

Proceeding Paper

Study on the Relationship of WSIS of PM_{2.5} with NH₃ and Other Trace Gases over Delhi, India [†]

Garima Kotnala 1,2, Sudhir Kumar Sharma 1,2,* and Tuhin Kumar Mandal 1,2

- Council of Scientific and Industrial Research–National Physical Laboratory (CSIR–NPL), New Delhi 110012, India; garima388@gmail.com (G.K.); tuhin.npl@nic.in (T.K.M.)
- ² Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- * Correspondence: sudhircsir@gmail.com or sudhir.npl@nic.in
- † Presented at the 5th International Electronic Conference on Atmospheric Sciences, 16–31 July 2022; Available online: https://ecas2022.sciforum.net/.

Abstract: The water soluble ionic species (WSIS) i.e., NH_4^+ , SO_4^{2-} , NO_3^- and Cl^- of $PM_{2.5}$ and trace gases (NH₃, NO, NO₂, SO₂, HNO₃) were measured to study the relationship of ambient NH₃ in the formation of secondary inorganic aerosols in Delhi, India from January 2013–December 2018. During the study period, the average concentrations of NH₃, NO, NO₂, SO₂ and HNO₃ were 19.1 \pm 3.8 ppb, 2.8 ± 4.3 ppb, 17.9 ± 4.2 ppb, 2.45 ± 0.47 ppb, 1.11 ± 0.35 ppb, respectively. The concentrations of trace gases were higher during post-monsoon whereas the concentrations of WSIS in PM_{2.5} were estimated higher in winter. The correlation matrix of trace gases reveal that the ambient NH₃ neutralize the acid gases (NO, NO₂ and SO₂) at the monitoring site. Study reveals that the abundance of particulate NH₄⁺ at Delhi to neutralized the SO₄²⁻, NO₃⁻, Cl⁻ particles during all the seasons.

Keywords: PM_{2.5}; aerosols; carbonaceous species; OC; IGP region

Citation: Kotnala, G.; Sharma, S.K.; Mandal, T.K. Study on the Relationship of WSIS of PM_{2.5} with NH₃ and Other Trace Gases over Delhi, India. *Environ. Sci. Proc.* **2022**, *19*, 24. https://doi.org/10.3390/ ecas2022-12817

Academic Editor: Anthony Lupo

Published: 14 July 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The formation of secondary aerosols in the atmosphere influenced by reaction rate of NH $_3$ which depends on the favorable meteorological condition and availability of acid gases in the atmosphere [1,2]. Fine fraction of particulate matter (PM $_2$.5) is considered as one of the major pollutants having a negative impact on atmospheric chemistry [3,4]. Secondary aerosols contribute to a major fraction of PM $_2$.5 mass concentration which is mainly formed from NH $_3$ and its co-pollutants such as NO $_x$ and SO $_x$ [5]. NH $_3$ as a primary alkaline gas neutralizes the acid gases (HNO $_3$ and H $_2$ SO $_4$) and form the secondary particulates (NH $_4$ NO $_3$ and (NH $_4$) $_2$ SO $_4$), which are the major fractions of airborne fine particles [6]. In recent past several studies on temporal and spatial changes of ambient NH $_3$, NO, NO $_2$, CO and SO $_2$ have been carried on short-term basis as well as year-long basis at the urban and sub-urban locations of India [7–11]. However, long-term study on seasonal basis as well gas-to-particle conversion is inadequate in Indian region. In this paper, we reported the annual and seasonal changes of ambient NH $_3$, NO, NO $_2$, SO $_2$ and PM $_2$.5 measured for the period of 2013–2018.

2. Materials and Methods

Ambient NH₃, NO, NO₂, and SO₂ were monitored at CSIR-National Physical Laboratory, New Delhi from January 2013 to December 2018. 24 h periodic sampling (2 samples/week) of PM_{2.5} was also performed during this period on quartz filters. Ground based analyzers were used to continuous measurement of trace gases (NH₃, NO, NO₂ and SO₂) at 10 m height from the surface level [11]. The estimation of WSICs (Na⁺, NH₄⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, NO₃⁻ and SO₄²⁻) of PM_{2.5} were determined using Ion Chromatograph (DIONEX, Sunnyvale, CA, USA) with suppressed conductivity [12].

Environ, Sci. Proc. 2022, 19, 24

3. Results and Discussion

During the study period (2013–2018), the average levels of NH₃, NO, NO₂, SO₂ and HNO₃ were 19.1 \pm 3.8 ppb, 20.8 \pm 4.3 ppb, 17.9 \pm 4.2 ppb, 2.45 \pm 0.47 ppb, 1.11 \pm 0.35 ppb, respectively whereas the levels of NH₄+, SO₄²⁻, NO₃⁻ and Cl⁻ of PM_{2.5} were 9.1 \pm 3.5 µg m⁻³, 12.3 \pm 4.1 µg m⁻³, 10.8 \pm 4.8 µg m⁻³ and 9.3 \pm 3.2 µg m⁻³, respectively. Seasonal mixing ratios of NH₃, other trace gases (NO, NO₂ and SO₂) and concentrations of water soluble ionic components (WSICs) of PM_{2.5} are depicted in Tables 1 and 2. The ambient NH₃ indicated significant seasonal variation with highest mixing ratio during post-monsoon season (22.2 \pm 3.9 ppb) followed by winter (20.9 \pm 4.1 ppb), summer (19.4 \pm 4.1 ppb) and monsoon (14.0 \pm 2.5 ppb) seasons.

Table 1. Seasonal variation in trace gases (in ppb) in Delhi during 2013–2018.

Seasons	NH ₃	NO ₂	NO	SO ₂
Winter	20.9 ± 4.1	17.7 ± 4.5	18.1 ± 4.4	2.24 ± 0.37
Summer	19.4 ± 4.1	19.1 ± 4.3	21.4 ± 5.4	2.25 ± 0.43
Monsoon	14.0 ± 2.5	14.9 ± 3.7	20.4 ± 5.3	2.55 ± 0.26
Post-Monsoon	22.2 ± 3.9	20.0 ± 4.2	23.3 ± 4.5	2.77 ± 0.36
Average	19.1 ± 3.8	17.9 ± 4.2	20.8 ± 4.3	2.45 ± 0.47

Table 2. Seasonal variation of WSIC of PM_{2.5} (in μ g m⁻³) in Delhi during 2013–2018.

Seasons	PM _{2.5}	Cl-	SO ₄ ²⁺	NO_3^-	$\mathrm{NH_4}^+$
Winter	190 ± 82	15.6 ± 8.9	19.6 ± 6.9	22.7 ± 9.5	17.5 ± 2.8
Summer	92 ± 30	7.5 ± 3.1	8.5 ± 2.2	5.0 ± 2.8	5.8 ± 3.5
Monsoon	86 ± 33	6.2 ± 2.1	9.9 ± 1.9	4.7 ± 2.4	3.9 ± 1.2
Post-Monsoon	171 ± 72	7.8 ± 3.0	11.3 ± 3.4	10.9 ± 3.8	9.3 ± 4.4
Average	135 ± 45	9.3 ± 3.2	12.3 ± 4.1	10.8 ± 4.8	9.1 ± 3.5

The higher concentration of NH_4^+ during winter season at the observational site of Delhi may be due to high (relative humidity) RH, low temperature and higher NH_3 mixing ratio influenced the NH_4^+ formation [13]. In winter, nitrates availability was significant due to possible reduction in SO_2 oxidation rates in response to lower level of hydroxyl (OH) radical [14]. A relationship of particulate NH_4^+ with SO_4^{2-} , NO_3^- and Cl^- during all the seasons supports the hypothesis of gas-to-particle conversion. The highest average molar ratio of NH_4^+ to the SO_4^{2-} during winter (4.86) followed by post-monsoon (4.38), summer (3.61) and monsoon (2.1) seasons indicated the complete neutralization of H_2SO_4 , abundance of $(NH_4)_2SO_4$ and NH_3 -rich condition during the winter season [11]. Since NH_3 is the only alkaline gas in the atmosphere with adequate level to neutralize a significant portion of SO_4^{2-} , NO_3^- and Cl^- therefore the aerosol electro-neutrality relationship between NH_4^+ and SO_4^{2-} , NO_3^- and Cl^- ions can be computed [15].

4. Conclusions

The average levels of all trace gases (NH $_3$, NO, NO $_2$ and SO $_2$) were observed higher during post-monsoon season whereas the mass concentrations of WSICs of PM $_{2.5}$ were higher in winter seasons. The correlation matrix of trace gases demonstrated that the ambient NH $_3$ neutralize all the acid gases (NO, NO $_2$ and SO $_2$) at Delhi during the study period.

Author Contributions: Conception and design of the study were planned by S.K.S.; Data analysis were performed by G.K., T.K.M. and S.K.S.; The original first draft was written by G.K. All authors have read and agreed to the published version of the manuscript.

Funding: The authors also acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi (CSIR EMPOWER Project: OLP-102132) and Department of Science and Technology, New Delhi (Grant No.: SR/S4/AS:12/2008) for financial support.

Environ. Sci. Proc. 2022, 19, 24 3 of 3

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are available with corresponding author and will be provided on reasonable request.

Acknowledgments: Authors express sincere gratitude to the Director, CSIR-NPL, New Delhi-110012, India as well as Academy of Scientific and Innovative Research (AcSIR) for the constant encouragement and support to carry out this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ianniello, A.; Spataro, F.; Esposito, G.; Allegrini, I.; Hu, M.; Zhu, T. Chemical characteristics of inorganic ammonium salts in PM_{2.5} in the atmosphere of Beijing (China). *Atmos. Chem. Phys.* **2011**, *11*, 10803–10822. [CrossRef]
- 2. Meng, Z.Y.; Lin, W.L.; Jiang, X.M.; Yan, P.; Wang, Y.; Zhang, Y.M.; Yu, X.L. Characteristics of atmospheric ammonia over Beijing, China. *Atmos. Chem. Phys.* **2011**, *11*, 6139–6151. [CrossRef]
- 3. Pant, P.; Harrison, R.M. Critical review of receptor modelling for particulate matter: A case study of India. *Atmos. Environ.* **2012**, 49, 1–12. [CrossRef]
- 4. Sharma, S.K.; Mukherjee, S.; Choudhary, N.; Rai, A.; Ghosh, A.; Chatterjee, A.; Vijayan, N.; Mandal, T.K. Seasonal variation and sources of carbonaceous species and elements of PM_{2.5} and PM₁₀ over the eastern Himalaya. *Environ. Sci. Pollut. Res.* **2021**, 28, 51642–51656. [CrossRef] [PubMed]
- 5. Singh, N.; Murari, V.; Kumar, M.; Barman, S.C.; Banerjee, T. Fine particulates over South Asia: Review and meta-analysis of PM_{2.5} source apportionment through receptor model. *Environ. Pollut.* **2017**, 223, 121–136. [CrossRef] [PubMed]
- Huang, X.F.; He, L.Y.; Hu, M.; Canagaratna, M.R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.W.; Liu, X.G.; et al. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmos. Chem. Phys. 2010, 10, 8933–8945. [CrossRef]
- 7. Khemani, L.T.; Momin, G.A.; Naik, M.S.; Rao, P.P.; Safai, P.D.; Murty, A.S.R. Influence of alkaline particulates on pH of cloud and rain water in India. *Atmos. Environ.* **1987**, *21*, 1137–1145. [CrossRef]
- 8. Parmar, R.S.; Satsangi, G.S.; Lakhani, A.; Srivastava, S.S.; Prakash, S. Simultaneous measurements of ammonia and nitric acid in ambient air at Agra (27°10′ N and 78°05′ E) (India). *Atmos. Environ.* **2001**, *35*, 5979–5988. [CrossRef]
- 9. Sharma, S.K.; Datta, A.; Saud, T.; Saxena, M.; Mandal, T.K.; Ahammed, Y.N.; Arya, B.C. Seasonal variability of ambient NH₃, NO, NO₂ and SO₂ over Delhi. *J. Environ. Sci.* **2010**, 22, 1023–1028. [CrossRef]
- 10. Saraswati; Sharma, S.K.; Mandal, T.K. Five-year measurement of ambient ammonia and its interaction with other trace gases at an urban site of Delhi, India. *Meteo. Atmos. Phys.* **2018**, *130*, 241–257. [CrossRef]
- 11. Sharma, S.K.; Saxena, M.; Mandal, T.K. Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. *Atmos. Res.* **2019**, *218*, 34–49.
- 12. Sharma, S.K.; Mandal, T.K.; Kumar, M.; Gupta, N.C.; Pathak, H.; Harit, R.C.; Saxena, M. Measurement of ambient ammonia over the National Capital Region of Delhi, India. *MAPAN* **2014**, *29*, 165–173. [CrossRef]
- 13. Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. *Chemosphere* **2002**, *49*, 675–684. [CrossRef]
- 14. Walker, J.T.; Whitall, D.R.; Robarge, W.; Paerl, H.W. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. *Atmos. Environ.* **2004**, *38*, 1235–1246. [CrossRef]
- Behera, S.N.; Sharma, M. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci. Total Environ. 2010, 408, 3569–3575. [CrossRef] [PubMed]