare the performances off the GPR and LSboost-Bag-ER
algorithms in the modelling of intra-field wheat growth variability.

2. Materials and Methods
2.1. Study Area

The study was conducted in two winter wheat farms (Figure 1, farms A and B) that
cover about 30 and 17 hectares, respectively. The farms are in Clarens, which is in the
Thabo Mofutsanyane District Municipality, Free State Province, South Africa. The fertilizer
application rate was 100 kg/ha of Cireun fertilizer with the ratio N:55:P:15:K:8, and the
wheat cultivar was PAN: 3161. The PAN: 3161 is a winter wheat cultivar suitable for
dryland production areas of the Free State Province.
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Figure 1. An overview of the Clarens wheat farms, and their location within the borders of Free State
Province and South Africa.



Environ. Sci. Proc. 2024, 29, 24 3 of 6

2.2. Methodology

Figure 2 is a summary of the methodology used to investigate the performances of
VIs and soil properties in the prediction of crop growth variability. The soil data were
used to produce interpolated and continuous distribution maps. Additionally, the UAV
data was used to compute VI distribution maps. Both the soil and VI datasets were used
as input variables for predicting crop height (response variable). Datasets were split into
80% training and 20% testing for GRP and LSboost-Bag-ER models. The training and
testing included a VI experiment scenario and an integration of VIs and soil properties.
The accuracies of the models were evaluated using mean absolute error (MAE), root mean
square error (RMSE), and coefficient of determination (R2).
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2.3. UAV Camera Properties and Vegetation Indices Used in This Study

Table 1 presents the spectral band information of MicaSense RedEdge-MX multi-
spectral sensor with wavelength (475–840nm) and bandwidth (20–40 nm). Table 2 sum-
marizes the VIs generated using UAV imagery bands. Figure 3a shows a multi-rotor
DJI-Matrice 600 Pro UAV with a MicaSense RedEdge-MX multispectral sensor. Figure 3b
depicts calibration reflectance panel (CRP) with serial number: RP04-1918107-OB and
constant laboratory CRP values ranging from 0.529 to 0.536, respectively.

Table 1. Properties of UAV MicaSense RedEdge-MX series sensor.

Bands Center Wavelength (nm) Band Width CRP

Blue 475 20 0.536
Green 560 20 0.536
Red 668 10 0.534

RedEdge 717 10 0.529
Near Infrared (NIR) 840 40 0.533
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Table 2. List of vegetation indices used in this study.

Vegetation Indices Formula References

Normalized Difference RedEdge Index (RENDI) NIR − Red Edge
NIR + Red Edge

[3,4]

Normalized Difference VegetationIndex (NDVI) NIR − Red
NIR + Red [3,4]

Normalized Difference Index (NDI) RedEdge − Red
RedEdge + Red

[3,4]

Ratio Vegetation Index 2 (RVI2) Red
RedEdge [4]
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RP04-1918107-OB (b).

3. Results
3.1. Correlation Matrix

Correlation analyses showed that soil properties, in particular Ca, Mg, K and clay,
were more important than VIs in representing actual crop growth (Figures 4 and 5). In
addition, there was a high intra-field variability of soil properties in farm A and farm B. For
instance, farm B Mg (r = 0.7), K (r = 0.61), and clay (r = 0.49) had a higher correlation with
actual crop height than farm A Mg (r = 0.34), k (r = 0.33), and clay (r = 0.18), respectively.
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3.2. Model Evaluation

The performance statistics of GPR and LSboost-Bag-ER are summarized in Table 3.
The GPR (R2 = 0.68 to 0.75, RMSE = 15.85 to 18.38 cm) model performed better than LSboost-
Bag-ER (R2 = 0.64 to 0.70 and RMSE = 17.26 to 19.34 cm) for both farms. Furthermore, GPR
achieved the highest accuracy when soil properties and UAV-derived VI were combined.
The standalone use of VI generated the lowest modelling accuracies.

Table 3. GPR and LSboost-Bag-ER model performance.

Wheat Farms Predictor Variables Model R2 MAE RMSE

Farm A

VIs GPR 0.72 12.11 16.63
VIs and soil properties GPR 0.75 11.43 15.85

VIs LSboost-Bag-ER 0.70 12.51 17.41
VIs and soil properties LSboost-Bag-ER 0.70 12.65 17.26

Farm B

VIs GPR 0.67 12.38 18.63
VIs and soil properties GPR 0.68 12.77 18.38

VIs LSboost-Bag-ER 0.64 12.66 19.35
VIs and soil properties LSboost-Bag-ER 0.64 13.02 19.34

4. Conclusions

This study investigated the performances of in-situ soil data and monthly UAV data
in predicting intra-field crop growth variability in a winter wheat farm. Findings revealed
that the standalone use of VIs, as well as the combined use of VIs and soil properties can
accurately predict wheat height which was used as a proxy for crop growth. The key
findings from this study are associated with the efficiency of the data fusion approach to
enhance modelling precision and provide useful information about the influence of soil
properties on the prediction of crop height growth. This study will benefit crop agronomic
management and increase potential yields.
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