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Abstract: Countermeasures against local scour at bridge piers and abutments can be grouped into
two categories: (1) flow-altering and (2) bed-armouring countermeasures. In this work, long-term
laboratory-scale experiments of clear-water scour at bridge piers with different configurations were
performed in order to investigate the effects of an unprotected cylindrical pier, of a cylindrical pier
with a classic collar countermeasure and of a cylindrical pier with a modified collar countermeasure.
Tests were performed in a flume with movable sediment bed, and the scoured bathymetries at the
equilibrium stage were acquired and used in numerical simulations of small-scale hydrodynamics
at the piers. The modified collar countermeasure resulted in a significant reduction of the scour
hole dimensions.

Keywords: bridge pier; scour hole hydrodynamics; scour countermeasure; Reynolds-Averaged
Navier-Stokes equations

1. State of the Art

The erosion at bridge piers and/or abutments can be attributed to the combination of
different phenomena: (1) general erosion, (2) contraction scour and (3) local scour. General
erosion depends on the evolution of the river reach, whereas contraction scour is due to
the interaction between the bridge structure and the river, causing local flow acceleration,
which triggers bed erosion. Occurrence of these two phenomena is not compulsory. On
the contrary, local scour, generated by the turbulent interaction between the flow and
submerged bridge elements, is always present. In the past, several countermeasures
against local scour at piers have been proposed. These can be grouped into two main
categories [1,2]: (1) flow-altering countermeasures, aimed at contrasting the downflow at
the upstream face of the pier and mitigating the erosion processes of the ensuing horseshoe
vortex; and (2) bed-armouring countermeasures, which provide a physical barrier to
contrast local scour [1,2]. The second group includes solutions like the riprap of natural
rocks [3–5], the installation of man-made elements or the combination of both (e.g., bed
sill) [2,6,7]. The pier collar is a popular countermeasure. It can be considered both as a
flow-altering countermeasure if placed above the riverbed, acting as an obstacle to the
downward flux upstream of the pier, and as a bed-armouring countermeasure, if it is
placed flush with the bed or buried [8–10]. In the literature, several collar shapes have been
proposed, e.g., winged collar and conical collar [11], as well as hooked collar and double
hooked collar [12], obtaining in all cases a reduction of the maximum scour depth between
42% and 50% with respect to the plain pier.

Here, a bordered collar is investigated as a countermeasure to contrast the pier local
scouring. Long-term laboratory tests under clear-water conditions were carried out in a
tilting flume with an erodible bed. The experiments were stopped once that the quasi-
equilibrium phase had been reached. A reference test was performed with an unprotected
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cylindrical pier (test T0), later adding to the same pier both a standard collar (test T1) and a
collar with an upper border (test T2).

Numerical simulations were then performed, investigating the small-scale flow field
around the pier for the different configurations under both flat-bed and equilibrium scoured
conditions, corresponding to the initial and final stages of the scour process, respectively.
Similar numerical experiments have already been performed in literature [13–17]. Our simu-
lations allowed for exploring the flow alteration brought about by the different collar config-
urations with respect to the unprotected case. Three-dimensional (3D) Reynolds-Averaged
Navier-Stokes (RANS) simulations were performed. Although RANS simulations cannot
describe the unsteady nature of vortex shedding, they still reveal the mean steady characters
of the flow field around the pier and the protection structures, allowing for the identification
of the main hydrodynamic differences between the different tested configurations.

2. Laboratory Tests

Laboratory tests were carried out at the Laboratorio “Grandi Modelli Idraulici” of the
Dipartimento di Ingegneria Civile, Università della Calabria (Italy). A 9.6 m long rectangular
tilting flume with width B = 0.485 m was employed, equipped with a 1.5 m long and
0.20 m deep recess box, placed 6 m downstream of the inlet section. Steady, uniform flow
conditions were set up in the test region. The flume inlet is equipped with a honeycomb
flow straightener, whereas a tailgate regulates the water level at the outlet.

2.1. Test Conditions

The maximum equilibrium scour depth was obtained under clear-water conditions, i.e.,
for a flow intensity U/Uc < 1, where U is the mean velocity within the flume and Uc is the
critical velocity for the inception of sediment motion, here estimated through Neill’s equa-
tion [18]. The bed sediment grading was uniform, with median diameter d50 = 1.53 mm
and geometric standard deviation of the grain size distribution σg = (d84/d16)0.5 < 1.5, thus
avoiding bed armouring. The depth of the approaching flow was set to h = 0.13 m, as
measured by a ± 0.1 mm accurate point gauge placed upstream of the recess box.

2.2. Test Setup and Procedure

Three cylindrical pier models with diameter b = 0.04 m were used: the unprotected pier
model was used for reference test T0; the pier model with a classic 3b-wide and b/10-thick
collar placed flush with the unscoured sand bed was employed for test T1; the pier model
with the same collar and a b/10-wide and b/10-thick upper border, its top surface being at
the undisturbed bed level, served for test T2. The collar width was chosen according to the
limit dimension for practical applications [19].

As reported in Ferraro et al. [20], the experimental tests satisfy all the conditions on
non-dimensional parameters present in literature, determining that only local scour occurs
at the pier model and that equilibrium scour conditions have been reached [1,21–24]. The
list of the non-dimensional parameters characterising the laboratory experiments is given
in Table 1, in which the Reynolds number of the pier is defined as Rep = U b/ν, ν being the
water kinematic viscosity.

Table 1. Non-dimensional parameters characterising the laboratory experiments of clear-water scour
at the pier models.

Dimensionless Parameter U/Uc b/d50 σg B/b h/b h/d50 Rep

Value 0.96 26.14 1.24 12.1 3.22 84.31 1.5 × 104

Prior to each test, the pier model was attached to the bottom of the recess box at the
centre of the test section. The recess box was then filled in with compacted and levelled
sand. The flume was slowly filled with water to protect the bed from initial uncontrolled
scouring, up to the achievement of the experimental design conditions. Maximum scour
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depth around the pier during the tests was measured through a ± 0.1 mm accurate point
gauge installed on a movable carriage. The tests were stopped according to the Coleman
criterion [25]: namely, the maximum scour depth observed within the last 24 h of exper-
imentation had to be smaller than 5% of the smallest value between the pier diameter
and the flow depth. Once that this quasi-equilibrium scour depth had been achieved,
the discharge was slowly reduced to zero, and the residual water volume flushed out
through sinks placed along the flume bottom. Landslip phenomena were not observed in
the scour hole.

2.3. Scoured Bathymetry Survey

A 3D survey of the emptied scoured flume in the pier area was made through the
photogrammetry technique. A Nikon D3000 camera (Nikon, Tokyo, Japan) with a Nikon R
AF-S DX Zoom-Nikkor 18-55 mm lens was used to take a large number of pictures (about
80 for each test) from different positions, catching also markers placed into the flume. The
shots were imported into the Agisoft PhotoScan software (Agisoft LLC, St. Petersburg,
Russia), creating in the end a high-density 3D point cloud. The position of markers, which
allowed for referencing the photogrammetry points, was identified using a Terrestrial Laser
Scanner (TLS, Leica ScanStation P20, Heerbrugg, Switzerland). Finally, the 3D scoured
bathymetry was processed through a Matlab code determining the dimensions of the scour
hole, the deposit mound and the scoured volume. The surveyed 3D scoured bed surfaces
were furthermore used in the numerical modelling.

3. Numerical Simulations

Five numerical simulations were performed, reproducing the equilibrium scour con-
ditions of laboratory experiments T0, T1 and T2, as well as the flat-bed initial conditions
of both tests T0 and T1, with the collar top face flush with the bed in the latter case, and
of test T2, in which the sediments on the plate of the bordered collar were transported
downstream in the first instants of the laboratory experiment.

The results of the numerical model are here shown in non-dimensional form for the
purpose of generalisation. The magnitude of the local mean velocity u and the turbulence
dissipation rate ε are displayed and made non-dimensional as follows:

u+ =
u
u∗

(1)

ε+ =
εh
u3∗

(2)

where u∗ = 0.024 m/s is the undisturbed shear velocity, being determined from a prelimi-
nary flat-bed simulation of the flume without the pier.

Numerical Model

Three-dimensional simulations were performed with the Siemens Simcenter STAR-
CCM+ v2019.1 (Siemens Digital Industries Software, Munich, Germany) computational
fluid dynamics package [26]. The model solves the RANS equations through a projection
method, based on the Semi-Implicit Method for Pressure Linked Equations (SIMPLE)
algorithm. Integration is performed through a finite-volume second-order upwind scheme.
Eddy viscosity is parameterised through the realisable k-ε turbulence model [27]. For
proper modelling of stagnation upstream of the pier leading to the downflow, the Volume-
of-Fluid (VoF) method was employed to determine the position of the free surface, placing
a gaseous incompressible phase of air above the water liquid phase. The liquid phase was
identified for the purpose of displaying the results by the mesh elements with a water
volume fraction ≥ 0.5.

The numerical domain reproduces the recess-box portion of the experimental flume,
with the surveyed bottom surfaces and the pier models. The domain was extended in
the upstream direction by 0.6 m with respect to the limit of the recess box to ensure the
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achievement of a correct velocity distribution upstream of the pier. The domain stretches
vertically to a distance of 2 h from the reference initial bed elevation, so that a suitable
volume is given to air, avoiding the development of excess fictitious currents. The numerical
mesh is made of cubic elements trimmed at the boundaries. The base resolution is 5 mm,
being refined down to 1.25 mm in the proximity of the pier. The geometric details of the
mesh refinement are given in Ferraro et al. [20].

Simulations start with the interface between the water and air phases being placed at
a distance h from the reference bed elevation and a static pressure distribution throughout
the domain. The water volume is initially set in motion at constant velocity U = Q/A = 0.37
m/s, with A = B h being the undisturbed wetted area, while air is set still. Numerical runs
were performed with time-invariant boundary conditions, iterating until the achievement
of steady flow. For liquid flow, a constant normal inflowing velocity U was set at the
upstream water boundary, while a static pressure distribution was set at the downstream
water boundary, both extending up to h. A static pressure distribution was set at the
upstream and downstream air boundaries above h, in addition to the top of the numerical
domain. A rough no-slip wall condition, i.e., with explicit modification for wall roughness
in the wall law [26], was set to the bottom, employing a ks = d50 =1.53 mm roughness
height. Smooth no-slip wall conditions, i.e., without modifications to the wall law for
roughness [26], were set instead to the sidewall and pier boundaries, given the negligible
roughness of the plastic material they are made of.

4. Results and Discussion
4.1. Results of the Laboratory Tests

The evolution of the scour depth for test T0 (unprotected pier) follows a logarithmic
trend [28–30], whereas in tests T1 and T2 (collar-protected piers) scour evolves through
different stages, as reported in some works [31–34].

Figure 1 shows the evolution in time of the maximum scour depth ∆ys (made non-
dimensional with respect to the pier diameter b) in the laboratory tests. In the experiments
with collar-protected piers (tests T1 and T2), in addition to the reduction of the maximum
equilibrium scour depth ∆yse, a delay in the scour development is observed.
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Figure 1. Temporal evolution of the non-dimensional maximum scour depth.

In fact, in tests with collars, an S-shaped evolution of ∆ys is observed until the upstream
side of the collar is uncovered, a typical log-like scour depth evolution occurring afterwards.
While in test T0 the position of maximum scour is located upstream of the pier throughout
the scouring process, in tests T1 and T2, it starts at the collar side and later migrates
upstream.

For the laboratory tests, Table 2 shows the maximum equilibrium scour depth ∆yse,
the equilibrium scoured volume vse and the countermeasure efficiencies for tests T1 and T2
in terms of both ∆yse and vse, respectively, which are computed as follows:

r∆yse =
∆yse,u − ∆yse,p

∆yse,u
(3)
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rvse =
vse,u − vse,p

vse,u
(4)

where ∆yse,u and ∆yse,p are the maximum equilibrium scour depths observed for the unpro-
tected (test T0) and collar-protected (tests T1 and T2) pier model experiments, respectively,
vse,u and vse,p being the related equilibrium scour volumes.

Table 2. Maximum equilibrium scour depths, equilibrium scoured volumes and collar countermea-
sure efficiencies in the laboratory tests.

Test ∆yse (mm) vse (dm3) r∆yse
rvse

0 92.9 10.5 - -
1 37.5 5.90 59.63% 43.80%
2 33.9 4.20 63.51% 60.00%

The standard collar mitigates the maximum scour depth by 59.63% with respect to the
unprotected pier, whereas the upper border promotes a reduction of 63.51%. The additional
scour reduction of test T2 is mirrored in the 60.00% decrease of the scoured volume, which
is 16.20% more than the correspondent efficiency obtained for the standard collar.

4.2. Numerical Simulations

The flow field in the proximity of the bed around the pier determines the scour
mechanism, thus shaping the scour hole dimensions. The hydrodynamics in the pier region
are strongly shaped by the pier and collar geometry, which impacts on the entity of the
downward flow upstream of the pier and, in turn, impacts the magnitude of the horseshoe
vortex and of bed shear stress [35]. In Figure 2, the contour maps of the non-dimensional
velocity magnitude u+ along the flume longitudinal centreline in the pier area are shown
under both initial and equilibrium scour stages for the different pier configurations.
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No significant differences were observed among the simulations of the initial stages
of tests T0 and T1 (Figure 2a) and of test T2 (Figure 2b), apart from the confinement of
flow recirculation upstream of the pier and of flow acceleration occurring downstream
of it within the upper border of the collar in the latter case. As regards the simulations
of the equilibrium scour configurations, the mean velocity strongly reduces within the
scour hole in the unprotected pier case (Figure 2c), owing to stable vortical structures
that are recognisable both upstream and downstream of the pier [15,36]. In the classic
(Figure 2d) and bordered (Figure 2e) collar configurations, the mean flow fields are very
similar above the countermeasure, yet differences occur below it. Specifically, the standard
collar (Figure 2d) halts the downflow upstream of the pier from proceeding below it,
triggering the formation of two counter-rotating vortices underneath, a counter-clockwise
one near the collar and a clockwise one near the bed. The bordered collar (Figure 2e) still
blocks the upstream downflow, and, thanks to the border, confines the horseshoe vortex.
Here, however, a single counter-clockwise recirculation forms below the collar upstream of
the pier.

The turbulence dissipation rate ε is linked to the velocity gradient and, in turn, to
the shear stress and to the shear velocity. Therefore, large values of ε are obtained where
large values of shear velocity are present [37]. For flow around a pier, according to the
Richardson–Kolmogorov principle of turbulence cascade, the largest eddies arise from the
fluid–structure interaction of the mean flow, but then they are subject to inertial instabilities
and break down into smaller vortices.

Assuming that sediment resuspension is due to the energy of the smallest eddies,
whose size is of the order of the grain size of bed sediments [38], then the ε field can be
seen as a proxy for the erosive attitude of the flow.

In Figure 3, the non-dimensional ε+ field along the flume longitudinal centreline in
the pier area is shown for all the performed numerical simulations. Simulations of the
initial conditions of tests T0 and T1 (Figure 3a) and of test T2 (Figure 3b) display very
similar ε+ fields. An extended region of high ε+ is located for both simulations downstream
of the pier, where the horseshoe vortex breaks up. A cluster with high ε+ values is also
present at the upstream toe of the pier in both cases, revealing the erosive potential of
the downflow upstream of the pier. Lower values of ε+ are legitimately obtained in the
near-bed area for the simulations of quasi-equilibrium scour conditions (Figure 3c–e),
proving the ceased scouring action. The classic collar (Figure 3d) deflects the high-ε+ region
where the horseshoe vortex breaks up downstream of itself, detaching it from the bed
downstream of the collar, thus reducing downstream scour. The largest values of ε+ among
all simulations were reproduced in this case, occurring below the collar upstream of the
pier. Intense sediment saltation was observed in laboratory test T1 in that same location,
confirming the link between ε and bed erosion. As a matter of fact, lower values of ε+ were
simulated in the same region for the bordered-collar configuration (Figure 3e), with lower
sediment saltation and local scour having been observed in laboratory test T2 compared to
T1. Above the collar, the upper border locks the whole downstream high ε+ area far from
the bed, also increasing the efficiency of such a countermeasure with respect to the scour
downstream of the pier.
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5. Conclusions

The experimental campaign displayed the increasing efficiency of a classic collar and
of a new-collar shape with an upper border as countermeasures against local scour at
bridge piers. The bordered collar showed a reduction of maximum scour depth compared
to the unprotected pier of 63.51%, outdoing by 3.88% the standard collar countermeasure.

In terms of scoured volume, the bordered collar allowed for a 60.00% reduction,
outclassing the standard collar by 16.20%. The numerical simulations of the laboratory
tests helped to understand the variations in the flow fields for the different pier model
configurations, which explain the dissimilar scouring observed among the laboratory tests.
Both collars block the upstream downflow, confining the horseshoe vortex, yet the bordered
collar better keeps high turbulence dissipation far from the near-bed region, thus explaining
the smaller scour observed with respect to the classic collar countermeasure.
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