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Abstract: This study introduces a holistic methodology that synergizes high-resolution satellite
imagery from Planet and historical data from Sentinel 2 with meteorological insights extracted from
ERA5 data. By computing vital vegetation indices (NDVI, NDWI, mSAVI-2) and meteorological
indices (SPI, KBDI), we establish customized growing conditions, enabling the prediction and continu-
ous monitoring of tree health and stress. This approach integrates time series models for temperature,
precipitation, and vegetation indices, augmenting the understanding of growing conditions and
facilitating informed site selection for reforestation initiatives. Satellite data are sourced from Coper-
nicus (Sentinel 2 using GEE) and Planet imagery (via QGIS plugin). The Copernicus Climate Data
Store (ERA5) provides meteorological and climate assimilation data, complemented by reforestation
specifics such as tree counts and planting timelines.

Keywords: remote sensing; earth observations; vegetation indices; sustainable reforestation

1. Introduction

Reforestation plays a vital role in addressing climate change and preserving biodiver-
sity, and reforestation projects yield positive socio-economic impacts, increasing employ-
ment and fostering community engagement by enriching local ecosystems. However, the
success rate of reforestation depends on factors like site conditions, species selection, and
effective management.

This study introduces an innovative approach to tree health prediction and continuous
monitoring, integrating high-resolution satellite imagery, historical data, and meteorologi-
cal insights. We compute key vegetation and meteorological indices to establish customized
growing conditions. Time series models further enhance our understanding of growing
conditions and facilitate informed site selection for reforestation initiatives.

The flexibility of our framework allows it to thrive in various situations, enabling well-
informed choices in reforestation and land management. This adaptability, coupled with
strategic planning and data-driven approaches, leads to high success rates. By leveraging
the predictive power of the Normalized Difference Vegetation Index (NDVI), temperature,
and precipitation, we effectively forecast NDVI up to six months in advance, enabling
decision makers to adjust the management of the plots before the site conditions worsen.

This integrated approach offers a user-friendly means for stakeholders to assess tree
health and stress levels, contributing to precise and sustainable environmental interventions.
It emphasizes the value of data synergy and predictive modelling in advancing sustainable
practices and ecological resilience.
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2. Data Acquisition and Preparation
2.1. Software Tools and Libraries

Open source tools like the Google Earth Engine [1], Facebook Prophet [2], and xclim [3]:
Climate Services Library were instrumental in conducting our study. The Google Earth
Engine, a planetary-scale geospatial analysis tool, provided the platform for processing and
analysing satellite data, enabling the calculation of vegetation indices and meteorological
parameters. Facebook Prophet, a library for time series forecasting, was utilized to analyse
temperature and precipitation patterns, aiding in the prediction of future weather condi-
tions. xclim: Climate Services Library contributed to downscaled ERA5 data [4], facilitating
the calculation of climate and weather indicators.

2.2. Data Collection Sources

Copernicus Sentinel 2 [5], spanning from September 2015 to April 2023, provided
satellite imagery for vegetation analysis. Planet NICFI, high-resolution satellite data cover-
ing the period from September 2020 to April 2023, contributed to the dataset for surface
reflectance and vegetation indices. Copernicus ERA5, spanning from September 2015 to
April 2023, supplied the meteorological and climate assimilation data required for the
analysis. Additionally, data from reforestation projects, including the ECOSIA/TBSE-
Ambatotsirongorongo protected area reforestation project, Bôndy Reforestation plots, and
Tree-Nation Alamanga Reforestation project, were collected to gain insights into tree
planting and site-specific information, enhancing the accuracy and applicability of the
study’s findings.

2.3. Study Area

The site selection process in Madagascar involved identifying different reforestation
sites, each with its own unique characteristics and objectives (see Figure 1).

•Site 1 is a large-scale project managed by Tree-Nation, which has been replanting the
area with a variety of tree species since 2016. Over several years of reforestation efforts,
this site has become the oldest among the selected sites, offering valuable insights into
long-term tree growth and ecosystem development.

•Site 2 focuses on mangrove and semi-wet species and was planted between 2020 and
2021. This site is managed by Bôndy, an organization dedicated to reforestation efforts.
By specifically targeting mangrove and semi-wet species, this site contributes to the
restoration and preservation of crucial coastal ecosystems in Madagascar.

•Site 3 comprises scattered reforestation plots, also managed by Bôndy and planted be-
tween 2020 and 2021. The distribution of reforestation plots allows for a broader coverage
of the area, enhancing biodiversity and ecosystem services. This approach recognizes
the importance of restoring forests across various locations, promoting connectivity and
ecological resilience.

•Site 4 is part of a large rural restoration plan led by ECOSIA in collaboration with TBSE.
In 2022, the project started planning the rollout of replanting previously logged sites,
to be fully restored by 2025. This initiative addresses the restoration of degraded areas,
aiming to reestablish healthy and thriving forests while supporting rural communities
and sustainable land management practices.

The selection of these sites in Madagascar reflects the diverse approaches and strate-
gies employed by different organizations to address reforestation challenges in various
ecological contexts. By considering factors such as species diversity, ecosystem type, and
restoration objectives, these sites contribute to the broader goal of ecological restoration
and sustainable land use practices in Madagascar.
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and KBDI (Figure 2a). Baseline data were constructed using Facebook Prophet for the year 
2017, serving as a reference for future analysis. An automatic forecasting procedure was 
implemented using the constructed baseline. To assess vegetation health, the predicted 
NDVI for a specific site was compared with the average NDVI of the location, serving as 
a benchmark. Three control points were considered: the current month (March 2023—P2), 
six months in the past (September 2022—P1), and six months in the future (September 
2023—P3). These comparisons provide valuable insights into the vegetation’s health and 
changes over time (Figure 2b). 
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ing NDVI six months in advance using the predictions in Figure 2a. 

Figure 1. Study sites: Ambalavao (AMB), Mahajanga (MJN), Andramasina (ANA), and Ambatot-
sirongorongo (AMO).

3. Methodology

The methodology utilized in this study comprised several key steps. Firstly, satellite
data were acquired from two sources, namely Copernicus (Sentinel 2 using GEE) and
Planet (using QGIS plugin). Additionally, meteorological and climate assimilation data
were obtained from the Copernicus Climate Data Store (ERA5). Information related to
reforestation, including the number of trees planted and dates, was also acquired. The
next phase involved data preparation and transformation. Vegetation indices such as
NDVI, NDWI, and mSAVI-2 were calculated, along with meteorological indices like SPI
and KBDI (Figure 2a). Baseline data were constructed using Facebook Prophet for the year
2017, serving as a reference for future analysis. An automatic forecasting procedure was
implemented using the constructed baseline. To assess vegetation health, the predicted
NDVI for a specific site was compared with the average NDVI of the location, serving as a
benchmark. Three control points were considered: the current month (March 2023—P2),
six months in the past (September 2022—P1), and six months in the future (September
2023—P3). These comparisons provide valuable insights into the vegetation’s health and
changes over time (Figure 2b).
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4. Analysis

The Planet-NICFI monthly surface reflectance and vegetation indices were calculated
and averaged to a 100 m grid, enabling effective site comparison. The three selected
vegetation indices were utilized to assess different aspects of vegetation health. The
NDVI (Normalized Difference Vegetation Index) was employed to identify areas with deep
vegetation, focusing on values higher than 0.6. This threshold allowed for the identification
of regions with robust and thriving vegetation cover. Additionally, the NDWI (Normalized
Difference Water Index) was utilized to avoid areas experiencing deep droughts, with values
higher than −0.5 indicating healthier moisture levels. Finally, the mSAVI-2 (modified Soil-
Adjusted Vegetation Index) was employed to detect early stages of crop development,
with values higher than 0.6 indicating the presence of young and growing crops. These
vegetation indices and their respective thresholds provided valuable insights into the health
and development stages of vegetation across the analysed sites (Figure 3).
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To calculate the KBDI (Keetch–Byram Drought Index [6]) and SPI (Standardized Precip-
itation Index [7]), as the climate and weather indicators, the temperature and precipitation
in the hourly ERA5 Global Climate and Weather reanalysis data were downscaled using
two different methods: the temperature was corrected using the JAXA 30 m Digital Eleva-
tion Model (DEM) to account for the temperature difference between the average elevation
(in ERA5) and the height in the DEM (at 30 m), and the precipitation was downscaled using
a simple smoothing (spline) function at a higher spatial resolution (1 km) and using the
nearest precipitation value as input for the model.

Downscaling the ERA5 data proved crucial for this study, significantly enhancing the
precision of the KBDI and SPI indices, particularly in regions characterized by an intri-
cate topography (Figure 4a). These downscaled datasets were subsequently employed in
computing the KBDI and SPI indices and played a pivotal role in forecasting precipitation
and temperature at four specific sites, utilising time series models developed with the
Facebook Prophet library (Figure 4b). The KBDI index, a widely acknowledged metric
for evaluating drought conditions, necessitated the utilisation of downscaled ERA5 data.
Furthermore, the SPI was determined using two distinct time scales: SPI-03, which in-
corporates a three-month smoothing approach, and SPI-24, which employs a two-year
smoothing approach.

Using PlanetScope [8] (visual and surface reflectance basemaps), the NDVI was pre-
dicted. The average NDVI for all four test cases remained relatively constant at around 0.4.
Incorporating Sentinel 2 data expanded the time series from September 2020 to January
2019, improving data stability. However, predicting NDVI six months into the future with
the available time period posed challenges. Despite this, the integration of multiple data
sources provided valuable insights into vegetation dynamics and health (Figure 5).
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5. Results and Findings

The proposed workflow offers a versatile framework for regional forecasting which is
adaptable to different sites and scenarios. While three vegetation indices are derived from
satellite data, only NDVI is utilized as a predictor of tree health and stress due to its strong
signal across the selected sites (Figure 6). Meteorological indicators such as SPI and KBDI
provide insights into site-specific weather patterns, but currently, they are not integrated as
regressors in the prediction. This is because the SPI exhibits excessive noise, while KBDI
lacks clear seasonality. The findings indicate that by employing Facebook Prophet and
combining NDVI, temperature, and precipitation as regressors, a straightforward approach
for predicting NDVI six months in advance is achieved. This enables effective planning
and decision-making in agriculture, land management, and reforestation programs.



Environ. Sci. Proc. 2024, 29, 15982 6 of 7
Environ. Sci. Proc. 2024, 29, x FOR PEER REVIEW 6 of 7 
 

 

 
Figure 6. NDVI predictions for 4 sites. 

6. Conclusions 
By integrating data-driven approaches, such as satellite imagery and meteorological 

data, into reforestation efforts, we can effectively monitor and predict tree health. 
This proposed workflow showcases the effective utilization of diverse data sources 

and tools to forecast NDVI six months in advance. Although data preparation can be time-
consuming, the incorporation of Facebook Prophet and the combination of NDVI, tem-
perature, and precipitation predictions as regressors yielded favourable results. The 
straightforward approach of comparing the site’s NDVI with the regional average allowed 
for direct sub-regional comparisons. 

Overall, this workflow holds promise for predicting NDVI in various areas within a 
specified timeframe, while also highlighting the value of Facebook Prophet in forecasting 
and regression analysis. Moving forward, further research and development will focus on 
enhancing the accuracy and precision of predictions. This includes expanding the work-
flow to encompass larger regions, incorporating additional vegetation indices that exhibit 
strong signals at specific sites, and integrating more data sources or extending the time 
series for improved analysis. It is our intention to collaborate with field teams in validating 
the method through ground truthing the forest tree growth by exploring the inventories 
to create a benchmark database for the predictions. 

Author Contributions: Conceptualization, G.v.d.D. and D.B.; methodology, G.v.d.D. and D.B.; val-
idation, G.v.d.D. and D.B.; formal analysis, G.v.d.D. and D.B.; writing—review and editing, G.v.d.D. 
and D.B.; visualization, G.v.d.D. and D.B. All authors have read and agreed to the published version 
of the manuscript. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: The data utilized in this study is readily available through various 
sources. Specifically, the metrological data spanning from September 2015 to April 2023 was ob-
tained from Copernicus ERA5 [4], while Sentinel 2 satellite imagery covering the same period was 
obtained from Copernicus website [5]. Additionally, data from Planet NICFI, focusing on the period 
from September 2020 to April 2023, were also utilized [8]. These datasets are openly available and 
can be accessed for further analysis and validation purposes. 

Acknowledgments: We would like to thank the ECOSIA/TBSE-Ambatotsirongorongo protected 
area reforestation project and Bôndy Reforestation for their willingness to share the reforestation 
plots and timelines of reforestation. 

Figure 6. NDVI predictions for 4 sites.

6. Conclusions

By integrating data-driven approaches, such as satellite imagery and meteorological
data, into reforestation efforts, we can effectively monitor and predict tree health.

This proposed workflow showcases the effective utilization of diverse data sources
and tools to forecast NDVI six months in advance. Although data preparation can be
time-consuming, the incorporation of Facebook Prophet and the combination of NDVI,
temperature, and precipitation predictions as regressors yielded favourable results. The
straightforward approach of comparing the site’s NDVI with the regional average allowed
for direct sub-regional comparisons.

Overall, this workflow holds promise for predicting NDVI in various areas within a
specified timeframe, while also highlighting the value of Facebook Prophet in forecasting
and regression analysis. Moving forward, further research and development will focus on
enhancing the accuracy and precision of predictions. This includes expanding the workflow
to encompass larger regions, incorporating additional vegetation indices that exhibit strong
signals at specific sites, and integrating more data sources or extending the time series
for improved analysis. It is our intention to collaborate with field teams in validating the
method through ground truthing the forest tree growth by exploring the inventories to
create a benchmark database for the predictions.
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