
Citation: Fathi, M.; Shah-Hosseini, R.;

Moghimi, A. Enhancing Corn Yield

Prediction in Iowa: A

Concatenate-Based 2D-CNN-BILSTM

Model with Integration of

Sentinel-1/2 and SoilGRIDs Data.

Environ. Sci. Proc. 2024, 29, 2.

http://doi.org/10.3390/

ECRS2023-15852

Academic Editor: Riccardo

Buccolieri

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Enhancing Corn Yield Prediction in Iowa: A Concatenate-Based
2D-CNN-BILSTM Model with Integration of Sentinel-1/2 and
SoilGRIDs Data †

Mahdiyeh Fathi 1 , Reza Shah-Hosseini 1,* and Armin Moghimi 2

1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran,
Tehran 14399-57131, Iran; mahdiyeh.fathi@ut.ac.ir

2 Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz University Hannover,
Nienburger Str. 4, 30167 Hannover, Germany; moghimi@lufi.uni-hannover.de

* Correspondence: rshahosseini@ut.ac.ir
† Presented at the 5th International Electronic Conference on Remote Sensing, 7–21 November 2023;

Available online: https://ecrs2023.sciforum.net/.

Abstract: Ensuring food security in precision agriculture demands early prediction of corn yield in
the USA at international, regional, and local levels. Accurate corn yield estimation can play a crucial
role in averting famine by offering insights into food availability during the growing season. To
address this, we propose a Concatenate-based 2D-CNN-BILSTM model that integrates Sentinel-1,
Sentinel-2, and Soil GRIDS (global gridded soil information) data for corn yield estimation in Iowa
State from 2018 to 2021. This approach utilizes Sentinel-2 features, including spectral bands (Blue,
Green, Red, Red Edge 1/2/3, NIR, n-NIR, and SWIR 1/2), and vegetation indices (NDVI, LSWI, DVI,
RVI, WDRVI, SAVI, VARIGREEN, and GNDVI), alongside Sentinel 1 features (VV, VH, difference VV,
and VH, and RVI), and soil data (Silt, Clay, Sand, CEC, and pH) as initial inputs. To extract high-level
features from this data each month, a dedicated 2D-CNN was designed. This 2D-CNN concatenates
high-level features from the previous month with low-level features of the subsequent month, serving
as input features for the model. Additionally, to incorporate single-time soil data features, another
2D-CNN was implemented. Finally, high-level features from soil, Sentinel-1, and Sentinel-2 data were
concatenated and fed into a BILSTM layer for accurate corn yield prediction. Comparative analysis
against random forest (RF), Concatenate-based 2D-CNN, and 2D-CNN models, using metrics like
RMSE, MAE, MAPE, and the Index of Agreement, revealed the superiority of our model. It achieved
an Index of Agreement of 84.67% with an RMSE of 0.698 t/ha. The Concatenate-based 2D-CNN
model also performed well with an RMSE of 0.799 t/ha and an Index of Agreement of 72.71%. The
2D-CNN model followed closely with an RMSE of 0.834 t/ha and an Index of Agreement of 69.90%.
In contrast, the RF model lagged with an RMSE of 1.073 t/ha and an Index of Agreement of 69.60%.
Integration of Sentinel 1–2 and Soil-GRIDs data with the Concatenate-based 2D-CNN-BILSTM model
significantly improved accuracy. Combining soil data with Sentinel 1–2 features reduced the RMSE
by 16 kg and increased the Index of Agreement by 2.59%. This study highlighted the potential
of advanced machine learning (ML)/deep learning (DL) models in achieving precise and reliable
predictions, which could support sustainable agricultural practices and food-security initiatives.

Keywords: corn yield prediction; 2D-CNN-BILSTM; Sentinel-1/2; soil-Grids data

1. Introduction

Corn is a highly significant crop in the United States (U.S.) due to its abundance of
protein, oil, and its high water consumption [1,2]. As the largest corn producer globally, the
U.S. recorded a corn production of 15.1 billion bushels in 2021 (https://www.nass.usda.
gov/Newsroom/2022/01-12-2022.php, accessed on 12 January 2022).
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With the rapid increase in population, the use of Remote Sensing (RS) technology
in agriculture has become of paramount economic importance. By using multisensor RS
images and soil and weather data, researchers can accurately predict crop yield. Optical RS
data, obtained from satellites such as Sentinel-2 and Landsat-8, provide high/moderate-
resolution imagery in visible and near-infrared bands. This enables precise assessment
of vegetation health through indices like NDVI, while also offering detailed information
on land cover for accurate identification of crop types, including corn [3]. Additionally,
optical RS data allow the monitoring of phenological changes, facilitating the tracking of
crop growth stages and overall health [4]. On the other hand, SAR (Synthetic Aperture
Radar) images facilitate the structural analysis of vegetation by using different polarizations
and microwave frequencies. Additionally, SAR signals penetrates cloud cover, provid-
ing valuable insights into the physical structure of crops [5]. The applications of RS in
agriculture are diverse and encompass product and irrigation management, predicting
crop performance, disease and fertilizer management, as well as crop classification, among
other factors [3]. However, the effectiveness of these applications hinges on various factors,
including temperature, rainfall, growth indicators, soil type, genotype structure, man-
agement practices, and nutrient elements [6]. Additionally, radiometric distortions have
the potential to adversely affect the spectral bands of optical RS images [7]. To mitigate
these challenges and enhance the accuracy of yield predictions, a multi-faceted approach is
recommended. This involves integrating RS data with advanced machine learning (ML)
models and employing data fusion techniques.

For example, Ma et al. suggested using the Bayesian neural network to estimate
corn yield using MODIS images, GLDAS dataset, PRISM dataset, and SSURGO at the
county level in the United States between 2005 and 2019 [8]. Desloires et al. introduced
a stack of machine learning techniques, namely RF, SVR, XG-Boost, and MLP, to predict
corn yield based on Sentinel-2 images captured at field scale in Iowa and Nebraska from
2017 to 2021 [9]. Khaki et al. proposed the Deep-Corn network for enhancing crop yield
at the field scale by counting corn kernels, which used a shortened VGG-16 for feature
extraction at different scales [10]. Shah-Hosseini et al. developed the Stacked LASSO
method for predicting corn yield in Illinois, Indiana, and Iowa between 2000 and 2018 using
observed corn yield, management data, plant population, planting date, and environmental
features (weather and soil) [11]. Shah-Hosseini et al. also proposed a new CNN-DNN
method for estimating corn using historical management, environmental, and yield data
in the United States from 1980 to 2019 [12]. San et al. suggested using the CNN-RNN
method for predicting corn yield using MODIS images, weather data, and soil features
to extract multi-level spatiotemporal features at the county level from 2013 to 2016 [13].
Dhaliwal et al. proposed the Random Forest model for predicting corn yield using crop
management data, weather data, and field-level data in the United States between 1992
and 2018 [14]. Shah-Hosseini et al. suggested combining the APSIM model with machine
learning methods using plant population, planting date, and weather data for estimating
corn yield in the United States between 1984 and 2018 [15].

Recent studies have demonstrated satisfactory outcomes in estimating crop yield [11,16–19].
However, they have given less consideration to the combination of radar and optical images,
along with soil data for corn yield prediction. Moreover, most of the studies used CNN-LSTM
for feature extraction, and they have not fully explored the benefits of combining high-level
features from the previous month with low-level features from the subsequent month to improve
corn yield [20]. Also, they have mostly employed Long Short-Term Memory (LSTM) networks
for yield prediction, overlooking the potential of Bidirectional-LSTM (Bi-LSTM) networks which
can integrate both past and future information to enhance corn yield forecasting [21].

In response to these limitations, we introduce a novel Concatenate-based 2D-CNN-
BiLSTM model for corn yield estimation at the county level in Iowa. Leveraging Sentinel-1
and Sentinel-2 images along with Soil GRIDS, which provide global gridded soil informa-
tion, our model aims to enhance performance during the growing season. This model offers
an innovative approach to feature integration, effectively capturing short-term fluctuations
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and long-term trends in corn growth patterns. Additionally, the incorporation of Soil
GRIDS data provides crucial insights into soil characteristics, augmenting the model’s
capacity to account for diverse soil conditions.

2. Materials and Methods
2.1. Study Area

The study area was located in the state of Iowa in the U.S. (see Figure 1). The research
was conducted on corn during the years 2018 to 2021. Corn is planted in Iowa when the
soil is warm enough for the seeds to grow, but not too early in order to avoid frost damage.
The timing varies depending on the location, with southern counties planting as early as
April and northern counties waiting until several weeks later. Farmers in Iowa typically
begin harvesting corn in mid-September, with the majority of the harvest taking place
in October. However, in cooler years, the harvest may not take place until November
(https://www.iowacorn.org/education/faqs, accessed on 15 January 2022).
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Figure 1. Study area.

2.2. Dataset

A variety of datasets were used to forecast corn yield from 2018 to 2021, including
Sentinel-1 SAR (COPERNICUS/S1_GRD), Sentinel-2 SR (S2_SR_HARMONIZED), Soil-
Grids (https://www.isric.org/explore/soilgrids, accessed on 4 May 2020), USDA Yield
(https://quickstats.nass.usda.gov/, accessed on 15 January 2021), Crop Land Data Layer
(CDL), and County Boundaries data [22,23]. Sentinel-1 and -2 were downloaded from the
Google Earth Engine (GEE) cloud computing platform [24]. Table 1 displays the statistical
characteristics of yield observations for both the training and test datasets.

Table 1. Sample plot yield statistics for year in study area.

Type Year Number of
Samples

Min
(Ton Ha−1)

Max
(Ton Ha−1)

Mean
(Ton Ha−1)

Std
(Ton Ha−1)

Train 2018 93 9.38 14.18 12.13 1.25

Train 2019 88 9.50 14.73 12.19 1.06

Train 2020 95 5.54 12.99 10.92 1.17

Test 2021 84 9.57 14.49 12.57 1.05

2.3. Methodology

The aim of the proposed method is to improve the corn yields prediction accuracy
at the county level in Iowa during the growing season prior to the harvest during the
month of August. As displayed in Figure 2, our proposed method includes two main

https://www.iowacorn.org/education/faqs
https://www.isric.org/explore/soilgrids
https://quickstats.nass.usda.gov/
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steps: 1—extracting features derived from Sentinel-1, Sentinel-2, and Soil GRIDS in the
GEE system, and 2—using the proposed Concatenate-based 2D-CNN-BiLSTM model to
predict corn yield. The details of each step have been briefly explained in the following
subsections.
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2.3.1. Feature Selection

As discussed before, various features derived from Sentinel1\2 and Soil GRIDS were
used to predict corn yield in our study area. Informative spectral bands of Sentinel-2 images
(i.e., Blue, Green, Red, Red Edge 1/2/3, NIR, n-NIR, and SWIR 1/2 bands), along with its
Vis (i.e., NDVI, LSWI, DVI, RVI, WDRVI, SAVI, VARI-GREEN, and GNDVI), were used as
input optical features [25–32]. Additionally, VV, VH, the difference between VV and VH,
and the Radar Vegetation Index (RVI) [33] were extracted from Sentinel-1 SAR images [34].
Soil data including silt, clay, sand, cec, and pH were also collected at various depths ranging
from 0 cm to 200 cm to construct our feature set (https://www.isric.org/explore/soilgrids,
accessed on 4 May 2020).

2.3.2. Corn Yields Prediction Using the Concatenate-Based 2D-CNN-BiLSTM Model

As prediction of corn yield is so challenging, improvement of the advanced and novel
deep learning model for accurately predicting corn yield is important. In this way we
proposed the Concatenate-based 2D-CNN-BiLSTM model which have two main parts (see
Figure 3) including feature extraction using a 2D-CNN network, and corn yield prediction
using a Bi-LSTM network. The 2D-CNN network extracts high-level spatial features from
input data and concatenates them with low-level features from subsequent months [35].
Additionally, a separate 2D-CNN network was created to incorporate single-time soil data
features. Finally, the high-level features from soil, Sentinel-1, and Sentinel-2 data were
concatenated and fed into a Bi-LSTM layer to accurately predict corn yield. The Bi-LSTM

https://www.isric.org/explore/soilgrids
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layer is able to overcome significant time lags between inputs across any time period and
enhance its ability to represent temporal patterns at different frequencies using backward
and forward information [21]. This makes it particularly advantageous for analyzing
crop growth cycles of varying durations. Monthly Block consists of Conv2D-1 > Linear
activation function > Concatenate layer > Conv2D-2 > Linear activation function. Monthly
composites (XMonthly) pass through the Monthly Block, and Monthly features (FMonthly) are
extracted. In addition, Soil Block consists of Conv2D-1 > Linear activation function. Soil
features pass through the Soil Block, and soil features (S) are then extracted. FMonthly and S
are then concatenated together and fed into Bi-LSTM layer with a ReLU activation function
to predict corn yield. Finally, the output of the Bi-LSTM layer passes through a dense layer
with a linear activation function to obtain yield values.
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prediction.

Overall, our Concatenate-based 2D-CNN-BiLSTM model is a promising approach
for accurately predicting corn yield by incorporating various data sources and effectively
capturing temporal patterns.

3. Results and Discussion

For this study, a total of 250, 27, and 83 samples were selected for training, validation,
and testing of the Concatenate-based 2D-CNN-BiLSTM model, respectively. The Conv2D-1,
and Conv2D-2 layers were set to have 16 and 22 filters, respectively, with a kernel size of
1 × 1. The Bi-LSTM layer had 16 filters. The model was trained using the Adam optimizer
for 30 epochs with a batch size of 10. The best weight was obtained based on the minimum
Validation Loss. The performance of the proposed model was compared with Concatenate-
based 2D-CNN, 2D-CNN, and RF in two scenarios: (1) using Sentinel-1 and -2 data, and
(2) using both Sentinel-1 and -2 data along with Soil Grids. Table 2 displays the performance
of the proposed models and the compared models, measured in terms of RMSE, MAPE,
MAE, RRMSE, and Index of Agreement (D).

Table 2 reveals that the Concatenate-Based 2D-CNN-BiLSTM model outperforms the
Concatenate-based 2D-CNN, 2D-CNN, and RF methods significantly. The best performance
of the Concatenate-based 2D-CNN-BiLSTM model is achieved when combining Sentinel-1
and -2 and Soil GRIDS, with an RMSE of 0.698 (t/ha), MAPE of 4.47%, MAE of 0.556 (t/ha),
RRMSE of 5.55%, and D of 84.67%. Our proposed model improves D by 14.77% compared
to the 2D-CNN.

Figure 4 depicts the scatter plots of predicted yield versus observed yield between our
proposed method and compared methods in 2021. The scatter plots demonstrate that the
fit line is close to the diagonal line in the Concatenate-based 2D-CNN model and far away
from it in the RF model.



Environ. Sci. Proc. 2024, 29, 2 6 of 9

Table 2. Comparison of performance of proposed Concatenate-based 2D-CNN-BILSTM Model versus
other considered methods for corn yield prediction.

Model
Sentinel 1 and 2 Sentinel 1 and 2 and Soil Grids

RMSE RRMSE MAE MAPE D RMSE RRMSE MAE MAPE D

Proposed Model 0.714 5.68 0.561 4.55 82.08 0.698 5.55 0.556 4.47 84.67

Concatenate-Based 2D-CNN 0.849 6.75 0.686 5.60 67.58 0.799 6.35 0.620 5.02 72.71

2D-CNN 0.848 6.74 0.694 5.64 64.80 0.834 6.63 0.677 5.51 69.90

RF 1.089 8.66 0.935 7.95 69.04 1.073 8.54 0.918 7.78 69.60
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Additionally, Figure 5 illustrates that the proposed model outperforms the compared
models, resulting in a reduction in Error maps and generation of a brighter error map. This
confirms the efficacy of utilizing Soil Grids data for yield estimation.
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A visual representation of the distribution of the corn yield value is presented in
Figure 6, which compares the USDA yield with the predicted yield obtained using our
proposed method. The results displayed in Figure 6 indicate a significant level of agreement
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between the observed and predicted corn yield, thereby reinforcing the reliability and
accuracy of our proposed method’s predictions.
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4. Conclusions

Forecasting corn yield is a crucial aspect of agriculture management in IOWA. Recent
studies have demonstrated that remote sensing, soil data, and deep learning methods are
effective when it comes to estimating corn yield. In order to accurately predict corn yield, it
is important to consider both temporal and spatial features. To achieve this, we propose a
novel Concatenate-Based 2D-CNN-BiLSTM model that extracts both spatial and temporal
features. The CNNs extract spatial features while Bi-LSTM extracts temporal features. The
inputs for our model include remote sensing data (Sentinel-1 and -2) and Soil GRIDS data.
We conducted experiments with the proposed model on Iowa corn from 2018 to 2021 at the
county level. Our results demonstrate the effectiveness and advantages of our approach
compared to other methods. By considering both spatial and temporal features, our model
is able to accurately forecast corn yield, which can aid in making informed decisions for
agriculture management in Iowa.
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