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Abstract: Land surface temperature (LST) plays a pivotal role in the dynamic exchange of energy
between the Earth’s surface and the atmosphere. This research centers on the assessment of LST
from satellite data acquired by the Joint Polar-orbiting Satellite System (JPSS), specifically JPSS-
2/NOAA-21, employing an innovative split-window algorithm (SWA). Atmospheric water vapor
content (WVC) and surface emissivity are the two main input variables in the split-window technique.
Therefore, the moderate resolution transmittance code, version 4.0 (MODTRAN 4.0), was used to
simulate WVC and atmospheric transmittance. The performance of the SWA was rigorously assessed
against standard atmospheric conditions, revealing its capacity to achieve an LST retrieval accuracy
of 1.4 Kelvin (K), even in the presence of various errors. Moreover, the LST retrieval algorithm was
validated using ground truth data sets from two Australian sites, and the RMSE value was 1.71 K.
The achieved results demonstrate the algorithm’s capability to provide accurate LST estimation for
NOAA-21 satellite data.
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1. Introduction

Land surface temperature (LST) is a necessary parameter with a profound impact
on the physical processes of land surfaces, influencing a range of phenomena from local
to global scales. It drives the outgoing longwave radiation and turbulent heat fluxes
at the interface between the Earth’s surface and the atmosphere. Consequently, LST is
routinely applied in various fields such as evapotranspiration [1–4], the estimation of
soil moisture [5–8], and environmental studies [9–12]. Furthermore, the International
Geosphere and Biosphere Program (IGBP) [13] considers LST as one of the high-priority
parameters.

According to one of the sustainable development goals (SDGs) promoted by the
United Nations, the increase in the earth’s surface temperature is regarded as a major
phenomenon [14]. Hence, it is crucial to monitor this dilemma in order to evaluate the
rapid variations in LST spatially and temporally in the globe for vast geographic areas. The
only way to measure LST on a worldwide scale is through remote sensing satellite data,
which makes this conceivable [15].

The estimation of LSTs from TIR satellite data requires two primary parameters: emis-
sivity and atmospheric corrections [16,17]. Over the course of several decades, researchers
have dedicated their efforts to refining algorithms for deriving LST from TIR remote sensing
data, using a range of approaches to deal with emissivity and atmospheric effects. Among
these algorithms, the split-window (SW) technique stands out, as it directly mitigates atmo-
spheric distortions by leveraging the brightness temperature (BT) from two adjacent TIR
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channels at the top of the atmosphere. This method is frequently employed for producing
operational LST products [18–21]

The satellite NOAA-21, designated Joint Polar Satellite System JPSS-2 prior to launch [22],
was launched on 10 November 2022 [22] by the National Oceanic and Atmospheric Admin-
istration (NOAA). Its primary objective is to furnish comprehensive global environmental
data, encompassing insights into weather patterns, atmospheric dynamics, and various
environmental indicators. A scanning radiometer sensor onboard JPSS-2/NOAA-21 called
VIIRS gathers visible and infrared imagery, as well as radiometric measurements of the
land, atmosphere, and oceans. Interestingly, two of the 22 spectral bands on VIIRS, which
range in wavelength from 0.4 to 12.5 m, are thermal infrared channels that will be used for
LST retrieval.

In this study, an SW algorithm was developed for JPSS-2; validation and comparison
with ground-based measurements verified the algorithm’s efficacy in providing accurate
and reliable land surface temperature estimates over diverse landscapes and climatic
conditions.

2. Methodology
2.1. Split-Window Algorithm for LST Retrieval

The SW technique, which is based on the differential absorption in two neighboring
infrared channels, was initially developed for calculating sea surface temperature (SST)
from satellite observations. Then, it was expanded to estimating land surface temperature.
In this study, emissivity and water vapor effects have been taken into consideration by
using the SW-LST algorithm structure described by Sobrino and Raissouni [23] to retrieve
LST from VIIRS NOAA-21 data. This algorithm is written as follows:

TS = T15 + c1(T15 − T16) + c2(T15 − T16)
2 + c0 + (c3 + c4W)(1 − ε) + (c5 + c6W)∆ε (1)

where TS is the earth surface temperature (in K), T15 and T16 are the at-sensor brightness
temperatures (in K) of VIIRS NOAA-21, ε = (ε15 + ε16)/2 presents the mean effective
emissivity, ∆ε = (ε15 − ε16) is the difference between the emissivities of VIIRS channels M15
and M16, W (g·cm−2) is the total atmospheric water vapor column, and ck (k = 0, 1 . . . 6)
are the SW algorithm coefficients.

2.2. VIIRS Sensor Characteristics

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a whiskbroom radiometer
designed for use onboard S-NPP, NOAA-20, NOAA-21, and future JPSS series satellites.
The characteristics of the thermal infrared M15 and M16 bands that have been used in the
SWA for LST retrieval are presented in Table 1 and Figure 1.

Table 1. The characteristics of the JPSS-2/NOAA-21 VIIRS M15 and M16 bands.

JPSS-VIIRS Band Wavelength (µm) Bandwidth (µm) Spatial Resolution (m)

M15 10.763 10.26–11.26 750
M16 12.013 11.54–12.49 750
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Figure 1. Relative spectral response function of JPSS-2/NOAA-21 VIIRS M15 and M16 bands. 
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and M16 e(ε15) = e(ε16) are 0.01 or 0.005 [26], and the atmospheric water vapor content can 
be considered as e(W) = 0.5 g·cm−2 [27]. 

  

Figure 1. Relative spectral response function of JPSS-2/NOAA-21 VIIRS M15 and M16 bands.

2.3. MODTRAN 4.0 Simulations

In order to determine the atmospheric parameters (downwelling and upwelling at-
mospheric radiances and atmospheric transmittance), the radiative transfer model (RTM)
MODTRAN was used. The atmospheric profiles were extracted from the Thermodynamic
Initial Guess Retrieval (TIGR) database [24]. To better characterize surface variations, the
calculations were performed over a vast gradient of temperatures, T − 5, T, T + 5, T + 10,
and T + 20 (taking into account the fact that T is the initial boundary layer temperature
of the profiles). A total of 100 emissivities of various types of surfaces were taken from
the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) spectral [25].
Furthermore, five different view angles (0◦, 10◦, 20◦, 30◦ and 40◦) and 54 atmospheric water
vapor (W) values at nadir (varying between 0.15 g·cm−2 and 4.65 g·cm−2) were used in
the simulation in order to consider the viewing angle and atmospheric water vapor effects.
Therefore, 135,000 simulation data were composed.

2.4. Numerical Coefficients and Sensitivity Analysis

We conducted a sensitivity analysis based on the error theory to assess the performance
of the SW algorithm and the impact of the possible errors in LST estimation. The sensitivity
analysis is given by the following equation:

δTotal(TS) =
√

δ2
alg + δ2

NE∆T + δ2
ε + δ2

W (2)

where δalg is the algorithm’s standard deviation, and δNE∆T, δW, and δε are the impacts on
total error due to uncertainties of sensor temperatures, atmospheric water vapor, and land
surface emissivity, respectively. δNE∆T, δW, and δε are expressed by the following equations:

δNE∆T =

√(
∂TS
∂T15

)
e2(T15) +

(
∂TS
∂T16

)
e2(T16) (3)

δW =

(
∂TS
∂W

)
e(W) (4)

δε =

√(
∂TS
∂T15

)
e2(ε15) +

(
∂TS
∂T16

)
e2(ε16) (5)

Thus, we assume that both the brightness temperature errors of the M15 and M16
channels e(T15) = e(T16) = 0.05 K or 0.01 K, the emissivity errors in the VIIRS channels M15
and M16 e(ε15) = e(ε16) are 0.01 or 0.005 [26], and the atmospheric water vapor content can
be considered as e(W) = 0.5 g·cm−2 [27].
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3. Results and Discussion
3.1. Sensitivity Analysis

The SW coefficients (C0 to C6) of the developed SWA for LST estimation from the
NOAA-21 satellite are presented in Table 2.

Table 2. Split-window algorithm coefficients (C0 to C6) for JPSS-2/NOAA-21.

Satellite λieff λjeff C0 C1 C2 C3 C4 C5 C6

JPSS-2/NOAA-21 10.763 12.013 −0.16 1.330 0.230 58.1 −0.57 −112 8.84

The results of the sensitivity analysis are shown in Table 3. Emissivity uncertainty
is about 1.26 K and 0.63 K for e(ε15) = e(ε16) = 1% and e(ε15) = e(ε16) = 0.5%, successively.
The total LST uncertainty, δTotal(Ts), is about 1.67 K, considering e(ε15) = e(ε16) = 1%, and it is
less than 1.26 K for e(ε15) = e(ε16) = 0.5%. Therefore, the uncertainty in emissivity has an
insignificant effect on the LST estimation. Thus, an accurate knowledge of the surface is
required.

Table 3. The sensitivity analysis of the parameters influencing JPSS-2/NOAA-21 LST estimation.

Satellite λeff
(µm)

λeff
(µm) R δalg

(K)
δNE∆T

(K)
δε

(1%)
δε

(0.5%)
δW
(K)

δTotal(Ts)
(1%)

δTotal(Ts)
(0.5%)

JPSS-2/NOAA-21 10.654 11.934 0.93 1.07 0.22 1.26 0.63 0.02 1.67 1.26

3.2. LST Validation

The accuracy of the proposed SWA for LST retrieval from VIIRS/NOAA-21 is also
evaluated using ground truth data sets from the Hay and Walpeup sites [28].

Figure 2 presents the LST retrieved from the NOAA-21 satellite using the developed
split-window algorithm and the in situ LST ground data from two Australian sites (Hay and
Walpeup), as well as the correlation coefficient R, bias, standard deviation differences (SDV),
and root-mean-square error (RMSE). The results show that the split-window algorithm
onboard JPSS-2/NOAA-21 can estimate LST with a bias of 0.97 K, a standard deviation
difference of 1.31 K, and an RMSE of less than 1.71 K for the Hay and Walpeup site
measurements, confirming the algorithm’s accuracy in LST retrieval.
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Figure 2. Validation of NOAA-21 split-window algorithm using the ground truth data set of [28].

4. Conclusions

An alternate split-window technique for LST estimation from NOAA-21 satellite data
was proposed in this study. The algorithm coefficients were obtained from the simulation
dataset of atmospheric profiles. To assess the performance of the SW-LST method, a
sensitivity analysis was performed.
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The LST’s accuracy derived was validated using ground truth data sets from two
Australian sites. The recovered LST shows a good fitting with the in situ LST at both sites.
The bias and RMSE are, respectively, 0.97 and 1.71 K. This indicates that this algorithm
offers an alternate and feasible method for retrieving LST using NOAA-21 satellite data.
Nonetheless, more LST validation under various atmospheric conditions and surface types
is required to adequately evaluate the efficacy of this approach.
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