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Abstract: Water treatment systems have been implemented by urbanizing societies for millennia to
facilitate water management goals. Common models of surface overflow rate (SOR), plug flow reactor
(PFR), and continuously stirred-tank reactor (CSTR) were developed through conceptual, empirical,
and analytical tools; implemented based on idealized hydrodynamics and geometrics. More recently,
computational fluid dynamics (CFD) and artificial intelligence (AI), from evolutionary optimization
to machine learning (ML) methods, have been introduced. AI methods can be effectively coupled
with CFD simulations to optimize water treatment. In this study, CFD coupled with physical models
and selected ML and optimization tools, including DeepXtorm, are examined with respect to design,
treatment analysis, and retrofits, providing significant economic and treatment benefits.

Keywords: unit operations and processes; Navier–Stokes; clarification; PFR; green infrastructure;
CSTR; SOR; optimization; particulate matter; contaminants; machine learning; DeepXtorm

1. Introduction

Of the three primary urban water components, potable-, waste-, and stormwater
(urban drainage herein), this paper focuses on urban drainage treatment, specifically
clarification of particulate matter (PM), as the primary vehicle and substrate for parti-
tioning/distribution of chemicals and pathogens. The fundamental principles elucidated
herein translate to potable- and wastewater control and management as well as for com-
bined sewer overflows. Urban drainage generated from storm events transports PM,
chemicals, and pathogens to receiving waters, impacting aqueous chemistry acutely and
chronically with consequences for public health (e.g., harmful algal blooms, HAB). For a
half-century, clarifier systems, specifically urban drainage basins, have been a common unit
operation (UO) with unit process (UP) functionality, deployed in built environments for
hydraulic/volumetric management and clarification. Urban drainage clarification basins
in the United States (US) now exceed 10 million. These clarifiers intercept approximately
25% of the runoff in the US. Despite clarifier ubiquity, fundamental PM and PM-associated
chemical transport and fate processes are poorly understood. This knowledge gap is a
result of the complexity of nonlinear interaction and multiphase coupling of turbulence,
partitioning/distribution, and heterodisperse PM. Irrespective of surface overflow rate
(SOR) [1], design and regulatory guidance for clarifiers have historically employed pre-
sumptive criteria based on mean residence time (RT) [2–5]. Decades of such practice have
led to an impairment designation for most clarifiers that does not meet load reduction re-
quirements. More importantly, clarifiers do not meet intended functionality, with discharge
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of PM, chemicals, and pathogens harmful to humans and the urban water cycle. In most
cases, geometric expansion of clarifiers as open basins, tanks, or tunnels is not viable due to
infrastructure constraints, an even greater constraint in the built environs of Europe. There
is a critical need to supplant existing tools with higher-fidelity physics-based simulation
tools to inform (1) design/regulatory guidance, (2) basin functionality, and (3) intra-basin
retrofits, for example, with internal baffles to train clarifier hydrodynamics. This paper
illustrates the combination of computational fluid dynamics (CFD) and physical modeling
of fundamental transport/fate of PM, noting that the extension to PM-partitioned chemi-
cals only requires partitioning/distribution data. Herein, CFD is integrated with machine
learning (ML), providing robust, effective, and efficient planning and retrofits. The main
objectives are (i) to review current empirical and lumped analytical models (RT, SOR, CSTR,
PFR) for clarification basins, (ii) illustrate results of clarifier turbulence transport and PM
fate, (iii) illustrate CFD for basin transport/fate simulation, (iv) enhance functionality and
economy of clarification basin geometrics and intra-basin retrofits with ML, and (v) couple
ML methods with CFD to develop a CFD-ML augmented basin analysis and retrofit tool,
DeepXtorm, with extensibility to any management or treatment system for urban waters.

2. Clarification of Particulate Matter (PM) for Urban Drainage Treatment

Clarification as a UO to separate PM and PM-partitioned constituents by gravitational
forces has been employed in built environments for thousands of years to facilitate societal
needs for water supply, treated discharge, or reuse. Figure 1 illustrates the overlay between
the built environments, water infrastructure clarification systems, and the natural envi-
ronments, identifying common types of clarification systems. Historically, and currently,
clarification is an essential mechanism for management of PM, PM-partitioned chemicals,
and PM-partitioned pathogens. PM, while not an emerging contaminant, is the dominant,
labile, and high-surface-area substrate for partitioning and transport of emerging or known
chemicals and pathogens. Knowledge of the constitutive properties of PM and partitioning
to/from PM are critical and necessary when evaluating clarification. For all of these water
cycle components, clarifiers are a critical UO for separating PM in preliminary, primary, and
secondary treatment train unit operations and processes. While PM separation in volumet-
ric units such as clarification basins is the focus, filtration is also a UO for clarification of PM
(albeit a secondary UO following primary clarification). Similarly, with respect to activated
sludge or membranes, clarification systems are still required upstream of such units.

While the necessity of clarification in wastewater treatment has been recognized and
implemented for over a century, the need for clarification as an engineered UO for ur-
ban drainage is a much more recent focus. On an annual basis for a municipality, the
episodic and unsteady flow volume and the loads of PM, metals, and chemical oxygen
demand (COD) in urban drainage flow equals or exceed loads delivered by quasi-steady
and diurnal wastewater (as dry weather flows) [6]. For urban drainage, clarification
units or systems can range from hydrodynamic separator (HS) units as a preliminary
UO for separation of only debris/detritus/gross solids to a broad classification of pri-
mary/secondary clarification systems that are ubiquitous for management of water cycle
components. These primary/secondary treatment systems include above-ground basins
(as detention or retention), below-ground tanks or tunnel systems, or online and offline
volumetric storage units. These systems provide multiple functions that integrate equal-
ization as a hydraulic/volumetric UO with physical primary treatment. As a function of
spatial constraints, these systems are implementable in a wide range of conditions in built
environments and across urban, suburban, and rural land uses. Historically and currently,
clarification basins are a lower technology UO solution that can be readily and economically
implemented in developing communities, although in built environments, current design
practices according to residence time (RT)-based presumptive criteria of treatment results
in significant lost opportunity land costs and economic burden [7].
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models for clarification (in volumetric units such as basins or tanks) were developed by 
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seminal 1904 publication, “On Sedimentation”, based on surface overflow rate (SOR). In 
these early studies, the analytical models (also known as conceptual or semi-empirical 
models) of SOR, plug flow reactor (PFR), and continuously stirred-tank reactor (CSTR), 
were developed through conceptualized geometry of clarification systems (e.g., rectangu-
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ized clarification, in which the non-idealized clarification is characterized as a transition 
between two hypothesized limiting conditions of PFR and CSTR, noting that a PFR or 
CSTR-assumed conditions have recently been shown not to be limiting [9]. With the de-
velopment of digital computers, algorithms of clarification have progressed in the last 50 
years. While clarification models have evolved, these models are most commonly repre-
sented as lumped (or partially lumped) process-based simulations (i.e., dynamic models) 
[10] that do not resolve the hydrodynamic complexity and complex geometry of clarifica-
tion systems. Figure 2 presents the results of SOR, CSTR, and PFR models to full-scale 
physical modeling data (the plotted symbols) and that of a plain cylindrical tank (SAFL-
CT) in plot (a), illustrating a range of commercial clarifier systems, some of which are 
shown in plot (b), and the turbulent flow configuration and vortical structures generated 

Figure 1. Schematic of the anthropogenic built environments supported by water infrastructure
systems and imposed on the natural environments. A potable water clarifier is illustrated in (a),
wastewater clarification lagoons in (b), an urban drainage clarifier retrofitted with carbonated recycled
concrete (CRC) gabion baffles in (c), a below-grade volumetric clarifying adsorptive filter (VCF) in (d),
and a below-grade hydrodynamic separation in (e). For each, the predominant function is clarification.

3. Common Models of Urban Drainage Clarification Units

Investigating clarification dynamics and examining models for clarification UOs sub-
ject to complex hydrodynamics and geometry contribute to the goal of more sustainable
water systems and management thereof. Clarification models currently range from the
increasing implementation of CFD to the much more commonly deployed analytical or
empirical models developed prior to digital computers. Such analytical and empirical mod-
els for clarification (in volumetric units such as basins or tanks) were developed by Hazen
(1904) [1] and a competing model by Camp (1936) [8], among others since Hazen’s seminal
1904 publication, “On Sedimentation”, based on surface overflow rate (SOR). In these early
studies, the analytical models (also known as conceptual or semi-empirical models) of SOR,
plug flow reactor (PFR), and continuously stirred-tank reactor (CSTR), were developed
through conceptualized geometry of clarification systems (e.g., rectangular, prismatic) and
idealized hydrodynamic conditions (i.e., plug flow or well-mixed condition). Subsequently,
a tanks-in-series method was introduced to generalize non-idealized clarification, in which
the non-idealized clarification is characterized as a transition between two hypothesized
limiting conditions of PFR and CSTR, noting that a PFR or CSTR-assumed conditions have
recently been shown not to be limiting [9]. With the development of digital computers, algo-
rithms of clarification have progressed in the last 50 years. While clarification models have
evolved, these models are most commonly represented as lumped (or partially lumped)
process-based simulations (i.e., dynamic models) [10] that do not resolve the hydrodynamic
complexity and complex geometry of clarification systems. Figure 2 presents the results
of SOR, CSTR, and PFR models to full-scale physical modeling data (the plotted symbols)
and that of a plain cylindrical tank (SAFL-CT) in plot (a), illustrating a range of commercial
clarifier systems, some of which are shown in plot (b), and the turbulent flow configuration
and vortical structures generated within the simple geometry of a plain cylindrical tank
clarification system as modeled from large-eddy (LES) simulation and shown in plot (c).
While SOR reasonably represented the physical model data from these 17 different com-
mercial clarification systems, albeit distinctly below the mean trend line (the solid thick red
curve), the PFR and CSTR models do not represent the physical modeling data. For PM
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clarification, the plain cylindrical tank configuration (SAFL-CT) outperformed most of the
less economical commercial clarifier systems across the characteristic velocity scale (SOR).
Irrespective of the common model chosen, these common models are unable to elucidate
the role of turbulence and illustrate the turbulent structure within these systems.
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Figure 2. Comparison of common analytical models (SOR, PFR, CSTR) to physical model data of PM
separation for commercial clarifier systems and to that of a plain cylindrical tank clarifier (SAFL-CT).
The vortical structures in a tank clarification system are also illustrated. Plot (a), is illustrating a
range of commercial clarifier systems, some of which are shown in plot (b), and the turbulent flow
configuration and vortical structures generated within the simple geometry of a plain cylindrical tank
clarification system as modeled from large-eddy (LES) simulation and shown in plot (c).

4. CFD and ML as an Artificial Intelligence (AI) Method
4.1. CFD for Clarification

Much more recently, models have evolved towards incorporating hydrodynamic-
resolving CFD-based simulations. With respect to the analytical models developed within
the last century, Reynolds-Averaged Navier–Stokes (RANS)-based CFD models provides
improved predictive capabilities and the potential for further development [11]. Advance-
ments with respect to CFD and turbulence have also improved the accuracy of RANS-based
models through the use of high-fidelity simulation methods of LES, as shown in Figure 3,
and direct numerical simulation (DNS) [11–14]. For urban water systems including basins,
a range of CFD tools for basin clarification simulation have been developed such as the
shallow water equation (SWE) [15], RANS equations [16], and LES [13].

When examining CFD as a tool for water management, perspective is important. De-
spite significant advancement with CFD methods, resolving turbulence with such methods
and facilities such as the HPC, the current state of clarification system design, manage-
ment, and regulation adopt models of PFR and CSTR despite the inability of such models
to reproduce physical modeling data as shown in Figure 2a. As an example of such an
implementation, modeling of the rainfall–runoff process in the urban water cycle through a
model such as the Storm Water Management Model (SWMM), which is a common, compre-
hensive, and well-developed analysis tool, allows implementation of these these analytical
models (as lumped system models) [10]. Implementation of, and adherence to, these ana-
lytical models (and their dynamic variants) for clarification can also be widely found in
the recent literature, and it demonstrates a level of predictive capability subject to specific
geometric/hydraulic/granulometric conditions and chemical partitioning, in particular for
low Hazen numbers (dimensionless settling velocities) [17] and for coarser particle size dis-
tributions (PSDs) [18–21]. In contrast to such conditions for application of these analytical
models, multiphase turbulent flow [11–14,17] and RANS-based CFD clarification modeling
illustrate the significant role and impact of complex system hydrodynamics on PM and
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pathogen transport, mixing, chemical partitioning to/from PM, and treatment efficacy.
Such models need to be tested for clarification systems over a range of scales, for actual
(not idealized) geometries and for complex and unsteady hydrodynamic conditions and
loadings. While geometrics in a wastewater treatment plant (WWTP) clarifier are reason-
ably approximated, the geometrics of real urban drainage systems are quite complex, as are
the turbulence structures and their temporal variability. In Figure 4, the depth-averaged
Navier–Stokes equation in the framework of the shallow water equation (SWE) is illustrated
for a typical above-grade urban drainage clarifier, subject to wet weather flow hydrodynam-
ics, before retrofitting and after retrofitting with permeable gabion baffles [15]. There needs
to be a clear demonstration of the applicability and the limits or boundaries of generality
for such analytical/empirical models; otherwise, clarification system design and regulation
with such models [5] will misrepresent treatment behavior and design/regulation will be
guided by methods that are not representative and can be highly uneconomical for a given
level of treatment performance [7,9,17].
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Figure 4. An illustration of the depth-averaged Navier–Stokes equation in the framework of the
shallow water model (SWE), allowing much higher computational efficiency than 3D RANS for
clarifiers where the horizontal/vertical scale > 5. Rhodamine dye concentration is simulated (and was
physically measured in a continuous time domain subject to episodic flows) in the clarifier basin plots
on the right. Pre-retrofit was the original basin condition and as-design was after 12 gabion baffles
were designed through CFD to train the hydrodynamics and the treatment performance. Figure 1c
illustrates dimensions and baffle design [15].

https://www.rc.ufl.edu


Environ. Sci. Proc. 2022, 21, 87 6 of 9

4.2. Machine Learning (ML)

Despite progress since the development and deployment of CFD, decades of regulatory,
design, and management guidance for clarification are still commonly implemented based
on empirical techniques and lumped indices introduced through the concept of RT by
Brune (1953) [2]. Specifically, presumptive criteria based on RT (or hydraulic RT, HRT) to
achieve a level of PM separation, for example, 80% of nutrients, are still widely adopted.
The basis for RT from first principles to scale basin clarification is unclear, not robust and
not economical, although it is worth noting that SOR does have a physical basis and can be
related to the concept of a dimensionless settling velocity (Hazen number). Recent research
has shown that RT cannot be used to scale clarifier basin performance over a wide range of
system geometrics, PM granulometry, and loadings [7]. The cost of a single basin can range
from hundreds of thousands to tens of millions United States Dollars (USD) as a result
of current RT-based criteria [7,9,14]. There is a need for methods to leverage robust CFD
capability yet provide a more user-friendly clarifier design, analysis, and retrofit experience.

When coupled with CFD, AI methods such as ML (CFD-ML) provide a potential
solution for the more widespread adoption of CFD and a tool to optimize the performance
of urban water systems such as clarifiers or optimize the economy of such systems at a
given level of performance. This framework is shown in Figure 5. ML methods provide a
spectrum of techniques to analyze data, model results and information, as well as identify
patterns from the data or model results. For example, artificial neural networks (ANN) as
one ML model are able to learn the multidimensional and nonlinear correlations between
input features and output labels from data or model results, as supervised learning. With
such functionality, analogous ML models can be created to approximate the mapping
relation between clarifier basin geometric parameters (features) and basin clarification
or water chemistry functionality (labels), for example, based on the higher-fidelity CFD
simulations of PM, PM-partitioned constituents, or solute transport and fate.
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Figure 5. Schematic of CFD methodology combined with ML for optimized clarifier design [7,14,17,18].

In comparison to empirical or lumped analytical models (RT, SOR, PFR, CSTR), such
trained ML models replicate the dependence of PM (PSD and PM density) and solute
transport/fate to the detailed system geometrics, loading condition, hydrodynamics, and
constitutive load properties. In contrast to LES, trained ML models reduce CFD compu-
tation time and facilitate a simple and efficient examination of basin geometrics, retrofit
of impaired basins, and regulation for practical application that is predicated on exist-
ing CFD model outputs. Such a combination of CFD and ML enhances and extends the
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existing knowledge base and methods for urban water system design, analysis, retrofit,
and regulation. A new approach that hybridizes CFD and ML models facilitates robust,
simple, and economical clarifier analysis, and geometric design with capability of retrofit
design [7]. The framework for clarifier design and optimization is shown in Figure 5.
A critical component of this framework is high-performance computing (HPC) to facilitate
CFD simulations.

A set of results from implementation of the CFD modeling component of this frame-
work for clarifiers of diverse geometries and loadings are illustrated in Figure 6. In this
figure, historical RT methods and the current regulatory guidance using RT developed
through Harper and Baker (2003) [5] are overlayed as curves on plot of total PM (the entire
particle size distribution, PSD, not a PSD fraction such as total suspended solids, TSS)
separation as a function of RT.
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Focusing on Harper and Baker (2003) [5], this RT model is based on and extrapolated
from only 13 field data points. The RT method [5] is agnostic to hydrodynamics, partition-
ing, geometry, and PM constitutive properties such as PSD. For example, subject to loadings
of different PSDs at the same RT, total PM separation ranges from 40 to 90%. Furthermore,
full-scale physical testing of commercial clarifiers of lower RT also yields results distinctly
different from the RT method [5,17]. As a result, clarifiers underperform and are 10 to 100×
more costly than those optimized with CFD-ML.

While the ability to separate PM (nutrients, metals, organics, emerging contaminants)
is a primary metric of clarifier evaluation, the cost of achieving a required level of this
metric is as critical of a metric when considering the viability and sustainability of a clarifier
design or retrofits. Figure 7 illustrates results of the CFD-ML model, DeepXtorm for a
rectangular basin (6:1 length to width), RT of ~5 days (<14 day requirement), depth of
3 m, and 1.4 hectares of surface area at normal pool elevation [22]. The basin receives
direct flows from a 50 hectare urban drainage area. Three results are illustrated in Figure 7.
Harper and Baker’s study (2003) [5] represents current presumptive guidance for PM and
nutrient clarification. The optimized result is based on CFD-ML and was benchmarked
with monitoring data, clarifier retrofit, and land costs [22]. At a presumptive guidance level
of 80% for this clarifier, there is a USD 15.8 million reduction in costs through CFD-ML
optimization to retrofit the clarifier compared to RT requirements.
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5. Discussion and Conclusions

Urban drainage clarifiers are a critical component of urban water treatment infrastruc-
ture. Whether implemented for wet weather flow, dry weather flow, or combined sewer
flow and overflow treatment, clarification is a preliminary and primary unit operation, with
applications that date back thousands of years in urbanized societies, and implementation
that is ubiquitous in built environments. On the other hand, there are historical analytical
models of clarification (SOR, PFR, CSTR) and empirical models, such as RT, that are inade-
quate for reproducing clarification behavior subject to actual and complex urban drainage
conditions. While SOR, PFR, and CSTR are heuristic tools and can reproduce physical mod-
eling results for specific conditions, as shown in Figure 2a, the models are not generalizable.
Nonetheless, SOR, PFR, and CSTR have provided a valuable function with respect to clari-
fication development over the last century. However, RT is not heuristic, generalizable, or
robust for predicting clarifier performance, as shown in Figure 6. Furthermore, RT as an ur-
ban drainage clarification model is agnostic to hydrodynamics, PM constitutive properties
such as PSD, partitioning, loading conditions, and clarifier geometry, thus imposing a very
significant economic burden on clarifier design and retrofits, as illustrated by an example
of a single urban drainage clarifier in Figure 7. Modern tools for clarifier design include
CFD and AI. When these tools are coupled and can utilize high-performance computing
to parameterize combinations of hydrodynamics, geometry, partitioning, loadings, and
PSDs, as illustrated in Figures 3–7, using a CFD-ML model such as DeepXtorm to optimize
clarifier designs and retrofits is facilitated, with significant economic benefits. With over
10 million urban drainage clarifiers in the US, there is a significant economic benefit from
CFD-ML for clarifiers as green urban water infrastructure.
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