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Abstract: Approximately 40% and 36% of total energy consumption and CO2 emissions, respectively,
in the EU are due to buildings. A large percentage of this energy consumption and its associated CO2

emissions are due to conventional heating, ventilation, and air conditioning (HVAC) systems. Solar
desiccant cooling (SDEC) systems present a high energy saving potential to replace conventional
HVAC systems. However, SDEC systems could generate a high environmental impact during their
manufacturing stage, which may even exceed the benefit in the use phase. Therefore, the aim of this
work is to focus on studying feasible ecodesign strategies for a SDEC system composed mainly of
an indirect evaporative cooler, a desiccant wheel and a solar thermal system. More specifically, the
strategies considered were: (a) selection of environmentally friendly materials, such as biocomposites
based on natural fibers; (b) weight optimization; and (c) reuse of components at the end of the
life phase. The results showed that the proposed strategies to the SDEC system could significantly
improve the environmental impact throughout its entire life cycle. Combining all the proposed
improvements, the environmental impact was reduced between 45% and 60% for all the indicators.

Keywords: LCA; solar cooling; desiccant evaporative cooling; environmental impact; ecodesign

1. Introduction

The global energy consumption of buildings has increased sharply in recent years,
which has generated problems owing to its associated environmental impacts [1]. Solar
desiccant cooling (SDEC) systems could help to reduce energy consumption in buildings,
due to the use of renewable energies and its high energy efficiency [2]. However, during the
manufacturing and end-of-life stages, these system also consume raw materials and energy
from non-renewable sources, hence generating high environmental impacts [3]. Therefore,
to properly assess the real benefits of the SDEC system, it is necessary to determine its
environmental impact throughout its entire life cycle [4]. Life cycle assessment (LCA) is an
appropriate methodology to scientifically evaluate any type of system or process in terms
of environmental impact [5].

Considering that the environmental impact generated by SDEC systems is mainly
owing to their manufacturing and end-of-life phases [6], reuse or recyclability can be
especially advantageous in terms of circular economy and sustainability. Thereby, the
aim of this work was to analyze some improvements of the SDEC systems in term of
environmental impact. Specifically, some eco-design strategies were evaluated, material
changes and reuse of materials at the end-of-life of the system.
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2. Material and Methods

The experimental SDEC system studied was located in Andaltec (Martos, southern
Spain) and was designed to supply air conditioned to a research laboratory. LCA was
applied to analyse the influence on the environmental impact of the ecodesign strategies
considered. Different case studies were analysed: (a) the base system (DW1), (b) the
base system with improvements in the manufacturing phase (DW2), (c) the base system
with improvements in the end-of-life phase (DW3); and, finally, (d) the two types of
previous improvements (DW2 and DW3) applied together (DW4). Concerning DW2, the
specific modifications in terms of ecodesign were the replacement of the aluminum in the
structure of the solar collector with steel; and the replacement of the steel in the structure
of the desiccant cooling systems with natural fiber-based biocomposites (NFB), achieving a
reduction of 50% in weight. Regarding DW3, an improvement of the end-of-life phase was
studied in which 50% of total mass of the components were reuse.

For this work, Eco-Indicador99 method [7] was selected because it allows easy compar-
ison of the results. This method assesses the life cycle based on the three impact categories:

• Impacts on natural resources: this category is represented by the Land Used Potential
(LUP) indicator.

• Impacts on quality of ecosystems: this category is represented by Mineral Depletion
(MND) and Fossil Fuel Depletion (FFD) indicators.

• Impacts on human health: this category is represented by Carcinogenic Effect Potential
(CEP), Respiratory Effects Potential (RPEP), Climate Change Potential (CHP), Radi-
ation Effect Potential (RDEP), Ozone Layer Depletion (OLD), Ecotoxicity Potential
(ETP) and Acidification Potential (AP) indicators.

All of the impact categories described above can be summed up in a single parameter,
called the “single score parameter” (SCP).

3. Results
3.1. SCP on Manufacturing Phase

The contribution of the manufacture phase to the SCP in DW1 and DW2, respectively,
is shown in Figure 1. It can be observed that the maximum SCP value for DW2 was for
steel, this result being half of the maximum value of DW1, for aluminium. This was due to
the amount of aluminum involved in DW2 was less than half that of DW1 as a consequence
of replacing some aluminum with NFB and weight optimization.

Environ. Sci. Proc. 2022, 18, 17 2 of 5 
 

 

of this work was to analyze some improvements of the SDEC systems in term of environ-

mental impact. Specifically, some eco-design strategies were evaluated, material changes 

and reuse of materials at the end-of-life of the system. 

2. Material and Methods 

The experimental SDEC system studied was located in Andaltec (Martos, southern 

Spain) and was designed to supply air conditioned to a research laboratory. LCA was 

applied to analyse the influence on the environmental impact of the ecodesign strategies 

considered. Different case studies were analysed: (a) the base system (DW1), (b) the base 

system with improvements in the manufacturing phase (DW2), (c) the base system with 

improvements in the end-of-life phase (DW3); and, finally, (d) the two types of previous 

improvements (DW2 and DW3) applied together (DW4). Concerning DW2, the specific 

modifications in terms of ecodesign were the replacement of the aluminum in the struc-

ture of the solar collector with steel; and the replacement of the steel in the structure of the 

desiccant cooling systems with natural fiber-based biocomposites (NFB), achieving a re-

duction of 50% in weight. Regarding DW3, an improvement of the end-of-life phase was 

studied in which 50% of total mass of the components were reuse. 

For this work, Eco-Indicador99 method [7] was selected because it allows easy com-

parison of the results. This method assesses the life cycle based on the three impact cate-

gories: 

• Impacts on natural resources: this category is represented by the Land Used Potential 

(LUP) indicator. 

• Impacts on quality of ecosystems: this category is represented by Mineral Depletion 

(MND) and Fossil Fuel Depletion (FFD) indicators. 

• Impacts on human health: this category is represented by Carcinogenic Effect Poten-

tial (CEP), Respiratory Effects Potential (RPEP), Climate Change Potential (CHP), Ra-

diation Effect Potential (RDEP), Ozone Layer Depletion (OLD), Ecotoxicity Potential 

(ETP) and Acidification Potential (AP) indicators. 

All of the impact categories described above can be summed up in a single parameter, 

called the “single score parameter” (SCP). 

3. Results 

3.1. SCP on Manufacturing Phase 

The contribution of the manufacture phase to the SCP in DW1 and DW2, respectively, 

is shown in Figure 1. It can be observed that the maximum SCP value for DW2 was for 

steel, this result being half of the maximum value of DW1, for aluminium. This was due 

to the amount of aluminum involved in DW2 was less than half that of DW1 as a conse-

quence of replacing some aluminum with NFB and weight optimization. 

 

Figure 1. SCP in the manufacturing phase of the DW1 and DW2 prototypes. 

1400
1100 900 800 782

400
196

90 5 5

2800

1500

900 782 600 196 90 5 5 5
0

500

1000

1500

2000

2500

3000 DW1 DW2 

Figure 1. SCP in the manufacturing phase of the DW1 and DW2 prototypes.

3.2. Impact Indicators

The percentage change in environmental performance (PCEP) for all impact indicators
in DW4 and DW1 is shown in Figure 2. The lowest PCEP values are presented in DW4
owing to the reduction in material consumption during the manufacturing phase and due
to the material reuse at the end-of-life phase. The lowest indicators in DW4 were CEP, REP,
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CHP, RDEP, OLD, ETP, AP and FFD. However, LUP and MND were barely modified due
to their low influence on electricity consumption. The main differences of PCEP between
DW4 and DW1 came from the great reduction of the electricity consumption from the grid
necessary for the manufacture of the aluminum. The CHP result is noteworthy, since it is
an indicator highly regarded nowadays and a reduction of 60% was achieved with DW4.
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Figure 2. Impact indicator results for DW1 vs DW4.

3.3. Results for the Different Impact Categories

The results of the impact categories for all the case studies analysed are shown in
Figure 3. The weight optimization strategy and the use of more environmentally friendly
materials (DW2) led to a reduction of 50%, 18% and 22% in the impact categories of human
health, ecosystem quality and resource consumption, respectively. In addition, DW3 results
show that the reuse of materials used for manufacturing led to a reduction between 20%
and 25% in the three impact categories studied. Finally, combining both strategies, DW2
and DW3, weight optimization and material reuse, a synergistic effect was perceived which
led to a significant reduction in the impact associated with the different categories: up to
60% in human health, 25% in ecosystem quality and 45% in resource consumption.
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4. Conclusions

A Life cycle Assessment (LCA) for a solar desiccant cooling (SDEC) system was carried
out. In this work, environmentally friendly and light materials, such as natural fiber-based
biocomposites (NFB), were selected with the aim of reducing the environmental impact
of the SDEC system. The results showed significant impact reductions, between 25% and
60%, for all impact categories analyzed. This improvement was due to the manufacturing
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phase (the stage with the greatest impact) and to the reuse of the material at the end of its
life, reducing the global environmental impact. In terms of Land Used Potential (LUP) and
Mineral Depletion (MND), with the proposed changes no improvements were obtained.
This was due to the environmental benefit of reducing the use of steel and aluminum
and, consequently, the reduction in energy consumption during the manufacturing phase.
It is highly remarkable that these results can be extrapolated to other, similar SDEC sys-
tems; this is considering that, in all of them, manufacturing is the stage with the greatest
environmental impact, as reported by the literature.
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