
Citation: Macías-Hernández, B.A.;

Tello-Leal, E.; Ramirez-Alcocer, U.M.;

Hernandez-Resendiz, J.D. Particulate

Matter (PM2.5) Concentration

Forecasting through an Artificial

Neural Network in Port City

Environment. Environ. Sci. Proc. 2022,

19, 31. https://doi.org/10.3390/

ecas2022-12856

Academic Editor: Anthony Lupo

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Particulate Matter (PM2.5) Concentration Forecasting through an
Artificial Neural Network in Port City Environment †

Bárbara A. Macías-Hernández 1,* , Edgar Tello-Leal 1 , Ulises Manuel Ramirez-Alcocer 2 and
Jaciel David Hernandez-Resendiz 2

1 Faculty of Engineering and Science, Autonomous University of Tamaulipas, Victoria 87000, Mexico;
etello@docentes.uat.edu.mx

2 Multidisciplinary Academic Unit Reynosa-Rodhe, Autonomous University of Tamaulipas,
Reynosa 88779, Mexico; a2093010066@alumnos.uat.edu.mx (U.M.R.-A.);
a2183728004@alumnos.uat.edu.mx (J.D.H.-R.)

* Correspondence: bmaciash@docentes.uat.edu.mx
† Presented at the 5th International Electronic Conference on Atmospheric Sciences, 16–31 July 2022;

Available online: https://ecas2022.sciforum.net/.

Abstract: This study aims to analyze maritime traffic’s effect on air quality through multiple regres-
sion analysis using recurrent neural networks (RNN), allowing one to forecast the daily concentration
of PM2.5. The data set used the hourly average of the pollutant concentration levels and meteorologi-
cal factors from 1 May 2021 to 31 January 2022, and the entry and exit of cargo ships and petroleum
tankers to the port area in the same range of dates. The regression model based on the ANN reaches
an acceptable accuracy with a root-mean-squared error (RMSE) of 5.9554 and a mean absolute error
(MAE) of 4.5732.

Keywords: PM2.5; maritime traffic; RNN

1. Introduction

Urbanization has brought with it the conglomeration of the population into small
spaces where various anthropogenic activities are carried out. Metropolitan areas share
socioeconomic activities and the demand for services increases, such as transport, housing,
food, sources of employment, industry, and businesses. Therefore, the emission of pollu-
tants into the air also increases, reducing the quality of the environment and the health
of the inhabitants [1]. According to the World Health Organization (WHO) (2022), 99%
of the population breathes polluted air. Particulate matter (PM) is considered one of the
pollutants we should be concerned about because particles with diameters less than 2.5 µm
(PM2.5) can penetrate deep into the lungs and reach the bloodstream. The impact it has
on other organs has recently been evaluated. PM2.5 has been reported to cause serious
health concerns not only in long-term exposure but also in short-term exposure [2]. Studies
have reported the association between respiratory problems and exposure to PM2.5 [3].
It is known to reduce life expectancy at birth by around 1.2–1.9 years; this was observed
in highly polluted areas such as Asia and Africa [4]. Moreover, PM2.5 can cause allergies
in children and is associated with nasal, ocular, and skin symptoms [5]. The association
between hypertension and death of cardiometabolic diseases and PM2.5 levels is greater in
places where pollution concentration levels are very high [6,7].

Ambient particulate matter with an aerodynamic diameter of 2.5 (PM2.5) is mainly
emitted from traffic combustion, road dust, soil, and mass burning [8–10]. The chemical
composition of the particles varies according to the source and the environment in which
it is produced; for instance, exhaust emissions were found to be the higher contributor
to traffic PM2.5 emissions showing a diurnal variation [8]. Ports are a gateway to world
trade. It is a multifunctional area that provides services to industries and businesses, so we
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can find a combination of transportation that connects supplies to the main consumption
centers. [11]. Although the contribution of emissions from ships in a city port has not been
extensively studied, there is concern about the impact they have on air quality, mainly
because of the proximity that the ports have to the population [12–14]. However, the
correlation between air pollution and port traffic has been troubled, mainly due to the
scanty information related to port management, granting a degree of uncertainty to the
correlation coefficients [15,16]. Moreover, the sample size of PM2.5 data to run the models
in some harbors is not large enough to improve prediction [17].

Maritime transport emissions are mostly NOx, SOx, volatile organic compounds
(VOC), PM1, PM2.5, PM10, black carbon (BC), and some trace elements bounded in PM1 and
PM2.5 [18]. However, it has been observed that the primary source of PM1 and PM2.5 is ship
exhaust emissions emitted by the combustion of heavy oil [5,11,15,19]. Another PM source
is dust generated by coal and iron ore handling and dispersed by wind [20]. Therefore,
ship emissions are established as a primary pollutant emitted directly from the source or
through the precursor formation. Moreover, ship emissions are the main contributor to this
formation [21]. Weather in ports plays an essential role in the dispersion and distribution of
pollutants; air quality data from specific areas should be considered, including the effects
of breeze circulation, the formation of the boundary layer, and the impact of humidity.
Primary emissions have been reported during the cold season and show low diurnal
variation between port sites and city monitoring stations, suggesting no change in the air
mass [14,19,22]. Moreover, air pollution mass correlated with open sea traffic is correlated
with PM measures on the coast, observing the influence of air transportation [19]. Air
pollution in ports has also been correlated with the size of containers as ships spend more
time loading and unloading the goods if the contents are weightier [12]. The efficiency
of port management has also been evaluated, such as port logistics, infrastructure, and
policies, as well as the efforts to reduce air emissions. Some ports have adopted green
technologies and energy programs, including the use of technologies that improve the
operational efficiency of engines, resulting in fewer air emissions [20,23,24].

This paper presents an air quality analysis with data from 9 months, with average
hourly concentrations of pollutants (PM1, PM2.5, PM10, CO, and O3) and meteorological
factors (temperature and relative humidity) in a port city. On the one hand, we analyze
the relationship between variables considered in the study using Spearman’s correlation
coefficient to measure the effect of cargo ship traffic and oil tankers on the concentration
of pollutants in the port area. On the other hand, a recurrent neural network (RNN)
is implemented to perform a multivariate linear regression analysis to predict the daily
concentration of PM2.5.

2. Materials and Methods
2.1. Area of Study

Tampico is one of the main ports on the east coast of Mexico, holding imports and
exports for mining products, petrochemicals, steel, minerals, agricultural bulk, and large
structures, among other industrial products. It has a total of 11 berth positions with
2147 linear meters in its public terminals and specialized equipment to handle various
merchandise. The Port of Tampico offers extensive regular shipping line services that
connect it with more than 100 countries worldwide. The port city is part of the metropolitan
area along with four other towns situated on the banks of the Panuco River. Tampico
city has a population of 297,562, an annual average temperature range of 22–26 ◦C, and a
yearly rainfall average of 900 to 1100 mm. The climate is classified as a warm sub-humid
climate with rains in summer and average humidity (100%). The land use is divided into
agriculture (8%), body of water (16%), and urban zone (45%), within an approximate area
of 114.5 Km2. The site registers stronger winds from October to June, averaging 16.6 km/h,
while from June to October, the wind speed decreases, recording an annual average of
12.3 km/h.
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2.2. Data Collection and Analysis

Concentration levels of pollutants in the air and meteorological factors were statisti-
cally analyzed using the Kolmogorov–Smirnov Lilliefors test to determine the normality
of the data. The data sets were identified as non-parametric distribution, for which it was
determined to apply a Spearman correlation analysis. Spearman’s correlation coefficient
was used to examine the relationship between variables considered in our study. A linear
regression analysis was performed using a recurrent neural network architecture for pre-
dicting the daily concentration of particulate matter (PM2.5) using an hourly average of
the pollutant concentration levels, meteorological factors, and the departures and exit of
ships to the port area on the same dates. Moreover, a descriptive analysis was performed
by calculating the median, interquartile range (IQR), and minimum and maximum values
for the continuous variables of concentrations of air pollutants and meteorological factors.

3. Results and Discussion
3.1. Descriptive Analysis

The concentration levels obtained from the continuous monitoring of air pollutants in
the port of Tampico, Tamaulipas were analyzed to forecast the levels of fine mass in the air
(PM2.5), using a database of 9 months of monitoring from 1 May 2021 to 31 January 2022.
Table 1 shows the descriptive analysis of the monthly concentrations of particulate matter.
According to the results, a higher concentration was observed during December 2021 for
ultrafine particles (PM1), with a median (IQR) of 17.06 (8.65) µg/m3; 24.56 (14.1) µg/m3

for fine particles (PM2.5); and 29.35 (18.1) µg/m3 for coarse particles (PM10). However,
particulate matter was detected at high levels during May (2021) and January (2022).
According to previous studies, PM has been reported to be higher during spring and
winter [18,25]. The maximum median value was observed during December, with 34.6,
51.97, and 63.36 µg/m3 for PM1, PM2.5, and PM10, respectively. PM2.5 levels were below the
detection limits established by Mexican normativity, considering the acute exposure, the
set concentration of which is 45 µg/m3. However, the median concentration was above the
standard value of 12 µg/m3 reported as an exposure limit for chronic exposure (annual).

Table 1. Descriptive statistics of meteorological factor data and particulate matter concentration.

Month PM1 (µg/m3) PM2.5 (µg/m3) PM10 (µg/m3)

Median IQR Max Min Median IQR Max Min Median IQR Max Min

May 12.65 10.5 29.44 5.91 17.18 15.3 42.53 7.36 19.77 16.7 51.43 8.71
June 9.4 4.95 26.98 1.91 12.01 6.83 39.66 2.5 15 8.21 48.39 3.47
July 9.77 5.63 22.15 2.57 12.74 8.84 31.91 3.13 14.12 10.8 37.46 3.93

August 10.58 4.03 26.83 3.52 13.59 6.15 39.7 4.27 15.25 6.71 48.06 5.1
September 10.39 10.4 23 2.14 13.41 14.5 35.39 2.71 14.94 15.2 41.43 3.51

October 10.79 8.41 31.16 3.4 13.39 13.1 46.44 4.63 14.95 15.1 56.94 6.08
November 8.485 5.7 26.35 2.91 11.22 8.22 37.68 3.34 13.14 9.75 44.49 3.87
December 17.06 8.65 34.6 4.57 24.56 14.1 51.97 5.93 29.35 18.1 63.36 7.7
January * 12.77 8.55 24.92 3.23 17.58 13.3 35.62 3.93 21.45 16.1 42.29 4.7

* This month correspond to 2022.

Meteorological conditions showed steady behavior for temperature and relative hu-
midity throughout the study period, with median temperature ranging between 28 and
30 ◦C, with higher values during September and a temperature decrease to 20 ◦C during
May. On the other hand, relative humidity (RH) fluctuates between 80% and 100%; how-
ever, during December, RH drops to 73%. Favorable weather conditions will result in a
good dispersion or dilution of pollutants; these conditions can also affect air quality, so
emissions can fluctuate [25]. Several studies have reported a possible association between
relative humidity and PM2.5, and their finding suggests that the abrupt increase in PM2.5
concentrations is strongly correlated with fluctuations in relative humidity. In contrast,
environments with constant humidity do not contribute to the increase in PM2.5 levels [26].
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According to our results, relative humidity in Tampico was steady, and the higher PM2.5
concentration was observed during December when RH decreased to 70%.

3.2. Correlation Analysis

Spearman’s analysis revealed a strong positive correlation between the smallest frac-
tion of particles (PM1, PM2.5, and PM10), showing a correlation coefficient (r) of 1 with a
p-value less than 0.05 (see Figure 1). Moreover, a correlation between temperature and
RH is strong (r = 0.82); these variables do not correlate with the concentration levels of
the particulate material displaying values of r < 0.20 (see Figure 1). However, there is
good correlation with r = −0.73 and r = −0.58 between RH with CO, and RH with O3,
respectively. This way, temperature presents a correlation of r = −0.52 and r = 0.70 with CO
and O3. In all cases, a p-value < 0.05 shows high statistical significance. Although gases
(CO and O3) were not correlated with PM2.5, it is essential to consider that temperature and
relative humidity, alongside other pollutants such as CO and O3, are responsible for PM2.5
formation. The correlation between gases and PM had seasonal variation; thus, a temporal
scale should be considered [25]. Furthermore, the correlation analysis shows a negative
moderated association between PM2.5 and cargo ships (CS) with r = −0.49 (see Figure 1).
According to the inventory report, the CS has been reported to be the main PM contributor,
followed by containers and tankers [21]. Moreover, there is no association between the
particulate matter and the entry and exit of the petroleum tankers (−0.14 < r < −0.16).
Finally, moderated negative association of cargo ships and petroleum tankers (PT) with CO
was r = −0.51 and r = −0.60, respectively. Petroleum tankers and O3 were correlated with
an r = 0.061.
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3.3. Regression Analysis

The predictive model is evaluated with the remaining 20% of the data set instances. The
RNN predictive model obtains an RMSE value of 5.9554, indicating that the concentration
level of the data in the regression line has an acceptable fit, with a minimum distance from
the data points of the regression line. Furthermore, the difference between the predicted
and actual values is moderate, with an MAE of 4.5732, indicating that the average forecast is
acceptable. Regarding the mean absolute percentage error (MAPE) metric, a value reached
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39.9516, which suggests that the average difference between the predicted and current
values is high.

Figure 2 shows the daily prediction of the concentration of PM2.5 generated by the
model based on the proposed RNN. The prediction line follows the pattern defined by the
real data but with a significant lag, which causes the error metrics to be moderate. The
difference between the current and predicted data could be observed to be smaller, but
this is because the concentration levels of PM2.5 in the monitored area are low. These data
would have a high error percentage, as shown by the value obtained in the MAPE metric.
An important aspect to consider is that the relative humidity is high (close to 100%) on most
of the days considered in the study, for which this variable does not support the prediction
of the contaminant.
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4. Conclusions

This study analyzed the concentration levels of particulate matter, CO, O3, and meteo-
rological factors in the port of Tampico, Mexico. Correlation coefficient analysis confirmed
a very high relationship between the three types of particulate matter. In addition, the
contaminant CO presents a high negative association with relative humidity. In the case of
cargo ships, they show a moderate negative relationship with PM1, PM2.5, PM10, and CO.
The petroleum tankers have a moderately negative relationship with CO (r = −0.60). Fi-
nally, linear regression analysis generated by the RNN prediction model obtains acceptable
RMSE and MAE values. However, with a high MAPE metric, the daily prediction of PM2.5
concentration should be considered to have moderate performance and accuracy.
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