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Abstract: An original methodology was formulated and a new three-stage method for assessing the
CO2 balance in plant communities was developed. In managed forests, when calculating the carbon
balance, it is necessary to take into account the release of CO2 and not only direct but also indirect
costs of technical energy for laying plantations, caring for plantings, and felling for final use. As a
model, the costs of technical energy for the cultivation of natural and genetically modified forms
of aspen Populus tremula L. are calculated. The large role of indirect costs of technical energy in the
balance of C-CO2 in forest plantations is shown. The final amount of CO2 runoff from the atmosphere
depends not only on the area of forests and their productivity but also on the way the wood is used.

Keywords: managed forests; renewable energy sources; Paris Climate Agreement; technical energy
costs; Populus tremula L.; methodology for assessing the impact of forests and wood use on CO2

balance in the atmosphere

1. Introduction

According to the FAO [1], the world’s forests store 662 billion tons of carbon, of which
44.5% is biomass, 10.3% is dead wood and litter, and 45.2% is in the soil. Forests have
an essential carbon function, removing approximately 20% of global anthropogenic CO2
emissions each year [2]. In the Paris Climate Agreement, forests play a major role in
reducing CO2 levels in the atmosphere. During the growing season, managed forest stands
absorb a huge amount of CO2, ten times greater than emissions due to direct and indirect
costs of technical energy [3]. The generally accepted calculation of C-CO2 fluxes in forests
leads to the conclusion that with an increase in planting area and productivity, the runoff
of carbon dioxide from the atmosphere increases sharply. Based on this approach, carbon
balances are compiled for each country, and emissions trading is proposed. However,
further, deeper consideration of the fate of wood over time leads to a different conclusion.
The objective results of assessing the impact of tree plantations on CO2 fluxes in the
atmosphere largely depend on the duration of the analysis of natural and anthropogenic
transformations of wood.

2. Methodology

To calculate the CO2 balance in the atmosphere during forest cultivation, we used the
results of a model experiment on the creation of forest plantations based on aspen (Populus
tremula L.) and its natural and modified forms [4]. To assess the cost of technical energy in
the experiment and the value of C-CO2 flows, we analyzed all technological operations for
growth, starting with the production of aspen seedlings in the nursery. The calculation of
technical energy costs was performed using the methods outlined in [5,6].

A transgenic clone was created in the forest biotechnology laboratory of the Institute of
Bioorganic Chemistry of the Russian Academy of Sciences and contains the sp-Xeg1b recom-
binant xyloglucanase gene from the fungus Penicilium canescens. According to experimental
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data, this clone is characterized by a complex modification of the plant’s phenotype: Accel-
erated growth and changes in the ratio of leaf and root biomass to stem wood biomass [7].

The model experiment was carried out by the authors in the context of the soil and
climatic conditions of the north-west of the Leningrad Oblast (Russia). The growth of
plantations with a short turnover of felling (30 years) established on the site of cut-down
spruce forests was modeled.

In order to accelerate the growth of the forest stand and reduce the loss of soil fertility,
nitrogen mineral fertilizers were applied in the experiment at a dose of 150 kg of active
substance per 1 ha at planting, 10 years after planting, and 5 years before the main felling.

3. Results and Discussion

The results of simulation experiments show that the use of two iterations of thinning
leads to an increase in the formation of economically valuable biomass up to 100–120 t/ha
compared to 70 t/ha in the scenario without thinning [4]. At the same time, on genetically
modified plantations, an additional 16.3–22.6 t/ha of dry matter of woody biomass is
obtained due to thinning on average for two plantation rotations.

Fertilizers proved to be a significant factor in increasing the productivity of all types
of forest stands. Thus, the productivity regarding the application of nitrogen fertilizers
for planting unmodified forms of aspen was 5% higher during the first rotation of the
plantation and 18% higher during the second rotation compared to the variants without
fertilizers.

The use of a genetically modified clone of aspen with the introduction of nitrogen
fertilizer significantly increases the productivity of plantations compared to its natural
form. At the same time, the C-CO2 sink in stem wood increased by 24.8%. The total runoff
of C-CO2 in the synthesized woody biomass in the fast-growing form of aspen increased
by 14.2 t/ha or 23.9%.

However, large direct and indirect investments in technical energy are associated with
the use of nitrogen fertilizers. The indirect cost of technical energy in the variant with
a transgenic clone and the introduction of ammonium nitrate amounted to 46.8 GJ/ha,
including indirect energy costs due to fertilizers (for the production of fertilizers, delivery
to the farm warehouse and application)—45.2 GJ/ha, which is 85% of the total energy
investment. Emission of CO2 into the atmosphere due to indirect costs of technical energy
amounted to 3.4 t/ha of CO2 and are estimated at 1.4% of the runoff with wood. Table 1
presents the results of the analysis of the influence of growing various forms of aspen on
the emission and sink of C-CO2 in plantations.

After the establishment of model plantations, soil carbon reserves are significantly
reduced (from 9 to 7 kg/m2). Such a sharp drop is observed mainly in the first 5–7 years.
This is due to the intensive decomposition of forest litter accumulated in previous spruce
plantings. During the second rotation of the plantation, the intensity of the depletion of
forest litter and the reduction of carbon stocks in soils decrease and the losses amount to
approximately 1 kg/m2 C for 30 years. Due to the loss of soil carbon, C-CO2 is emitted into
the atmosphere at a level of 10 t/ha.

Logging residues are an important source of carbon dioxide runoff from the atmo-
sphere. However, the final effect largely depends on the further use of logging residues.
Under production conditions, logging residues usually remain on the forest plot in heaps,
and in a short period of time they rot or are burned on the spot and carbon dioxide is
completely returned to the atmosphere. However, it is energetically and environmentally
expedient to use the entire biomass of logging residues for the production of fuel pellets,
briquettes, etc. In this case, solar energy stored in biomass replaces fossil non-renewable
energy and thus reduces the release of CO2 into the atmosphere.
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Table 1. Balance in plantations of natural and genetically modified forms of aspen Populus tremula L.
(second rotation of plantation).

Unit of Measurement

Aspen Shapes

Natural Natural with N
Fertilizers

Genetically Modified
with N Fertilizers

stem wood

t/ha * 75.7 89.4 91.0

technical energy costs in wood production

GJ/ha 9.4 55.2 55.2

C-CO2 emissions from wood production

t/ha from technical energy 0.22 1.2 1.2

t/ha from loss of soil humus 9.0 9.0 10.0

C-CO2 sink in stem biomass

t/ha 37.9 44.7 45.5

thinning wood

t/ha * 12.3 14.4 19.3

C-CO2 runoff in the wood of thinnings

t/ha 6.2 7.2 9.7

total C-CO2 emissions from wood production

t/ha 9.22 10.2 11.2

stem wood and thinnings

t/ha * 88.0 103.8 110.3

total C-CO2 sink in woody biomass

t/ha 44.1 51.9 55.2
* according to Komarov et al. (2015) [4].

Aspen tree plantations with a short felling rotation (up to 30 years), taking into account
the total (direct and indirect) costs of technical energy, are large net absorbers of atmospheric
carbon dioxide. The content of C-CO2 in commercial aspen wood fluctuated from 47.7 to
62.5 t/ha in the first rotation of the plantation and from 37.9 to 45.5 t/ha in the second.
The total emissions of C-CO2 from the use of technical energy in the cultivation of aspen
amounted to no more than 1.2 t/ha. Such calculations and conclusions drawn from them
usually inspire great hope in researchers and international organizations for the decisive
positive role of forests in the sink of carbon dioxide from the Earth’s atmosphere and in
reducing the greenhouse effect. However, if we trace the further fate of wood and its
transformation during its time of use, the conclusions are not as optimistic.

A new three-stage methodology for assessing the impact of forests on the balance of
CO2 in the atmosphere is proposed. The objective results of assessing the impact of tree
plantations on the CO2 balance in the atmosphere largely depend on the duration of the
analysis of the natural and anthropogenic transformation of wood. We have developed a
methodology and proposed a new three-stage method for calculating the C-CO2 balance
when growing forests and using wood: (1) Biocenotic balance (for a period of 30–120 years
of cultivation, depending on the forest-forming species and the period of felling for the
main use), (2) natural and economic balance (for 170–200 years from the moment of forest
renewal to the completion of the service of wooden structures), and (3) biogeochemical
C-CO2 balance (associated with the cultivation of tree plantations and the use of wood and
culminating in the entry of residual organic matter into the earth’s crust and accumulative
landscapes).
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The mode of use of industrial wood is essential in the release of carbon dioxide into
the atmosphere. The service life of buildings made of wood fluctuates slightly and averages
approximately 50 years. After this period of time, buildings are usually dismantled, and the
remains of wood are either burned or partially used for a short time on the farm (Figure 1).
Thus, the positive impact of forest planting on reducing the concentration of carbon dioxide
in the atmosphere when wood is used only in construction will not be significant due to
the short period of operation of structures.
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when growing forests and using wood.

Eventually, the former timber will rot and turn back into CO2. Part of the wood
is used to make paper, cardboard, plywood, and furniture. However, these materials
and products have a short life span. First of all, paper and cardboard are consumed.
Furniture usually lasts no more than 25 years. Thus, the initially large carbon sink with
industrial wood leads to the temporary (up to 150–160 years) removal of CO2 from the
atmosphere. During this period, various wood products are gradually destroyed and
decomposed by microorganisms, and carbon dioxide absorbed by green plants re-enters
the atmosphere. The long-term cycle of C-CO2 in the system is as follows: atmosphere–
green plants–industrial wood–man-made buildings and things–dust–atmosphere, which
ends only gains a small positive balance. It is known that only a small part—0.8–1.0%—of
the organic matter synthesized by plants enters the large geological cycle, transforms, and
is preserved for millions of years [8,9].

The bulk of the buried dispersed organic matter is concentrated in the sediments
of the continents and the oceanic vector [10]. Concentrated organic reserves of ancient
biospheres are found in deposits of coal, hydrocarbon gases, and oil. Their intensive
extraction and use in modern society lead to a sharp release of carbon dioxide into the
atmosphere. However, there is a highly effective way of using forest plantations to regulate
the content of carbon dioxide in the atmosphere, which is currently paid little attention—the
so-called substitution effect [11].

This path constitutes the use of part of the wood for energy production and the
replacement of fossil hydrocarbons used by mankind.
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Indeed, when wood is used for energy, biomass carbon burns out and also enters the
atmosphere in the form of CO2. In this case, carbon dioxide does not replenish the pollutant
pool. C-CO2 simply recirculates into the atmosphere–green plants–wood–atmosphere system.

When processing plant biomass into a commercial energy carrier (for example, pellets),
approximately 6.5 kg of CO2 is emitted into the atmosphere per 1000 MJ of energy contained
in the fuel [12].

At the same time, it is important to take into account that the transportation of biofuel
from wood over long distances significantly reduces its efficiency and increases C-CO2
emissions into the atmosphere. Thus, the transportation of pellets via road for 200 km
reduces the overall energy efficiency from 6 to 3, and carbon dioxide emissions increase by
10.8 kg per 1000 MJ of energy content in biofuels. When transporting biofuel from wood
500 km, the energy efficiency drops to 1.7. The release of CO2 into the atmosphere from
transport reaches 17.6 kg per 1000 MJ [12]. Thus, from the perspective of ecology, biofuels
should be considered a local source of energy since transportation over considerable
distances decreases its effect on the sink of CO2 from the atmosphere to almost “none”.

The use of wood for the production of heat and electricity is currently growing at a
rapid pace.

Previous work [13] shows that the global consumption of wood pellets by 2028 may
reach 93 million tons, which, in terms of calorific value, corresponds to 10.7 million tons
of oil equivalent. In Russia, 90% of the wood waste remains in the forest and in landfills
every year. Our country can increase the volume of wood biofuel production by 10 times if
woodworking waste is included in the trade turnover, as well as logging residues, which
are often simply left in the forest and burned at logging sites.

Russia produces approximately 3 million tons of wood pellets annually. Approxi-
mately 95% of the production is exported, with 90% going to Europe [14]. On 9 July 2022,
EU sanctions came into force prohibiting the import of Russian wood pellets. In Europe,
there has already been a serious increase in prices. Therefore, if a 15-kg bag of pellets in
Finland was once sold in a store for €2, it now costs €5.

At the same time, the volume of the domestic biofuel market in Russia is only 100,000–
200,000 tons. In Russia, there are currently approximately 70–80 million hectares of un-
productive and overgrown agricultural land suitable for forestry. Areas not occupied by
crops make up approximately one-tenth of the total forest area of the country. If even half
of these areas contain a forest with a short felling rotation (approximately 30 years) grown
using a fast-growing tree species, then with a total bioproductivity (trunks + thinning
wood) of approximately 100 t/ha, 3500–4000 million tons of biomass can be obtained. In
terms of 1 year, productivity will be approximately 115–130 million tons. This amount of
biomass corresponds to 2070–2340 million GJ per year of renewable energy. Taking into
account the costs of growing forests, logging, and the production of biofuel in the form of
pellets, the amount of additional energy will be 1656–1926 million GJ per year, which can
replace approximately 38.8–45.1 million tons of hydrocarbon fuel in oil equivalent per year,
or approximately 22–26% of the annual oil consumption in the Russian Federation. As a
result of replacing hydrocarbons with biofuels, CO2 emissions in the atmosphere will be
reduced by 122–142 million tons per year. The total emission of CO2 equivalent is currently
1.6 billion tons per year [15].

However, in connection with the great tension in food security across the world,
the planting of forests on empty arable land in Russia can hardly be fully implemented.
Therefore, the most promising and realistic strategy for reducing the content of C-CO2 in
the atmosphere with the help of forests at present is the use of logging residues, wood
processing waste, and partial energy forests for the production of biofuels in order to obtain
heat and electricity.

In Russia, artificial reforestation is beginning to increasingly prevail over natural
methods. The number of forest nurseries producing planting material with a closed root
system is increasing every year. However, there are a number of problems. No nursery
produces planting material for fast-growing softwoods. Forest development projects
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at the leased bases of timber industry enterprises provide the restoration of clearings
only for coniferous, and in rare cases, hardwood species, even if softwood trees were
harvested in this clearing [16]. The planting of energy forests in Russia is associated with
the development of a nursery system, and the production of fuel pellets is associated
with the construction of processing plants. However, most importantly, there is a need
for comprehensive propaganda among the population, industrialists, and entrepreneurs
regarding the idea of the widespread use of a type of fuel that is practically new to our
country. It also requires development, discussion by region, and approval of the Federal
Program for the cultivation of energy forests as a new and highly efficient source of
renewable energy and the most important mechanism for the sink of CO2 from the Earth’s
atmosphere by replacing hydrocarbon fuels.

4. Conclusions

1. The influence of forests on the sink of carbon dioxide from the atmosphere on a
long-term scale when wood is used only in construction and the production of paper,
chipboard, fiberboard, etc., is not significant.

2. The use of wood from thinning, wood-processing residue, and biomass from forests
with a short felling rotation to produce heat and electricity is the main reserve to
reduce the concentration of carbon dioxide in the Earth’s atmosphere with the help
of forests.

3. Biofuel from wood should be a local source of energy since transportation over long
distances nullifies its energy and environmental efficiency.

4. The energy and environmental efficiency of all renewable energy sources must be
assessed taking into account the total cost of technical energy for the construction of
installations, the production of equipment and its depreciation, the costs of further
disposal, and the costs of the logistics of a new energy carrier.
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