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Abstract: Tree species is a critical factor in the practice of forest resource field sample surveys.
Light detection and ranging (LiDAR) can obtain three-dimensional structural information about
forests and trees and is increasingly being used in forest resource surveys. We used three pointwise
multi-layer perceptron (MLP)-based deep learning methods (PointNet, PointNet++, and PointMLP)
to identify individual tree point clouds of seven different tree species to explore the effectiveness
of point cloud deep learning in classifying individual tree point clouds. Experiment results were
extremely exciting. Higher classification accuracy can be attained in trials utilizing 2048 points. The
tree classification accuracies of PointMLP and PointNet++ on the test set were 0.9474 and 0.9483,
respectively, in classification experiments with a balanced sample size. PointMLP, the current state-
of-the-art pointwise MLP-based model, is faster to train and performs better.
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1. Introduction

In the practice of forest resource field sample surveys, tree species is an essential
survey factor. Tree species information is also an important parameter for ecosystem
modeling and forest resource management [1]. With the continuous development of light
detection and ranging (LiDAR) technology, the 3D structural parameters of forest trees can
be obtained quickly and accurately by using ground-based LiDAR systems for sample plot
scanning. The focus and difficulty of current research is how to accurately identify tree
species information from laser point clouds of individual trees.

Traditional machine learning methods necessitate the manual extraction of copious
amounts of 3D structural information for modeling, and recognition accuracy is low [2-6].
A breakthrough in computer vision has been made in classifying 3D object shapes using
point cloud deep learning techniques, opening up a new practical direction for tree species
classification.

Some previous studies converted LiDAR data into images with various classification
features [7-9] and then used image deep learning methods to study the classification of tree
species. With the development of point-based deep learning methods such as PointNet [10]
and PointNet++ [11], scholars have started to use point-by-point deep learning models for
tree species classification research. Seidel et al. [12] used PointNet to classify seven tree
species, but the classification accuracy was very low and then shifted the focus of the study
to a picture convolutional neural network (CNN) approach, which finally achieved a high
classification accuracy. In other studies, using point cloud deep learning models [13-19],
good accuracy of tree classification was achieved.
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To explore the potential of point cloud deep learning for individual tree species point
cloud classification, we used three pointwise MLP-based point cloud deep learning methods
(PointNet, PointNet++, PointMLP) to classify tree species from individual tree point clouds
of four and seven tree species. We used the farthest point sampling method to reduce
the number of points in each individual tree point cloud to 1024 and 2048. We achieved
extremely exciting experimental results. In the classification experiments with a balanced
sample size, PointMLP and PointNet++ achieved high accuracy in tree classification on the
test set.

2. Materials and Methods
2.1. Individual Tree Point Cloud Data

In this study, we used a publicly available dataset for our experiments [20]. The name
of the dataset is “Single tree point clouds from terrestrial laser scanning”. It contains
individual tree point cloud data for seven tree species (Table 1). Detailed information about
the data acquisition and sensors can be found in the article [12].

Table 1. Information on tree species and number of samples.

Species Number Species Number
Beech ! 104 Oak 31
Douglas Fir ! 116 Ash 27
Spruce ! 127 Pine 21
Red oak ! 100

! To balance the sample data, we conducted a comparison experiment using four datasets with similar numbers of
samples from Beech, Douglas Fir, Spruce, and Red oak.

2.2. Data Preprocessing

We referred to the [12] process for data preprocessing with some modifications. We
performed the following four preprocessing operations on the point cloud data.

1.  Manual selection: The individual tree data were screened artificially to control the
quality of the individual tree samples.

2. Deleted: Deleted the point of 30% density at the bottom of the tree.

3. Downsampling: The farthest point sampling method was used to sample the points
of the individual tree as 1024 and 2048.

4.  Data organization: The data organization of the ModelNet40 [21] dataset was used to
create the sample database for this study experiment.

2.3. Point Cloud Deep Learning Models

PointNet [10] is the pioneer of point-based deep learning. PointNet uses a shared MLP
to directly process unordered point sets as input. PointNet contains three key modules: a
maximum pooling layer as a symmetric function to aggregate information from all points,
a combined local and global information structure, and two joint alignment networks for
aligning input points and point features.

PointNet is unable to capture the local structure generated by metric space points, thus
limiting its ability to recognize fine-grained patterns and generalize to complex scenes. The
proposed PointNet++ [11] method bridges this gap. PointNet++ is a hierarchical neural
network that addresses two core problems: how to generate partitions of point sets and
how to abstract point sets or local features by local feature learners. The position and scale
of the prime points are used to describe each partition of the click, and the FPS algorithm is
used to select the prime points. Features extracted within each partition using PointNet
are used as descriptions of local features. The model structure contains two ensemble
abstraction layers (SAs). Each SA layer consists of three parts: a sampling layer, a grouping
layer, and a PointNet layer.

The PointMLP [22] model follows the design philosophy of PointNet, a simpler but
deeper network architecture. PointMLP learns the point cloud representation by a simple
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feed-forward residual MLP network that hierarchically aggregates the local features ex-
tracted by the MLP. PointMLP introduces a lightweight local geometric affine module that
adaptively transforms point features in local regions. PointMLP is similar to PointNet and
PointNet++, but it is more general and exhibits better performance.

The hyperparameters of PointNet, PointNet++, and PointMLP model training are
summarized in Table 2. PyTorch (1.10.0 + CUDA 11.3) is the framework used by three deep
learning methods. The graphics card used in this study was an NVIDIA GeForce RTX 3070
(8 GB).

Table 2. Summary of hyperparameters for deep learning models.

Model PointNet PointNet++ PointMLP
Batch Size 12 12 12
Number of Points 1024/2048 1024/2048 1024/2048
Categories 4/7 4/7 4/7

Epochs 200 200 300
Optimizer Adam Adam SGD
Learning Rate 0.001 0.001 0.1
Weight Decay 0.0001 0.0001 0.0002
Momentum — — 0.9

2.4. Model Accuracy Evaluation Metrics

In this experiment, balanced accuracy (BAcc) and kappa coefficients were used to
compare and analyze the results of tree species classification in terms of accuracy evaluation
and models.

Acc — pe
1— pe

The kappa coefficient is calculated from the confusion matrix of the classification results,
and its value ranges from —1 to 1. Usually, the kappa coefficient is greater than zero, and its
absolute value is larger, indicating better classification results.

kappa = 1)

3. Results

The tree classification results for the six sets of experiments using the three deep
learning models are summarized in Table 3. As seen from the table, the accuracy of the
experiments using the four tree species with balanced sample data for classification is
relatively high. The experiments with 2048 sampling points achieved a higher accuracy of
tree species classification. A comparison of the classification accuracies of the test dataset
shows that the results of both models, PointNet++ and PointMLP, are increasingly similar.

By mapping the training accuracy of each epoch during model training (Figure 1), we
portrayed the training process of the three deep learning models. As seen from the figure,
the classification accuracy of the PointNet model is extremely low, and the classification
accuracy of the test dataset does not increase with the increasing training accuracy of the
model on the test dataset. During the operation of the PointNet++ model, the classification
accuracy of the test set was higher than that of the training set and has been growing, finally
obtaining a high classification accuracy. The test accuracy of the PointMLP model increases
with the training accuracy and finally achieves a classification accuracy similar to that of
the PointNet++ model.



Environ. Sci. Proc. 2022, 22,19 40f7

Table 3. Accuracy of tree species classification results for three deep learning models.

Number of Train Test
i Point
Model Categories oms BAcc kappa BAcc kappa
] 1024 0.4865 0.3246 0.5205 0.3663
2048 05135 0.3598 0.4954 0.3412
Poi
ointNet 1024 0.2672 0.2473 0.2923 0.2879
7 2048 0.2638 0.2309 0.2776 0.2598
] 1024 0.7663 0.6910 0.8787 0.8298
2048 0.8109 0.7430 0.9483 0.9297
PointNet
omuNett , 1024 06630  0.6686 07263 07927
2048 0.7791 0.7762 0.8849 0.9205
] 1024 09176 0.8885 0.9074 0.8694
2048 0.9782 0.9700 0.9474 0.9296
PointMLP
, 1024 0.7654 0.8444 0.7061 0.7839
2048 0.7852 0.8073 0.8460 0.8803
1.0
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Figure 1. Instance accuracy during training of deep learning models (the curves were Gaussian
smoothed, and the smoothing parameter was set to 10).

We summarized and plotted the time trained for the six sets of experiments with 2048
sampling points (Figure 2). It can be seen from the figure that the PointNet++ model is more
time-consuming, and it takes a longer time to train to obtain the optimal model parameters,
while the PointMLP model can achieve a classification accuracy similar to that of the
PointNet++ model in a brief period. The PointNet model saturates the model performance
shortly after starting training, and the final classification accuracy is extremely low.
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Figure 2. The time used to train the point cloud deep learning model (the numbers labeled in the
figure indicate the highest classification accuracy obtained by the corresponding experiment on the
test set). (*20 represents 20 times the original value.)

4. Discussion

In this study, three pointwise MLP-based point cloud deep learning methods were
used to investigate the classification of individual tree point clouds. According to the
findings, two deep learning models, PointNet++ and PointMLP, can better identify the tree
species information in individual tree point clouds.

The tree species classification obtained by the PointNet model in our study was
exceptionally low, similar to the results obtained by Seidel et al. [12]. This is because
PointNet cannot capture local features of 3D objects, which limits its ability to classify and
recognize similar objects. However, both the PointNet++ and PointMLP models introduce
a local feature extraction module, which can extract the fine-grained local features of
3D objects well and thus achieve good classification accuracy. A related study [19] also
demonstrated that PointNet++ can achieve good classification accuracy for tree species
classification problems.

In this study, the experiments to classify the four tree species achieved a high classifi-
cation accuracy. This is because the four tree species used have a larger number of samples
and are more balanced in number. The other three tree species have a smaller number of
samples, which limits the further learning of classification features by deep learning. From
this, we suggest that when using deep learning methods for object classification in the
future, researchers try to choose a substantial number of samples and keep the distribution
of the number of samples consistent.

The classification accuracy is higher when the number of sampling points of an
individual tree is 2048, which is consistent with the findings of [19]. This indicates that
1024 points are not a good representation of the accurate 3D structural information of
individual trees.

Our experiments show that the two models, PointNet++ and PointMLP, achieve com-
parable tree classification accuracy. However, the PointMLP model can be trained in less
time to obtain the optimal deep learning model parameters. This is due to PointMLP’s
simpler and deeper network architecture, which is achieved by learning the point cloud rep-
resentation using a simple feed-forward residual MLP network. PointMLP has exceptional
model performance.

5. Conclusions

Point cloud deep learning models of the MLP type with local feature extraction
are proven to be accurate for tree species classification of individual tree point clouds.
PointMLP, the current state-of-the-art (SOTA) MLP-based point cloud deep learning
method, has promising applications in tree species classification.
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