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Abstract: Wildfires emit large quantities of air pollutants into the atmosphere. As wildfires increase
in frequency, intensity, duration, and coverage area, such emissions have become a significant health
hazard for residential populations, particularly vulnerable groups. This health hazard is exacerbated
by two factors: first, wildfires are expected to increase in frequency as a result of climate change
and, second, human health is adversely impacted by fine particulate matter produced from wildfires.
Recent toxicological studies suggest that wildfire particulate matter may be more toxic than equal
doses of ambient PM2.5. The role of ammonia emissions from wildfires on PM2.5 is examined. The
impact of poor air quality on human health is examined and some strategies are discussed to forecast
the burden of diseases associated with exposures to wildfire events, both short and long term, and
help develop mitigation strategies.
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1. Introduction

During the last few decades, wildfire activity has been increasing. Moreover, climate
change will enhance wildfire activity, resulting in increased human exposure to wildfire
pollutants [1]. Acute and chronic exposures to wildfire particulate matters (PMs) are
associated with premature mortalities, predominantly cardiovascular and respiratory [2].
Recent evidence suggests that PM2.5 from wildfires causes an enhanced adverse impact on
human health when compared to PM2.5 exposure from other sources [3]. Increased daily
mortality has been observed from air pollution exposure associated with dust storms and
biomass burning [4,5]. Wildfire smoke contributes to high levels of air pollutants, which
are risk factors for adverse cardiovascular effects, especially in vulnerable populations, and
significantly contribute to morbidity and mortality in communities with health disparity,
especially minority populations [6].

Research is needed for human health exposure studies from wildfire [7]. The role
of climate change on human health impacts in the future needs to be examined, which
will allow mitigation policies to be implemented. To improve our ability to predict the
public-health burden of wildfire emissions, we need to forecast air pollutant and particulate
emissions from active fires. Emissions depend on a number of variables, such as burned
area, biomass, meteorology, ground conditions, soil moisture, etc. However, most of these
variables are difficult to measure or even forecast for active fires.
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2. Results

Pollutant emissions, e.g., NH3 and PM2.5 emissions, from wildfires are calculated
using Equation (1) [8–11]:

Ei = B(x)∗BA(x, t)∗EFj∗FB (1)

where:
Ei is the species’ emissions (g),
B(x) is the biomass loading at location x (g/m2),
BA(x,t) is the burned area at location x and time t (m2),
EFj is the emission factor for species j (g species g−1 biomass burned), and
FB is the fraction of biomass burned.
Wiedinmyer et al. [11] published biomass loading (B(x)) values for different regions.

Collection 5 MODIS Global Land Cover Type product (MCD12Q1; 500 m) Version 6 for 2018
was utilized to estimate land cover classification [12]. Burn area, (BA(x,t)), is determined
using the Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua+Terra [13]).
Wiedinmyer et al. [10,11] provided the fraction of biomass burned (FB). This methodology is
summarized by [14,15]. The pollutant emission average emission factors (EFs), for example,
PM2.5 and NH3, are obtained from the literature [10,11]. The most important parameter in
estimating wildfire emissions (Equation (1)) is burn area [16].

Since ammonia is a precursor in the formation of PM2.5, we observe (Figure 1) that
the emission patterns of ammonia and PM2.5 are similar. A plot of ammonia emissions
versus PM2.5 emissions (Figure 2) in Southeast Australia provides the role of ammonia
in secondary PM2.5 formation in wildfire. The linear equation: y = 8.94 × 106 + 11.62x
with adjusted R-squared: 0.95 further supports this conclusion. Moreover, the intercept
of the linear regression provides insight into the possible background PM2.5 emission of
8.94 × 106 kg per year.
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Figure 1. Daily PM2.5 emissions and NH3 emissions in Southeast Australia during (29 December 
2019–4 January 2020). The circles represent PM2.5 and NH3 emissions as kg per day. The black 
vertical bars in the figure represent ± 1SD. (Source: [16]). 
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Figure 1. Daily PM2.5 emissions and NH3 emissions in Southeast Australia during (29 December
2019–4 January 2020). The circles represent PM2.5 and NH3 emissions as kg per day. The black vertical
bars in the figure represent ± 1SD. (Source: [16]).
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Figure 2. Daily NH3 vs PM2.5 emissions in Southeast Australia during the study period (source: [16]). 
Linear equation: y = 8.94x × 106 + 11.62x with Adjusted R-squared: 0.95. 

 
Figure 3. Monthly PM2.5 emissions (wildfire + prescribed burn) for the CFIRE inventory (source: 
[17]). Total emissions in 2014 were approximately 1507 × 106 kg per year. 
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Figure 2. Daily NH3 vs PM2.5 emissions in Southeast Australia during the study period (source: [16]).
Linear equation: y = 8.94x × 106 + 11.62x with Adjusted R-squared: 0.95.

On a US national scale, CONUS, ammonia emissions from wildfires are estimated
at approximately 5.4 × 108 ± 3.3 × 108 kg/year for 2005–2015 and the emissions of air
pollutants have continued to increase. Moreover, the average annual PM2.5 emissions (both
primary and secondary) from biomass burning on a US national scale emission in 2014 is
approximately 1507 × 106 kg per year. In general, NH3 emissions and PM2.5 emissions
(Figure 3) reach their maxima in the summer months. Summer months, in general, are
dryer and warmer and are, therefore, conducive to wildland fire activities coupled with
covering a larger burn area, especially in the Western US.
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Figure 3. Monthly PM2.5 emissions (wildfire + prescribed burn) for the CFIRE inventory (source: [17]).
Total emissions in 2014 were approximately 1507 × 106 kg per year.
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3. Discussion

Health outcomes in residential population: Wildfire emissions have impacts on
human health. There needs to be statistical analysis of the patterns of mortality and mor-
bidity for respiratory, cardiovascular, neurocognitive, chronic kidney, and other diseases
in counties affected by wildfires using the Centers for Disease Control and Prevention
wide-ranging online data for epidemiologic research (CDC WONDER) database and the
Agency for Healthcare Research and Quality datafiles, by looking into the months/years
when wildfires were the most active in respective regions. Using these results, researchers
can develop a strategy on health data to be included in the forecasting model of wildfires
to predict health outcomes in the most vulnerable population groups and to forecast the
burden of diseases associated with exposures to wildfire events, both short and long term.
This work also added significance for the eventual consideration of standards, other than
the mass-based PM2.5 NAAQS approach.

Statistical forecasting for future wildfire emissions: The physicochemical model in
Equation (1) cannot be used for forecasting future emissions, as the explanatory variables
cannot be measured for active wildfires. Expensive data collection procedures (e.g., using
drones) are necessary for existing scientific models for predicting wildfire emissions [18–20].
Furthermore, these models do not have a mechanism to learn from past wildfire data. These
issues make such models impractical for forecasting emissions in real-world scenarios.
Physical models of wildland fire spread have also been developed [21]. These physical
models typically include equations describing combustion chemistry as well as heat trans-
fer conservation laws. Due to the high complexity and prohibitive computational cost
of running these models, their use is generally limited to research purposes. For large
wildfires that burn for a long time and over a large area, the use of such models is not
practically feasible.

Instead, a promising approach is to use a deep-learning-based model for spatio-
temporal forecasting of future emissions from active wildfires. This can be accomplished
by merging recurrent neural networks, or RNNs, with convolutional neural networks, or
CNNs. RNNs enable efficient modeling of time-series data by propagating and updating
information from previous time steps, using non-linear, differentiable transformations [22].
On the other hand, CNNs, which are regularized versions of multilayer perceptrons, are
able to capture spatial information. CNN+RNN architectures have proven to be successful
in a number of similar tasks, including precipitation forecasting [23], traffic prediction in
transportation networks [24], music classification [25], and video frame prediction [26].

4. Conclusions

The research will improve our understanding of wildland fire impacts on public and
environmental health and will inform public-health strategies to reduce the associated
risks. Anthropogenic emissions of NOx and SO2 have declined in the U. S. during the
past 20 years, as a result of the Clean Air Act and its amendments, resulting in significant
improvements in air quality. However, the increase in wildfire frequency and intensity
threatens to reverse these achieved gains, especially in emissions of ammonia and PM2.5.
The exposure of PM2.5 and other wildfire air contaminants associated with wildfire on
respiratory, cardiovascular, and other disease-specific impacts will provide information that
can be used by local healthcare and public-health specialists to target vulnerable groups.

Author Contributions: Conceptualization, S.S. and V.P.A.; Writing, S.S., V.P.A. and J.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by NCSU Center for Human Health and the Environment,
grant #ES025128.

Data Availability Statement: All data reported in this paper are taken from previous studies as cited
in the figure captions.



Environ. Sci. Proc. 2022, 19, 59 5 of 6

Acknowledgments: We would like to thank Swarnali Sanyal, University of Illinois at Urbana-
Champaign, for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reid, C.E.; Maestas, M.M. Wildfire smoke exposure under climate change: Impact on respiratory health of affected communities.

Curr. Opin. Pulm. Med. 2019, 25, 179. [CrossRef] [PubMed]
2. Matz, C.J.; Egyed, M.; Xi, G.; Racine, J.; Pavlovic, R.; Rittmaster, R.; Henderson, S.B.; Stieb, D.M. Health impact analysis of PM2.5

from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020, 725, 138506. [CrossRef] [PubMed]
3. Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles

from other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1493. [CrossRef] [PubMed]
4. Finlay, S.E.; Moffat, A.; Gazzard, R.; Baker, D.; Murray, V. Health impacts of wildfires. PLoS Curr. 2012, 4, e4f959951cce2c.

[CrossRef]
5. Martin, K.L.; Hanigan, I.C.; Morgan, G.G.; Henderson, S.B.; Johnston, F.H. Air pollution from bushfires and their association with

hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994–2007. Aust. N. Z. J. Public Health 2013, 37, 238–243.
[CrossRef]

6. Chen, H.; Samet, J.M.; Bromberg, P.A.; Tong, H. Cardiovascular health impacts of wildfire smoke exposure. Part. Fibre Toxicol.
2021, 18, 2. [CrossRef]

7. Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational
exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [CrossRef]

8. Bray, C.D.; Battye, W.; Aneja, V.P.; Tong, D.Q.; Lee, P.; Tang, Y. Ammonia emissions from biomass burning in the continental
United States. Atmos. Environ. 2018, 187, 50–61.

9. Oliveras, I.; Anderson, L.O.; Malhi, Y. Application of remote sensing to understanding fire regimes and biomass burning emissions
of the tropical Andes. Glob. Biogeochem. Cycles 2014, 28, 480–496. [CrossRef]

10. Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.; Wynne, K.K. Estimating emissions from
fires in North America for air quality modeling. Atmos. Environ. 2006, 40, 3419–3432. [CrossRef]

11. Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from
NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 2011, 4, 625–641.
[CrossRef]

12. Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land
cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [CrossRef]

13. Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid
V006 (dataset). NASA EOSDIS Land Processes DAAC. 2015. Available online: https://doi.org/10.5067/MODIS/MCD64A1.006
(accessed on 12 January 2019).

14. Ito, A.; Penner, J.E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J. Geophys. Res.
Atmos. 2004, 109, D14. [CrossRef]

15. Bray, C.D.; Battye, W.H.; Aneja, V.P.; Schlesinger, W.H. Global emissions of NH3, NOx, and N2O from biomass burning and the
impact of climate change. J. Air Waste Manag. Assoc. 2021, 71, 102–114. [CrossRef] [PubMed]

16. Akdemir, E.A.; Battye, W.H.; Myers, C.B.; Aneja, V.P. Estimating NH 3 and PM 2.5 emissions from the Australia mega wildfires
and the impact of plume transport on air quality in Australia and New Zealand. Environ. Sci. Atmos. 2022, 2, 634–646. [CrossRef]

17. Larkin, N.K.; Raffuse, S.M.; Huang, S.; Pavlovic, N.; Lahm, P.; Rao, V. The comprehensive fire information reconciled emissions
(CFIRE) inventory: Wildland fire emissions developed for the 2011 and 2014 US National Emissions Inventory. J. Air Waste Manag.
Assoc. 2020, 70, 1165–1185. [CrossRef]

18. Finney, M.A. FARSITE, Fire Area Simulator—Model Development and Evaluation; US Department of Agriculture, Forest Service,
Rocky Mountain Research Station: Ogden, UT, USA, 1998.

19. Forghani, A.; Cechet, B.; Radke, J.; Finney, M.; Butler, B. Applying fire spread simulation over two study sites in California lessons
learned and future plans. In Proceedings of the2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona,
Spain, 23–27 July 2007; pp. 3008–3013.

20. Lin, Z.; Liu, H.H.; Wotton, M. Kalman filter-based large-scale wildfire monitoring with a system of UAVs. IEEE Trans. Ind.
Electron. 2018, 66, 606–615. [CrossRef]

21. Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 2009,
18, 349–368. [CrossRef]

22. Boden, M. A guide to recurrent neural networks and backpropagation. Dallas Proj. 2002, 2, 1–10.
23. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for

precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810.
24. Yu, H.; Wu, Z.; Wang, S.; Wang, Y.; Ma, X. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation

networks. Sensors 2017, 17, 1501. [CrossRef] [PubMed]

http://doi.org/10.1097/MCP.0000000000000552
http://www.ncbi.nlm.nih.gov/pubmed/30461534
http://doi.org/10.1016/j.scitotenv.2020.138506
http://www.ncbi.nlm.nih.gov/pubmed/32302851
http://doi.org/10.1038/s41467-021-21708-0
http://www.ncbi.nlm.nih.gov/pubmed/33674571
http://doi.org/10.1371/4f959951cce2c
http://doi.org/10.1111/1753-6405.12065
http://doi.org/10.1186/s12989-020-00394-8
http://doi.org/10.1016/j.envres.2014.10.015
http://doi.org/10.1002/2013GB004664
http://doi.org/10.1016/j.atmosenv.2006.02.010
http://doi.org/10.5194/gmd-4-625-2011
http://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.5067/MODIS/MCD64A1.006
http://doi.org/10.1029/2003JD004423
http://doi.org/10.1080/10962247.2020.1842822
http://www.ncbi.nlm.nih.gov/pubmed/33125305
http://doi.org/10.1039/D1EA00100K
http://doi.org/10.1080/10962247.2020.1802365
http://doi.org/10.1109/TIE.2018.2823658
http://doi.org/10.1071/WF06143
http://doi.org/10.3390/s17071501
http://www.ncbi.nlm.nih.gov/pubmed/28672867


Environ. Sci. Proc. 2022, 19, 59 6 of 6

25. Choi, K.; Fazekas, G.; Sandler, M.; Cho, K. Convolutional recurrent neural networks for music classification. In Proceedings of the
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5 March 2017;
pp. 2392–2396.

26. Hosseini, M.; Maida, A.S.; Hosseini, M.; Raju, G. Inception-inspired lstm for next-frame video prediction. arXiv 2019,
arXiv:1909.05622.


	Introduction 
	Results 
	Discussion 
	Conclusions 
	References

