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Abstract: Futuristic rainfall projections are used in scale and various climate impact assessments.
However, the influence of climate variability on spatial distribution patterns and characteristics
of rainfall at the local level, especially in semi-arid catchments that are highly variable and are
not well explored. In this study, we explore the influence of climate variability on the spatial
distribution and rainfall characteristics at a local scale in the semi-arid Shashe catchment, Northeastern
Botswana. The LARS-WG, Long Ashton Research Station Weather Generator downscaling method,
three representative scenarios (RCP 2.6, RCP 4.5, and RCP 4.5), three trend detection methods (Mann-
Kendall, Sen’s slope, and innovative trend analysis) and L-moment method were used to assess
climate change impacts on rainfall. Two data sets were used; one with 40 years of observed data
from 1981–2020 and the other with 70 years from 1981–2050 (40 years of observed and 30 years of
projected data from 2021–2050). Generally, the study found trend inconsistencies for all the trend
detection methods. In most cases, Sen’s Slope has a high estimate of observed and RCP 2.6, while
ITA overestimates rainfall totals under RCP 4.5 and RCP 8.5. The trend is increasing for annual total
rainfall in most gauging stations while decreasing for annual maximum rainfall. The catchment is
homogeneous, and Generalized Logistic distribution is the dataset’s best-fit distribution. Spatial
coverage of a 100-year rainfall between 151–180 mm will be 81% based on observed data and 87%
based on projected data under RCP 2.6 scenario when it happens. A 200-year rainfall between
196–240 mm under RCP 4.5 and 8.5 has high spatial areal coverage, at least 90% of the total catchment.
The outcomes of this study will provide insightful information for water resource management and
flood risk assessment under climate change. There is a need, however, to assess the transferability
of this approach to other catchments in the country and assess the performance of other advanced
modelling systems, such as machine learning, in this region.
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1. Introduction

Climate variability due to climate change worldwide has primarily been responsible
for generating extreme weather conditions leading to floods and droughts. The current
anthropogenic global warming of 1.5 ◦C compared to pre-industrial levels has increased the
intensity, frequency, and magnitude of precipitation events [1–3]. Future projected warm-
ing beyond 2 ◦C will intensify precipitation events increasing the risk of flooding in some
regions [4,5]. These, in turn, impact safe and adequate amounts of water availability [6–8],
food production and security, soil erosion [9–11], the spread of wildfires [12–14], worsen
the current efforts to climate resilience adaptation, damage to property and infrastruc-
ture [15]. Hydrometeorological disasters in Sub-Saharan Africa are fast changing. Despite
much research on various aspects of floods, the world still witnesses severe floods [16–21].
Vulnerability and exposure to these disasters are driven by climate variability and land
use changes due to rapid population growth and economic expansion. Infrastructural
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development and national disaster management strategies have not kept pace with the
effects of changing land use/land cover patterns and climate variability on extreme rainfall
events leading to floods. Floods are expected to intensify, threatening future generations
due to changing climate and climate variations (15). Given the above, an improved under-
standing of the flooding problems is needed to develop adaptation measures and attain
sustainable development.

According to the University of Notre Dame Global Adaptation Initiative (ND-GAIN),
which ranks the country’s vulnerability to climate change, Botswana is considered a high-
risk country, ranked 119 out of 181 countries [22–25]. Studies indicate that regions in the
semi-arid zones are highly vulnerable and likely to be hit hard by hydro-metrological
disasters by the middle of this century [26]. The rainfall in these regions is highly irregular,
with high interannual variability. In addition, the Intergovernmental Panel on Climate
Change (IPCC) has indicated that mid-latitude and semi-arid regions such as Botswana are
more likely to experience extreme, intense, and frequent precipitation events [27,28]. Flood
disasters affect 0.24% of the population every year in Botswana [29]. A study by [15] further
indicates that the population of Botswana exposed to floods is likely to increase by 100% if
the temperature increases by 3 ◦C. Therefore, Botswana is a climate risk country and located
in the semi-arid region has been experiencing a rise in the number of high-intensity extraor-
dinary rainfall events leading to floods in the recent past. The country has been subjected
to major repetitive floods from 1972 to 2018, affecting over 178,000 individuals leaving
34,000 homeless, causing 43 fatalities and total damage amounting to over US$5 m (EM-
DAT, https://www.emdat.be, accessed on 27 March 2023). Typically, between 2015–2019
over 7000 individuals have been affected by heavy storms and floods, causing five fatali-
ties [30]. The 1999/2000 and 2001 yielded flood disasters amounting to over US$ 700,000 in
economic damage. Even though the intensity and magnitude of flood events in Botswana
are increasing, systematic historical records on disaster damage and loss that inform flood
risk assessment and modeling are insufficient. Therefore, it is necessary to develop deci-
sion support tools that inform flood risk assessment and aid in developing cost-effective
adaptive strategies to reduce the impacts of hazardous floods. These decision support tools
include trend detection and the development of rainfall quantile maps which will inform
the current and futuristic impact of climate variability in catchments, hence this study.

Trend detection, identification and evaluation are necessary for hydro-meteorological
datasets for determining inconsistencies and fluctuations in hydrometeorological series [31].
This information gives insight into the behavior of hydro-climatological systems and is
valuable in climate research [32], water resource planning, management, and decision-
making. Trend analysis is commonly applied in stationarity and nonstationary detection of
hydro metrological variables. Increasing and decreasing trends are warning indicators of
a shifting system (climate change) [33]. To understand and explore the system dynamics,
these trends must be quantified. Statistical and hydro-climatological models are essential
for trend and variability detection [34]. Various trend detection techniques are available in
the literature. However, Mann–Kendall (MK), Spearman Rho, and Sen’s Slope are the most
frequently used. These trend detection and quantification using different methods have
been studied and applied at global and regional scales in hydro-climatological variables
time series [34,35], such as rainfall and temperature [36] in Northern Togo, [37] in Udaipur
district of Rajasthan state (India), [38] in the Northeastern United States, [39] at a river basin
of Orissa near the coastal region, [40] in Iraq, [41] at Konya Closed Basin in Turkey, [42] in
the arid region of Pakistan, drought analysis in Botswana [43], streamflow [34], ground-
water and water quality. Studies revealed that Mann–Kendall produces results similar to
Spearman Rho [41].

A recent innovative trend analysis (ITA) method by [44–46] has been gaining popu-
larity in hydro metrological studies. Unlike Mann–Kendall (MK), the ITA method has no
restrictive assumptions such as serial correlations, normality and sample data. It also gives
a more detailed interpretation by identifying trends in low, medium, and high values [47].
The method has been applied by [48] alongside Sen’s Slope and Mann–Kendall (MMK)
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methodologies to identify trends in precipitation in the Assam region of India. It has been
applied in streamflow analysis with Mann Kendall (MK) and Sen’s method [49], trends
detection for annual, autumn, winter, spring, and summer season rains in England [50], for
annual and seasonal precipitation in Ningxia, China [51], and assessment of meteorological
drought in Northwest of Algeria [52]. The ITA method also has limitations and has been
criticized by [53] for its inconsistencies in mathematical formulation and contradicting basic
principles of statistical inferences, making it equivalent to classical trend analysis methods
once the inconsistencies are addressed.

Given the complexity of semi-arid catchments, the convective nature and high rainfall
variability in semi-arid regions make it difficult for these catchments to be adequately
represented by course resolution climate and hydro-climatological models [3]. These
regions have been considered climate uncertainty hotspots, therefore, need special attention.
However, detecting future trends, integrating climate projections in regional frequency
analysis, and mapping the rate of change in rainfall distribution under different climate
scenarios is not yet fully exploited in the literature.

In addition to the above, the northeastern region of Botswana, Shashe catchment,
which has been experiencing high rates of floods, has been identified as a suitable study
area. This study aims to investigate the characteristics of rainfall to get an insight into
what has changed in the past and possible future expectations. This aim will be achieved
through the following objectives: (i) To project future rainfall for the Shashe catchment
under Representative Concertation Pathways (RCP) 2.6, 4.5, and 8.5 using Long Ashton
Research Station Weather Generator (LARS-WG) [54] from 2021–2050, (ii) To detect trends
using Mann–Kendall together with Sen’s Slope and innovative trend analysis (ITA) method
in observed and projected annual maximum and annual total rainfall data, and (iii) To
estimate the quantiles of annual maximum rainfall and its spatiotemporal variability under
both historical and projected scenarios.

2. Materials and Methods
2.1. Study Area

The Shashe River catchment is located in the northeastern part of Botswana between
the longitude 27◦ E–28◦ E and latitude 20◦ E–22◦ E. Administratively, a major part of the
catchment is in the northeast district with some parts in the central district as shown in
Figure 1a below.

2.2. Study Area Description

The catchment has great significance economically. The catchment is home to the
second largest city in the country, Francistown. This city has been considered a business
hub for the country and is surrounded by Tati Nickel Mines. Rapid urbanization and rural-
urban migration have given birth to urban sprawls such as the Tati Siding, Gerald Estates,
Borolong and Shashemooke. The population in the catchment has been steadily increasing
since the gold rush in 1900 along the Tati River to over two hundred thousand, about 10%
of the country’s population. The area is also subjected to a high influx of illegal immigrants
from neighbouring Zimbabwe increasing the population and resource demands. The study
area is also considered the gateway to the north as it connects the northern countries such as
Zimbabwe, Zambia, and Namibia with the southern part of the country and South Africa.

Hydrologically, the catchment is the source of major rivers in the country that feeds
significant reservoirs. These reservoirs are the primary source of freshwater supply for
the country. In addition, Dikgatlhong and Shashe Dam are connected to the southern part
of the country through the North-South Water Carrier to supply significant towns and
villages down south, including the capital city and surrounding villages. Ntimbale Dam,
on the other hand, is the water source for the northeastern part of the country.
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Figure 1. Maps showing the location of the study area. (a) The base map of Botswana shows the 
location of the Shashe catchment and (b) the distribution of rainfall gauging stations within the 
catchment. 
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Figure 1. Maps showing the location of the study area. (a) The base map of Botswana shows
the location of the Shashe catchment and (b) the distribution of rainfall gauging stations within
the catchment.

The catchment has a semi-arid climate with hot summers and cold winters. The dry
season ranges between April and October, with high temperatures reaching 41.1 ◦C and
minimum average temperature of 8 ◦C. Rainfall is unimodal, normally occurring between
November and April, and it is the highest in February and March. The area is positioned
close to the Intertropical Convergence Zone (ITCZ), which plays an important role in the
distribution of rainfall in the Northeastern part of Botswana. The rain is characterised by
high intensity for a short duration of time. The spatial distribution of the rainfall ranges
between 600 mm in the northern part and 400 mm per year in the southern part of the
catchment causing severe floods in the region and resulting in economic damage and
displacement. Over the past decade, the Shashe catchment has been experiencing repeti-
tive severe floods. Most of these floods occur between January and February. Floods in
Botswana are mainly driven by heavy rains that arise from cascading effects of tropical cy-
clones from the Southwest Indian Ocean during summer advancing through the mainland
of Mozambique. These cyclones bring high-intensity rainfall within a short period, thereby
causing floods.

Continuous rainfall that occurred on 8 December 2004 with a magnitude of 171 mm
left thousands of people homeless in Francistown in the floodplains of Tati River, affecting
residents of Block-Four, Block-Seven, Block-Nine, Block-10, Riverside, Satellite, and other
areas. According to the Botswana Red Cross Society (BRCS), heavy rainfall caused floods in
the Tutume Sub District, Tonota Sub District, and some parts of the Northeast District in Jan-
uary 2013. This flood affected 842 families (about 4210 individuals) [55]. Tropical Cyclone
Dineo induced floods from 13–17 February 2017 with rainfall magnitudes over 270 mm [56]
overtopped bridges, leaving thousands homeless and destroying properties and fields. In
February 2000, rainfall with a magnitude over 370 mm down poured continuously for
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three days, wiping away bridges, railroads, crops, and homesteads, leaving thousands of
people homeless. The 1986 Francistown floods are also some of the catastrophic floods that
claimed unquantified significant lives and caused a damaging socio-economic impact, has
not been further investigated. More such disasters are anticipated to happen as climate
change and variability intensifies.

The magnitude and frequency of disasters are increasing, threatening human survival
and civilization, resulting in substantial economic losses. Therefore, this grey area must be
researched to attain a sustainable future. Additionally, it must be given priority through
the formulation of policies and strategies to facilitate disaster risk reduction.

2.3. Data Sets

Observed meteorological times series data of precipitation was acquired from the
Department of Meteorological Services (DMS), ranging from 1981–2020. The records used
in this study are sufficiently reliable and have been applied in similar studies. Furthermore,
observations of records has been made, collected and from sources prioritising accuracy,
such as the Civil Aviation Authority and metrological department. Therefore, the accuracy
of the data is not questionable. The distribution of rainfall gauging stations is indicated in
Figure 1b above. Table 1 below gives a summary of the data used in this study.

Table 1. Rainfall gauging stations, their geographic location and length of record years (Source:
Department of Meteorological Services (DMS), Botswana).

Station Name Longitude Latitude Observed Years

Francistown 27.502515 −21.16636 1981–2020
Jackalas No 2 27.680671 −20.954196 1981–2020
Masunga 27.445115 −20.620707 1981–2020
Mathangwane 27.32 −20.98 1981–2020
Matsiloje 27.88544 −21.299711 1981–2020
Ramokgwebana 27.64629 −20.587204 1981–2020
Sebina 27.219551 −20.830506 1981–2020
Senyawe 27.688029 −20.779341 1981–2020
Siviya 27.675744 −20.857003 1981–2020
Tonota 27.463376 −21.437833 1981–2020

In this research, different sets of data indicated below are required to develop a flood
model. A 30-year period is the minimum recommended for climate analysis. Here we
analyze extreme flood events across 40 years from 1981–2020 and into the projected future
from 2021–2050 with various hydroclimatic and land use/land cover dynamics. The choice
of the base period beginning in 1981 was the beginning of accelerated human influence
on the climate system [27,28,57]. The flow chart describing the methodology is illustrated
below in Figure 2:

2.4. Rainfall Projections

In this study, precipitation projections are statistically downscaled using Long Ash-
ton Research Station Weather Generator (LARS-WG) under Representative Concertation
Pathways (RCP) 2.6, 4.5, and 8.5 radiative forcing by applying an ensemble of 18 General
Circulation Models (GCMs) from Coupled Model Inter-comparison Project Phase 5 (CMIP5)
for creating data sets required for assessing impacts of climate change on extreme events.
LARS-WG downscaling method was developed by [4] and has been used in several recent
studies for future climate projections such as [58–60].
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The model was proved to have high predictive capacity; therefore, it was used in
this study to produce 30 years of synthetic daily scale data from 2021–2050 based on
statistical characteristics of observed data by applying monthly change factor between the
18 GCMs and observed data. As a result, implementing climate mitigation measures to
lower emissions by 50% by 2050 will limit warming to 2 ◦C above the preindustrial era [27],
by 40–70% in 2050 compared to 2010 [61] and limit warming to 1.5 ◦C if greenhouse gasses
are reduced by 40–70% in 2050 compared to baseline period (1986–2005) [62].

It applies a semi-empirical distribution model known as the cumulative probability
distribution function to determine the confidence interval for data sets. Daily data for
a given station for the baseline period is input into the model to determine parameters
for probability distributions. Weather sequence of the same statistical properties as the
observed data is generated using suitable distributions. The method was adopted for its
advantages over other models, including its statistical nature, improvements in the spatial
accuracy of GCMs, simplicity, modest data requirement, efficiency, and cost-effectiveness. It
can downscale daily time series data directly applied to hydrological and land use models.
In addition, statistical models have a higher degree of accuracy and computational speed
than other models. The models have been applied in several studies, such as [59,60].

To assess the performance of the LARS-WG model, Chi-square, t-test, and f-test
statistics were used. The chi-square test compares observed and synthetically generated
data to check if they come from the same probability distribution. The t-test mean values of
the observed and simulated data to assess if they come from the same population, while f-
test statistic determines if the observed and synthetic data are from the normal distributions
with the same variance. All these tests have a p-value used to accept or reject the hypothesis
of whether the observed and generated data comes from the same distribution. The total
annual and annual maximum values are then extracted and characterized.

2.5. Trend Analysis

In the present study, Mann–Kendall (MK) [63,64] is a rank-based non-parametric
statistical test commonly used to determine if a monotonic upward or downward trend
exists within the data of interest over a period employed. For comparative purposes,
Mann–Kendall, with Sen’s Slope and innovative trend analysis method, will be applied in
this study to detect the trend and magnitude of trends in rainfall data.

2.5.1. Mann-Kendall Test

Mann-Kendall (MK) is a non-parametric test method commonly used in detecting
trends in data. The advantage of Mann-Kendall is that it is less sensitive to inhomoge-
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neous time series and can overcome the challenge of data skewness. Mann-Kendall is an
exploratory analysis measure to indicate any significant change in data. The robustness
of MK has an advantage in dealing with data that is not normally distributed, missing
data values, and tolerating outliers and censored data, which are common challenges
associated with hydro-climatological data. The Modified Mann Kendall (MMK) is modified
by incorporating pre-whitening to remove serial correlation in data sets. Rainfall is less
likely to be affected by serial correlations; hence the Mann-Kendall method is sufficient for
application in this study. The Mann-Kendall S Statistic is determined by:

S =

n−1

∑
k−1

n

∑
j=k+1

sgn
(
xj − xk

)
(1)

sgn
(
xj − xk

)
=


+1 i f

(
xj − xk

)
> 0

0 i f
(

xj − xk
)

= 0
−1 i f

(
xj − xk

)
< 0

(2)

where xj and xi are annual values in years j and i, j > i, respectively. The ordered time
series from i = 1, 2, . . . . . . . . . n − 1 and xj, which is ranked from j = I + 1, 2, . . . . . . . . . . n
is evaluated by comparing subsequent data values. When the current time data value is
higher than the data value of the previous period, the S statistical value is increased by 1.
Contrariwise, S value is decreased by 1. According to [63,64] is normally distributed when
n ≥ 8 having mean:

E(S) = 0

and variance statistic is given as

V(S) =
n (n− 1) (2n + 5)−∑m

i=1 Tii(i − 1)(2i + 5)
18

(3)

where Ti is the amount of data in the tied group, and m is the number of groups of tied
ranks. The Mann-Kendall standardized test statistic Z is computed by:

Z =


(S−1)√

Var(s)
i f S > 0

0 i f S = 0
(S+1)√
Var(S)

i f S < 0
(4)

where Z is statistical of the test, sgn is the signum function, x is the hydrological variable, n
is the historical series length, and j and k are time indices. The Mann-Kendell standardized
test statistic Z has a mean E(Z) = 0 and V(Z) = 1.

The null hypothesis indicating no trend in the data must be accepted if the absolute
value |Z| ≤ Z1−α/2 at a significance level α [65].

H0 (null hypothesis). Assumes no trend is present. The data is random and independent.

HA (alternative hypothesis). Assumes a trend is present in the data, either a positive or negative
trend.

For a significance level of 5%, the Z-value Zα/2, 0.025 is 1.96. That is, if |Z| is less
than 1.96, the trend is invalid; therefore, reject the null hypothesis.

A commonly applied 5% significance level for the p-value has been adopted for this
study. As a result, if the p-value of the test is lower than 0.05, then there is statistically
significant evidence that a trend is present in the time series data. The rainfall data of all
the gauging stations were tested at a 95% confidence interval.
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2.5.2. Sen’s Slope Estimator

The magnitude of the trend or true slope (change per unit time) is estimated by a
robust Sen’s slope estimator β established [66]. Sen’s method calculates both the slope and
the intercept. This method has no prior assumptions, can be shown in both monotonic or
non-monotonic form and has been applied successfully in hydrometeorological time series.
The slope is formulated as follows:

β = median
( xj − xi

j− i

)
j > i (5)

when the β is negative, the trend is downward (values decrease over time), while a positive
β indicates an upward trend.

2.5.3. Innovative Trend Analysis (ITA) Method

The innovative Trend Analysis (ITA) method is a trend detection method developed
by [44,45]. This approach, unlike MK, does not have any restriction on the normality, sample
size and serial independence. The method is based on a 1:1 (45◦) scatter plot of time series
points split into two halves on a Cartesian coordinate system. Each time series is arranged
in ascending order. The first series is plotted horizontally (X), and the second is vertical (Y).
Any deviation of scatter plots from the 1:1 line indicates the presence of a trend, and the
closer the plots are to the line, the smaller the trend magnitude. According to Şen [45], if
the scattering points are below the 1:1 line, the trend decreases, while points above the 1:1
line indicate an increasing trend. The details of the methodology are explained below.

(i) the x1, x2, x3, . . . xn time series is split into two halves, {S(1,2/2)} and {S(1,2/2)}.

S1, n
2
= {x1, x1, x1 . . . , x n

2
} (6)

{S2, n
2
} = {x n

2 +1, x n
2 +2, x1 . . . , xn} (7)

(ii) Sort elements of each series from the smallest to the largest

{t1} =
{

min(s1,n/2), . . . , s1 , . . . max(s1,n/2)
}
(1 < i < n/2) (8)

{t2} =
{

min(s2,n/2), . . . , s1 , . . . max(s2,n/2)
}
(1 < j < n/2) (9)

(iii) The slope of the trend is then calculated using [46]:

s =
2(y2 − y1)

n
(10)

where s is the trend slope, −y1 and y2 are the arithmetic averages of the first and second
series while n is the amount of data.

2.6. L-Moments—Regional Frequency Analysis

Frequency analysis estimates the magnitude of extreme events and the frequency at
which they occur. This entails fitting maximum hydroclimatic data to a probability distribu-
tion to estimate the peak of a given return period [67]. Reliable estimation of extreme events
is necessary for proper planning and design of civil and hydraulic structures, flood risk
management, water resource management and planning, and probability mapping. Since
extreme events are random physical processes prone to uncertainties, these uncertainties
are quantified by statistical techniques. Frequency analysis requires the selection of a robust
probability distribution and parameter estimation method. Various research has been
done on different parameter estimation methods. These methods include the maximum
likelihood method, the method of moments, probability-weighted moments (PWMs) [68],
the least squares method, mixed moments, maximum entropy, the generalized method of
moments and the incomplete means method.
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The L-moments are a combination of linear probability-weighted moments (PWMs)
defined by [68–70], demonstrating that L-moments can dictate homogeneous regions, se-
lect the most suitable regional frequency distribution, and estimate extreme quantiles
at the region of interest. The development of L-moment is the most remarkable con-
tribution to statistical hydrology. It is the most widely used approach in RFA and has
been credited for its superior performance and statistical characteristics, just to mention a
few [16,18,65,67,69,71–78] Th.is approach has been adopted for this study for its robustness
as they tend to suffer less effects of sampling variability, requires less computational power,
they are more robust in the presence of outliers. Furthermore, they yield more efficient
parameter estimates than the maximum. Furthermore, l-moments are preferable to other
conventional moments because they can analyze a wide range of distributions [69].

Lineal moments (L-moments) describe the shape of frequency distributions. [79]
defined the first four L-Moments λ1, λ2, λ3 and λ4 are L-moments of probability weighted
moments as:

λ1 = E(X1:1) (11)

λ2 = 1/2E(X2:2 − X1:2) (12)

λ3 = 1/3E(X3:3 − 2X2:3 + X1:3) (13)

λ4 = 1/4E(X4:4 − 3X 3:4 + 3X3:4 + X1:4) (14)

where λ1, λ2, λ3 and λ4 represent the parameters related to location, scale, shape and
peakedness, respectively. The most useful quantities for summarizing probability distribu-
tions of the L-moments are location (λ1), and scale (λ2), which are used to define L-moment
ratios as [79]:

τ2 = λ2/λ1 (15)

τ3 = λ3/λ2 (16)

τ4 = λ4/λ2 (17)

The ranges of L-CV (coefficient of L-variation, τ2), L-skewness (τ3) and L-kurtosis (τ4)
are given as 0 ≤ τ2 < 1, −1 < τ3 < 1 and −1 < τ4 < 1 respectively.

2.6.1. Discordancy and Heterogeneity Measure

• Discordancy measure

Regional frequency analysis using the L-moments test for outliers, trends, incorrect
data values and shifts by comparing L-moment statistic ratios for different gauging sites
(69). This method combines L-moment ratios into a single statistic and then measures its
discordancy against the average L-moment ratios of a group of similar sites. The ratios
can identify discordant data by detecting errors, outliers, and heterogeneities in sample
data. The L-CV (or τ), the L-Skewness (or τ3), and the L-Kurtosis (or τ4) are the three
L-moment statistic ratios used to measure discordancy in a data sample. Their sample
estimates are denoted by t, t3, and t4. In a group of sites, L-moments identifies those sites
that are inconsistent or in agreement with the whole group. The discordancy measure is
defined by [69] as:

Di =
1
3

N(ui − ū)T A−1(ui − ū), i = 1, 2, . . . , N (18)

Di is the discordancy measure for site i, N is the number of sites in the group,
superscript T is the transposition of a vector or matrix, ui is a vector containing the
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t(i), t3
(i)and t4

(i) values denoting coefficients of variation, skewness, and kurtosis, re-
spectively in a 3-dimension space for site i. The 3 × 1 vector ui is expressed as:

ui = (t(i), t3
(i), t4

(i))T (19)

The unweighted group average is defined by the following:

ū = N−1
N

∑
i=1

ui = (t(R), t3
(R), t4

(R))T (20)

where N is the number of gauging stations in the region R. A defines the matrix of sums of
squares and cross-products:

A =

N

∑
i=1

(ui − ū)(ui − ū)T (21)

A site can be regarded as discordant if the Di value exceeds the critical value Dcrit,
which depends on N, the number of sites within region R. [69] has noted that for N = 10,
the discordant value should not exceed 2.491.

• Heterogeneity measure

L-moment ratios generally group the sites of interest and measure “what would be
expected of a homogeneous region” [69]. The dispersion of the at-site L-moment ratios
was attained by plotting them on graphs of L-skewness versus L-CV and L-skewness
versus L-kurtosis. Simulation is used to establish what would be expected using a selected
distribution model. The robust Kappa distribution model has been selected to perform
the simulations since it can represent generalized logistic, generalized extreme-value, and
generalized Pareto distributions as recommended by [69]. Its parameters are ξ, α, k, and h,
with density, cumulative distribution, and quantile functions defined below:

If a region of interest has N sites with the site i having record length ni and sample L-
moment ratios denoted by t(i), t3

(i), and t4
(i). The regional average L-CV, L-skewness, and L-

kurtosis is denoted by tR, t3
R, and t4

R. The weighted proportionally is then defined by [69]:

tR =

N

∑
I=1

nit(i)
/ N

∑
I=1

ni (22)

Weighted standard deviation V of the at-site sample L-CVs is for each stimulated
region is calculated by:

V =


N

∑
I=1

ni(t(i) − tR)2

/ N

∑
I=1

ni


1
2

(23)

Kappa frequency distribution has been fitted to regional average L-moment ratios
to run many simulations Nsim for a region with N sites. The simulated homogeneous
regions have the same record length and assessed in a series of Monte Carlo simulation
trials [69]. From the simulations, Nsim of the weighted standard deviation V, the mean µ̂v
and standard deviation σ̂v are determined. The mean µ̂v is defined by:

µ̂v =
1

Nsim

Nsim

∑
l=1

Vl (24)
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where σ̂v is the estimated standard deviation of the NSIM values of Vl and it is defined by:

σ̂v =

√
∑Nsim

l=1 (Vl − µ̂v)2

Nsim
(25)

The heterogeneity H measure is then calculated by:

H =
(V − µ̂v)

σ̂v
(26)

A region is considered heterogeneous if H is sufficiently large. When H ≥ 2, the region
is acceptably homogeneous if H < 1 and possibly heterogeneous if 1 ≤ H < 2.

2.6.2. Choice of a Frequency Distribution

Properties influencing the selection of distribution models depend on their ability to
capture and replicate significant data features required in modelling. For example, the best-
fit distribution is measured by a goodness-of-fit statistic considering tail weights consistent
with a set of homogeneous regional data. For this reason, this study will adopt distributions
with three parameters as they can yield less biased quantile estimates in the tails. As
recommended by [69,80], this study will fit the following three-parameter distributions:
generalized logistic (GLO), generalized extreme value (GEV), generalized Pareto (GPA),
lognormal (LNO), and Pearson type III (PIII) is fitted to the regional average L-moment
ratios. The goodness-of-fit test measure ZDIST for each distribution is then expressed as:

ZDIST = (tDIST
4 − tR

4 + B4)/σ4 (27)

The ZDIST goodness-of-fit measure selects a distribution that gives the closest estimate
as observed data. The best-fit model is judged by the difference between L-kurtosis tDIST

4 of
the fitted distribution and the L-kurtosis tR

4 of the regional average. The standard deviation
σ4 of tR

4 is obtained through repeated simulations of a kappa region with the same number
of sites and record lengths as the observed data. The bias of the simulated region is attained
from the same simulations as σ4 and it is calculated by:

B4 = N−1
sim

Nsim

∑
m=1

(
t[m]
4 − tR

4

)
(28)

where Nsim is the number of realizations for sites with N sites and m is a simulation. The
standard deviation σ4 of tR

4 :

σ4 =

(Nsim − 1)−1


Nsim

∑
m=1

(
t[m]
4 − tR

4

)2
− NsimB2

4




1
2

(29)

A region is considered homogeneous if ZDIST if it is close to zero and it is acceptable
of
∣∣ZDIST

∣∣ ≤ 1.64. In addition to the ZDIST and the L-moment ratio diagram has been
added to compare the statistics visually. The best-fit model with the least bias and ZDIST is
considered for flood quantile estimation.

2.6.3. Estimation of the Quantiles

After selecting the best-fit distribution model, its standardized quantiles are estimated
using regional parameters, which allows the calculation of the regional growth curve. The
quantile estimates Q̂i(F) for the site i with non-exceedance probability F (0 < F < 0) is
given by:

Q̂i(F) = µ̂i q̂(F) (30)
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where q̂(F) denotes the rescaled distribution, µ̂i is the flood index estimate for the site i.
There is always uncertainty when dealing with statistical analysis. Therefore, the

quantiles are also assessed for uncertainty before the results are helpful. The accuracy of
quantiles of the estimated regional frequency distribution is estimated by Monte Carlo
simulation with a simulated region with the same number of sites, record length at each
site, and regional average L-moment ratios as the actual data [69].

The relative RMSE has been applied here to measure the accuracy of quantile estimate
for non-exceedance probability Q̂[m]

i (F) for site i at mth repetition. Let M be the number of
simulations, Qi(F) implies the true growth curve of a site i, then the relative RMSE of the
estimated regional growth curve at a site i can be computed by:

Ri(F) =

M−1
M

∑
m−1

{
Q̂[m]

i (F)−Qi(F)
Qi(F)

}2


1
2

(31)

The regional average accuracy of the estimated regional growth curve is estimated as:

RR(F) = N−1
N

∑
i−1

Ri(F) (32)

The growth curve estimate for quantile is calculated as:

Qi(F) = µiqi(F) (33)

3. Results
3.1. Rainfall Projections

This study used an ensemble of eighteen General Circulation Models (GCMs) from
Coupled Model Inter-comparison Project Phase 5 (CMIP5) to project rainfall in ten rain-
fall gauging stations distributed across the country. LARS-WG model supports AC-
CESS1_3, bcc-csm1-1, BNU-ESM, CanESM2, CMCC_CM, CNRM-CM5, CSIRO-Mk3-6-0,
EC_EARTH, GFDL-ESM2M, HadGEM2-ES, INMCM4, IPSL-CM5A-MR, MIROC5, MIROC-
ESM, MIROC-ESM-CHEM, MRI-CGCM3, NorESM1-M and NCAR_CCSM4 for Representa-
tive Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Under RCP 2.6 only BCC_CSM1_1,
CanESM2, CSIRO_MK36, GISS_E2_R_CC, and HadGEM2_ES are supported by LARS-WG
model. Details about the model agency and the country it was developed are indicated in
Appendix A Table A1.

Daily rainfall projections were performed from 2021–2050, out of which annual maxi-
mum and total annual rainfall were determined under Representative Concertation Path-
ways (RCP) 2.6, 4.5 and 8.5 climate scenarios. This study used a non-parametric Locally
estimated scatterplot smoothing (Loess) to generate the best-fit line. This method uses
weighted linear regression and weighted moving average smoother to fit a smooth curve
through a scatter plot without assuming that the data must fit some distribution shape.

The projection for Francistown has high variability in the first ten and last ten years
for all the climate scenarios reaching a maximum of 100 mm between 2040–2050. Jackalas 2
shows high rainfall projections between 2030–2040, the maximum being over 150 mm under
RCP 8.5 climate scenario. Masunga shows less variability between 2025–2045, with highs
of 100 mm under the RCP 2.6 climate scenario. Mathangwane also shows less variability
averaging around 50 mm across all scenarios, with maximums recorded around 2045
estimated at around 175 mm. Matsiloje estimates are high in the first decade, decreasing
with less variability towards 2050. The projections for Ramokgwebana, Siviya and Senyawe
are high between 2040 and 2050, ranging from 100 to 200 mm. Tonota, on the other hand, is
highly variable throughout, ranging between 40–150 mm. Below are samples for annual
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maximum plot projections for Francistown in Figures 3 and 4. Other plots are in the
Appendix A Figure A1 for reference purposes.
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3.2. Total Annual Rainfall Projections

Total annual rainfall projections for Jackalas 2 are highly variable, with projections
reaching a maximum of 750 mm. Masunga shows a positive increase in total annual rainfall
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to a maximum of 800 mm across climate scenarios. A maximum of 1000 mm is expected in
Mathangwane, with high variability until 2050. Matsiloje has high projections in the first
and last decade, reaching a maximum of 750 mm per year. Increasing rainfall trends are
anticipated in Ramokgwebana, with a maximum of 1000 mm expected around 2040. In
Sebina, high variability is anticipated between the first and last decade, while Senyawe
is less variable. However, over 1600 mm is expected towards 2050. Tonota, Siviya and
Francistown are highly variable with undefined patterns with annual totals averaging
around 500 mm across projection scenarios. Figures 5–7 show projected rainfall totals
for Francistown in different climate scenarios. Projections for other stations are in the
Appendix A Figure A1.
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3.3. Model Validation

The LARS-WG statistical downscaling model was assessed for its performance using
the Chi-square, t-test, and f-test statistics alongside their p-values at a 5% significance level.
The sample performance of the model is shown in Table 2 below for the Francistown station.
The Chi-square shows a good performance by the model for Francistown station except for
September, which has a p-value less than the critical value of 0.05. This indicates that the
observed and synthetically generated data comes from the same probability distribution.
Except for June for Masunga, and July and August for Siviya, where the p-value for the
Chi-square is less than the critical value, the model performed well for other stations.

Table 2. Performance of LARS-WG statistical downscaling model using the Chi-square, t-test and
f-test statistics alongside their p-values.

Francistown

Month Chi-Square p-Value t-Test p-Value f-Test p-Value

Jan 0.147 0.949 −0.323 0.747 1.182 0.59
Feb 0.131 0.982 0.034 0.973 1.829 0.045
Mar 0.122 0.992 −0.416 0.679 1.551 0.155
Apr 0.166 0.879 −1.175 0.243 2.363 0.006
May 0.21 0.637 0.154 0.878 1.527 0.158
Jun 0.217 0.595 −0.122 0.903 1.837 0.043
Jul 0.218 0.589 −0.086 0.932 1.346 0.321

Aug 0.304 0.196 −0.318 0.752 1.143 0.652
Sep 0.402 0.035 −0.775 0.44 1.507 0.183
Oct 0.135 0.976 −0.656 0.513 1.035 0.918
Nov 0.159 0.909 0.245 0.807 1.077 0.8
Dec 0.139 0.969 0.79 0.431 1.442 0.221

Masunga, Ramokgwebana, Sebina and Tonota have p-values for t-test statistics less
than the critical value for March, October, April, and February, respectively. This indicates
that only for these four months, the mean of observed and generated values is not from
the same population. There the null hypothesis is rejected at a 95% confidence interval.
The models, therefore, performed well for the datasets. However, based on the f-test
statistic, this model did not perform well since the null hypothesis was rejected for June
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for Francistown, Senyawe, Masunga, Sebina, Mathangwane and Matsiloje. The p-value is
also less than the critical value for July for Senyawe, Sebina, Mathangwane, Siviya, and
Ramokgwebana. And the month of May for Senyawe, Masunga, Mathangwane and Siviya.
This indicates that observed and generated data are not from a normal distribution with the
same variance for the mentioned months and stations. Other stations are in the Appendix B
section Table A2.

3.4. Mann-Kendall, Sen’s Slope, and the Innovative Trends Analysis of Annual Total Rainfall for
the Shashe Catchment

This section analyses the trend of total rainfall in ten gauging stations of the Shashe
catchment for the 1981–2020 period. Six parameters of the trend are being analyzed here.
The Tau value, the p-Value, the Z-Value based on the Mann-Kendall method (MK), the
trend magnitude trend based on Sen’s Slope method, the Trend slope and Trend indicator
at 95 percent Lower and Upper Confidence Limit using the Innovative Trends Analysis.

Table 3 below presents trends for gauging stations in the Shashe catchment using the
Mann-Kendall method (MK), Sen’s Slope, and Innovative Trends Analysis. A significant
decreasing trend is detected for observed datasets in Francistown, Mathangwane and
Ramokgwebana. This is indicated by negative Tau and Z-values. As a result, annual total
rainfall will decrease by 2.7 mm, 1 mm, and 0.2 mm per year in Francistown, Mathangwane
and Ramokgwebana, respectively. The remaining station shows an increasing trend, with
a maximum increase of 6.2 mm, 6.8 mm, and 8.0 mm per year in Siviya, Matsiloje and
Sebina, respectively. The p-value at 0.05 significance level only detects Matsiloje and Sebina
as having a statistically significant trend as they have p-values less than the critical value
indicated in Table 3 for observed rainfall.

Table 3. The trend for total annual rainfall for observed and projected rainfall under RCP 2.6, 4.5 and
RCP 8.5 climate scenarios between 1981–2050 for gauging stations in the Shashe Catchment based on
Mann-Kendall, Sen’s Slope, and the Innovative Trends Analysis.

Location Francistown Jackalas_2 Masunga Mathangwane Matsiloje Ramokgwebana Sebina Senyawe Siviya Tonota

MK

Tau

Observed −0.146 0.1490 0.0500 −0.0295 0.2560 −0.0282 0.2850 0.1900 0.1820 0.0744
RCP 2.6 0.3140 0.3130 0.0150 0.2500 0.1060 0.4350 0.1440 0.3110 0.0370 0.1520
RCP 4.5 0.2170 0.1880 0.0090 0.2410 0.0820 0.3180 0.0090 0.3300 −0.046 0.2240
RCP 8.5 0.3040 0.3290 0.0090 0.2060 0.1110 0.4100 0.1190 0.2030 −0.034 0.0860

p-Value

Observed 0.1880 0.1803 0.6579 0.7887 0.0204 0.8067 0.0100 0.0868 0.1004 0.5066
RCP 2.6 0.0000 0.0000 0.8590 0.0020 0.1940 0.0000 0.0790 0.0000 0.6560 0.0640
RCP 4.5 0.0080 0.0220 0.9150 0.0030 0.3160 0.0000 0.9190 0.0000 0.5770 0.0060
RCP 8.5 0.0000 0.0000 0.9150 0.0120 0.1770 0.0000 0.1470 0.0130 0.6850 0.2960

Z-Value

Observed −1.317 1.3399 0.4428 −0.2680 2.3186 −0.2447 2.5749 1.7127 1.6428 0.6641
RCP 2.6 3.8430 3.8230 0.1770 3.0520 1.2980 5.3230 1.7540 3.8020 0.4460 1.8560
RCP 4.5 2.6570 2.2920 0.1060 2.9400 1.0040 3.8830 0.1010 4.0350 −0.558 2.7380
RCP 8.5 3.7110 4.0250 0.1060 2.5150 1.3490 5.0090 1.4500 2.4840 −0.406 1.0440

Sen’s slope
(mm)

Observed −2.674 3.6746 0.7000 −1.0075 6.8493 −0.2739 8.0434 3.8553 6.2331 1.1792
RCP 2.6 3.2740 3.6820 0.2530 4.0430 1.2920 6.6550 2.1740 3.9670 0.5790 1.7890
RCP 4.5 2.0150 2.0690 0.1000 3.5410 0.9270 3.7470 0.0850 4.3630 −0.732 2.7750
RCP 8.5 3.1650 3.8970 0.1000 2.9610 1.2490 5.4530 1.6740 2.4320 −0.490 0.8460

ITA

Trend
Slope

Observed −6.170 0.4925 0.1756 −3.2842 7.0208 −1.7894 4.6660 1.2116 2.4522 0.5364
RCP 2.6 2.8984 3.4833 −0.683 4.9125 1.6544 6.7938 3.1353 5.7210 0.2693 1.5975
RCP 4.5 1.8362 2.0448 −0.993 4.1429 1.3623 3.9288 0.9489 6.0135 −0.909 2.7171
RCP 8.5 3.2081 3.9058 −0.994 3.5784 1.8418 6.0658 2.4074 4.2460 −0.878 0.6100

Trend
Indica-

tor

Observed −2.789 0.2324 0.0750 −1.5943 4.0217 −1.0141 2.0337 0.5972 1.0589 0.3046
RCP 2.6 2.6338 2.9300 −0.508 4.5229 1.5111 6.9732 2.3825 4.9476 0.1969 1.5508
RCP 4.5 1.6686 1.7200 −0.739 3.8143 1.2443 4.0326 0.7210 5.2006 −0.664 2.6377
RCP 8.5 2.9153 3.2854 −0.740 3.2946 1.6823 6.2260 1.8294 3.6719 −0.642 0.5922

Generally, it can be observed that there are discrepancies between observed and pro-
jected rainfall trends when using the Sen’s Slope and Mann-Kendall method (MK) trend
indicators. For example, Siviya shows a decreasing trend under RCP 4.5 and 8.5 climate
scenarios where rainfall decreases by 0.5–0.7 mm annually. On the other hand, a greater in-
crease is notable for Francistown, Jackalas 2, Mathangwane, Ramokgwebana and Senyawe,
with a rise between 2.4–6.7 mm per year across all climate scenarios. On the contrary, Ma-
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sunga, Matsiloje, Sebina and Siviya, which show an increasing trend in observed records,
have shown a decreasing trend in the projected trends.

Observed trends magnitude of total annual rainfall using the ITA is generally less
than Sen’s Slope method by more than 50% except for Matsiloje, which is in the same
range. The is less variation between the projected trend magnitude and the projected Sen’s
Slope magnitude. Projected trends with ITA are higher than observed trends and show an
increase in rainfall magnitude by up to 6.7 mm per year. Only Masunga and Siviya show a
decreasing trend compared to the observed trend using the ITA method.

The trend results for the ITA method was plotted to visualize the pattern of rainfall for
both observed and projected annual totals and annual maximums. According to ITA for
observed total annual rainfall in Figure 8, there is decreasing trend in minimum values for
Francistown, Masunga, Mathangwane, Matsiloje, Ramokgwebana, and Siviya. Conversely,
an increase in trends for minimum values is observed in Tonota and Senyawe. Jackalas_2
shows no significant observable trend. An increase in the trend for maximum values is
observed in Masunga, Matsiloje, Sebina and Siviya. In contrast, a decrease in the trend for
maximum values for observed total rainfall is observed in Francistown, Mathangwane,
Ramokgwebana, and Tonota.

Trends for rainfall projections under RCP 2.6 scenario in Figure 9 shows an increasing
trend in minimum values and a decrease in trends for maximum values, except for Math-
angwane, Sebina and Senyawe, which show an increasing trend in maximum values. The
same pattern is repeated for projected total annual rainfall under RCP 4.5 and 8.5 climate
scenarios, as shown in Figures 10 and 11. However, Ramokgwebana shows an increasing
trend for minimum and maximum values under the RCP 8.5 climate scenario.

3.5. Mann-Kendall, Sen’s Slope and the Innovative Trends Analysis of Annual Maximum Rainfall
for the Shashe Catchment

The Tau, Z-value and Sen’s Slope for observed annual maximum rainfall indicates a
decreasing trend for Francistown, Jackalas_2, Masunga, Matsiloje, Ramokgwebana and
Sebina by a range between 0–1 mm per year. The remaining four (Mathangwane, Senyawe,
Siviya and Tonota) stations show an increase by a range between 0.3–0.9 mm per year, as
shown in Table 4. Projected annual maximum rainfall shows contrary, positive trend results
compared to negative observed rainfall values for Jackalas_2, Ramokgwebana and Sebina
for all climate scenarios. In contrast, Francistown and Matsiloje show an increasing trend for
RCP 2.6 and RCP 8.5 climate scenarios, while Siviya shows a decreasing trend for RCP 4.5
and 8.5 climate scenarios. It must be noted that the magnitude of Sen’s Slope trend ranges
between −1 and 1 mm. The ITA method shows consistency in the direction of observed
and projected trends for Ramokgwebana, Senyawe and Tonota for all climate scenarios.
The same consistency is maintained for Francistown (RCP 4.5), Jackalas_2 (RCP 4.5 and
8.5, Masunga (RCP 4.5), Sebina (RCP 4.5) and Siviya (RCP 4.5 and 8.5). Inconsistencies
between observed and projected annual maximum values are shown in Mathangwane
for all climate scenarios, while Francistown, Jackalas_2, Masunga, Sebina, and Siviya for
RCP 2.6. Inconsistencies are also notable between the trend magnitude of both Sen’s Slope
and ITA.

The trend distribution for the ITA was also plotted for annual maximum rainfall
for both observed and projected climate scenarios, as shown in Figures 12–15. The plots
for observed data sets show a decreasing trend for minimum values for Francistown,
Jackalas_2, Masunga, Ramokgwebana, and Sebina. Only Mathangwane and Tonota show
an increasing trend for minimum values. Matsiloje shows no significant visual trend, while
Senyawe shows no significant trend for minimum values. There is a significant increasing
trend in maximum values for Francistown, Ramokgwebana, Sebina, Siviya and Senyawe,
as shown in Figure 12.
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Table 4. The trend for annual maximum rainfall and magnitude of trend between 1981–2020 for
gauging stations in the study area.

Location Francistown Jackalas_2 Masunga Mathangwane Matsiloje Ramokgwebana Sebina Senyawe Siviya Tonota

MK

Tau

Observed −0.148 −0.189 −0.213 0.347 −0.0064 −0.0488 −0.353 0.158 0.0758 0.165
RCP 2.6 0.0840 0.1290 0.0680 0.2560 0.0740 0.1120 0.0980 0.2950 0.0350 0.2810
RCP 4.5 −0.0120 0.0200 −0.0180 0.1670 −0.0090 0.0700 0.0320 0.2150 −0.1080 0.1950
RCP 8.5 0.1180 0.0990 −0.0180 0.2250 0.0790 0.1150 0.0970 0.2780 −0.1310 0.2860

p-Value

Observed 0.1841 0.0889 0.05448 0.00172 0.9628 0.6664 0.00141 0.1552 0.4991 0.1388
RCP 2.6 0.3080 0.1150 0.4120 0.0020 0.3700 0.1710 0.2340 0.0000 0.6700 0.0010
RCP 4.5 0.8830 0.8120 0.8310 0.0420 0.9150 0.3940 0.6960 0.0090 0.1890 0.0170
RCP 8.5 0.1480 0.2260 0.8310 0.0060 0.3380 0.1620 0.2380 0.0010 0.1100 0.0000

Z-Value

Observed −1.3283 −1.7015 −1.9230 3.1351 −0.0466 −0.4312 −3.1926 1.4215 0.6759 1.4804
RCP 2.6 1.0190 1.5770 0.8210 3.1230 0.8970 1.3690 1.1910 3.6050 0.4260 3.4270
RCP 4.5 −0.1470 0.2380 −0.2130 2.0380 −0.1060 0.8520 0.3900 2.6310 −1.3130 2.3830
RCP 8.5 1.4450 1.2120 −0.2130 2.7480 0.9580 1.3990 1.4450 3.4020 −1.5970 3.4980

Sen’s slope
(mm)

Observed −0.3082 −0.5848 −0.6093 0.9264 −0.0033 −0.1708 −0.9999 0.5929 0.3097 0.4771
RCP 2.6 0.1300 0.2300 0.1100 0.4200 0.1100 0.2300 0.2100 0.7000 0.0500 0.5100
RCP 4.5 −0.0100 0.0200 −0.0200 0.2300 −0.0100 0.1300 0.0500 0.5000 −0.1500 0.3100
RCP 8.5 0.1800 0.1800 −0.0200 0.3600 0.1500 0.2400 0.2000 0.6600 −0.1900 0.5000

ITA

Trend
Slope

Observed −0.2528 −0.6325 −0.4372 −0.0059 0.0217 0.2370 −0.9505 0.1585 −0.0055 0.6580
RCP 2.6 0.0734 0.1744 0.0657 0.3644 −0.0617 0.4134 0.1150 0.8456 0.1357 0.3832
RCP 4.5 −0.1306 −0.0803 −0.0741 0.1639 −0.2092 0.1024 −0.0774 0.5350 −0.0994 0.1963
RCP 8.5 0.0596 −0.0684 0.1798 0.2808 0.0416 0.2476 0.0895 0.7160 −0.1884 0.4177

Trend
Indica-

tor

Observed −0.7626 −1.9312 −1.7288 −0.0207 0.0722 0.7566 −3.0449 0.4434 −0.0160 2.4564
RCP 2.6 0.3926 0.9922 0.4610 2.3519 −0.3388 2.1159 0.6937 4.1425 0.7045 2.1903
RCP 4.5 −0.6987 −0.4566 −0.5199 1.0582 −1.1483 0.5243 −0.4664 2.6210 −0.5164 1.1219
RCP 8.5 0.3187 −0.4798 1.0228 1.8127 0.2286 1.2675 0.5397 3.5077 −0.9781 2.3872

Climate projections of annual maximum rainfall are somewhat more similar to the
pattern of the ITA trend. Francistown, Masunga, Ramokgwebana, and Sebina show no
significant trend in minimum rainfall values, while no significant trend is observed for
maximum rainfall in Tonota. On the other hand, Ramokgwebana and Jackalas_2 show an
increasing trend in maximum rainfall values. In contrast, a decreasing trend in maximum
rainfall is observed for Francistown, Masunga, Mathangwane, Matsiloje, Sebina, Senyawe
and Siviya.

3.6. Sample L-Moment Test Statistics for Sites in the Region

Annual maximum rainfall was used to determine sample test statistics for each site
in the study region, as shown in Table 5 for observed data, Table 6 under RCP 2.6, Table 7
under RCP 4.5, and Table 8 under RCP 8.5 climate scenario. These test statistics are based
on their position in the L-loment ratio diagram. The L-moment ratio diagram is developed
based on the scatter plot of L-skewness (t3) and L-kurtosis (t4) for the ten sites of the study
region concerning different 3-parameter distributions. This is used to choose a distribution
that best fits the data.

The goodness of fit of a distribution is determined by how well L-skewness and L-
kurtosis of the fitted distribution match the regional weighted means of L-skewness and
L-kurtosis of the observed data [81]. The regional average L-skewness and L-kurtosis are
shown in Table 9. Notably, the discordancy measure of all the sites in all four different
study periods is less than the 2.491 critical value. This indicates that the study region
is homogeneous.
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Table 5. Sample L-moment test statistics for sites in the region for the 1981–2020 period.

Gauging Station Record
Length

Annual Maximum
(mm) L-CV (t) L-Skewness (t3) L-Kurtosis (t4) Discordancy

Measure (DI)

Francistown 40 63.76 0.2171 0.2868 0.1748 1.84
Jackalas_2 40 59.18 0.2223 0.0259 0.1368 1.11
Masunga 40 46.20 0.2654 0.1306 0.1464 0.29
Mathangwane 40 56.73 0.3274 0.3982 0.397 1.64
Matsiloje 40 60.38 0.286 0.1522 0.2502 0.9
Ramokgwebana 40 65.02 0.2649 0.2832 0.2607 0.41
Sebina 40 52.93 0.3713 0.3264 0.2405 2.2
Senyawe 40 73.08 0.3189 0.3163 0.2787 0.3
Siviya 40 68.69 0.2222 0.0412 0.0755 0.84
Tonota 40 60.16 0.2552 0.2146 0.1493 0.46

Table 6. Sample L-moment test statistics for sites in the region under RCP 2.6 climate scenario.

Gauging Station Record
Length Annual Maximum L-CV (t) L-Skewness (t3) L-Kurtosis (t4) Discordancy

Measure (DI)

Francistown 70 66.72 0.2007 0.2479 0.1501 1.95
Jackalas_2 70 64.57 0.2035 0.0832 0.1823 0.66
Masunga 70 50.14 0.2463 0.0648 0.1471 0.58
Mathangwane 70 60.60 0.2944 0.3653 0.3646 1.85
Matsiloje 70 62.67 0.2388 0.1245 0.2312 0.66
Ramokgwebana 70 75.61 0.3101 0.3742 0.2655 0.78
Sebina 70 60.06 0.319 0.2254 0.2208 1.15
Senyawe 70 86.24 0.3017 0.2901 0.2111 0.62
Siviya 70 69.78 0.1888 −0.0279 0.0942 0.99
Tonota 70 67.94 0.2309 0.1472 0.1049 0.75

Table 7. Sample L-moment test statistics for sites in the region under RCP 4.5 climate scenario.

Gauging Station Record
Length Annual Maximum L-CV (t) L-Skewness (t3) L-Kurtosis (t4) Discordancy

Measure (DI)

Francistown 70 63.15 0.1894 0.2351 0.1351 1.96
Jackalas_2 70 60.12 0.1965 0.0597 0.1533 0.69
Masunga 70 47.81 0.2464 0.1085 0.1727 0.5
Mathangwane 70 57.10 0.2921 0.3719 0.3803 2.14
Matsiloje 70 60.09 0.2369 0.1448 0.2591 0.89
Ramokgwebana 70 70.17 0.2875 0.3246 0.2441 0.51
Sebina 70 56.69 0.3177 0.2566 0.2443 1.13
Senyawe 70 80.81 0.2936 0.2726 0.1903 0.85
Siviya 70 65.67 0.1931 0.0373 0.1214 0.79
Tonota 70 64.67 0.2303 0.1898 0.1275 0.53

Table 8. Sample L-moment test statistics for sites in the region under RCP 8.5 climate scenario.

Gauging Station Record
Length Annual Maximum L-CV (t) L-Skewness (t3) L-Kurtosis (t4) Discordancy

Measure (DI)

Francistown 70 66.48 0.1888 0.2068 0.1385 1.84
Jackalas_2 70 64.67 0.2172 0.1221 0.175 0.4
Masunga 70 47.81 0.2464 0.1085 0.1727 0.58
Mathangwane 70 59.14 0.2908 0.3589 0.3762 2.34
Matsiloje 70 64.48 0.2479 0.1406 0.2218 0.66
Ramokgwebana 70 72.71 0.2909 0.3306 0.2545 0.81
Sebina 70 59.61 0.3159 0.2307 0.2261 1.16
Senyawe 70 83.97 0.293 0.2579 0.1844 0.98
Siviya 70 64.11 0.1982 0.0767 0.1297 0.72
Tonota 70 68.54 0.2333 0.1584 0.1237 0.5
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Table 9. The regional average L-moment ratios for records between 1981–2020 and under RCP 2.6,
4.5 and RCP 8.5 climate scenarios.

L-CV (t) L-Skewness (t3) L-Kurtosis (t4)

1981–2000 0.2751 0.2175 0.211
RCP 2.6 0.2534 0.1895 0.1972
RCP 4.5 0.2483 0.2001 0.2028
RCP 8.5 0.2523 0.1991 0.2003

3.7. Heterogeneity Measure for the Region

The heterogeneity (H) measure for the region based on L-skew/L-kurtosis ratios was
determined for all the study periods based on 500 simulations, as indicated in Table 10
below. The results show that the heterogeneity measure based on the L-skew/L-kurtosis
ratio is the perfect fit for the study area since all the H values are less than the threshold
for heterogeneity. A region is considered heterogeneous if H is sufficiently large. When
H ≥ 2, the region is homogeneous if H < 1 and possibly homogeneous if 1≤H < 2. Data for
1981–2020, the period under RCP 8.5 is acceptably homogeneous as H is between 1 ≤ H < 2;
under RCP 2.6 and RCP4.5, the region is considered heterogeneous as H ≥ 2.

Table 10. Heterogeneity measure for the region for records between 1981–2020 and under RCP 2.6,
4.5 and RCP 8.5 climate scenarios.

1981–2020 RCP 2.6 RCP 4.5 RCP 8.5

Observed s.d. of L-skew/L-kurtosis distance 0.1327 0.1316 0.118 0.101
Sim. mean of s.d. of L-skew/L-kurtosis distance 0.1046 0.0768 0.0781 0.079
Sim. s.d. of s.d. of L-skew/L-kurtosis distance 0.0244 0.0165 0.0179 0.0174
Heterogeneity measure H [3] 1.15 3.31 2.23 1.26

Note: s.d. devotes standard deviation, Sim. denotes simulated.

3.8. Goodness-of-Fit Statistical Measure and Parameter Estimates for Distributions

For this study five distributions with three parameters Generalized Logistic (GLO),
Generalized Extreme Value (GEV), Generalized Pareto (GPA), Log-Normal (LNO), and
Pearson type III (PIII) are fitted regional average L-moment ratios. The ZDIST goodness-of-
fit measure selects a distribution that gives the closest estimate as observed data. A region is
considered homogeneous if ZDIST if it is close to zero and it is acceptable of

∣∣ZDIST
∣∣ ≤ 1.64.

The results in Table 11 indicate that Generalized logistics is the only best-fit distribution for
observed and under-climate projections. All other distributions have a Z-Value greater than
1.64; hence not fit for further analysis. Parameters estimates for the best fit Generalized
Logistic distribution were determined as indicated in Table 12.

Table 11. The Z-Value Goodness-of-Fit statistical measure.

Probability Distributions 1981–2020 RCP 2.6 RCP 4.5 RCP 8.5

Gen. logistic −0.64 * −0.26 * −0.48 * −0.23 *
Gen. extreme value −1.94 −2.23 −2.36 −2.09
Gen. normal −2.35 −2.62 −2.8 −2.53
Pearson type III −3.14 −3.47 −3.73 −3.43
Gen. Pareto −5.05 −6.73 −6.72 −6.4

* Indicates best fit distribution.
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Table 12. Parameter estimates for Generalised Logistic distribution accepted at 0.90 confidence level.

L-CV (t) L-Skewness (t3) L-Kurtosis (t4)

1981–2020 0.9038 0.2542 −0.2175
RCP 2.6 0.9224 0.2387 −0.1895
RCP 4.5 0.9199 0.2323 −0.2001
RCP 8.5 0.919 0.2361 −0.1991

3.9. Estimation of the Quantiles

Parameter estimates for Generalised Logistic distributions were used for the estimation
of quantiles. Three recurrence intervals (10-year, 50-year, and 100-year) were estimated
using observed data with associated quantiles. First, quantiles for each rainfall gauging
station were estimated, and the spatial distribution of each quantile was mapped in the
study using the distance inverse Interpolation method, as shown in Figure 16. Then, the
same approach was repeated using climate projections. However, the quantiles were
estimated for 10-year, 50-year, 100-year, 150-year and 200-year recurrence intervals, as
shown in Figures 17–19. Corresponding areal coverage for spatial rainfall distribution
for each recurrence interval was also computed. Changes in areal coverage are indicated
in Tables 13–16.

Generally, it can be observed that 10-year rainfall quantiles have less variability in
spatial coverage compared to other return intervals. In a 10-year return interval for observed
data, RCP 2.5 and RCP 8.5, a rainfall range between 91–120 mm covers at least 94% area
of the entire catchment. Similarly, a 10-year rainfall range between 106–120 under RCP
4.5 covers over 80% of the entire catchment area. It is also observed that under climate
projections, spatial areal coverage for lower rainfall ranges decreases while higher rainfall
ranges increase. For example, a 50-year rainfall with magnitude 136–165 mm will have
spatial areal coverage around 86%, 92% and 94% based on observed RCP 2.6 and RCP 4.5,
respectively, when it happens. Spatial coverage of a 100-year rainfall between 151–180 will
be 81% based on observed data and 87% based on projected data under RCP 2.6 scenario.
Under RCP 4.5 scenario, 92% of the area will be covered by rainfall between 166–195 mm.
A 150-year rainfall with high spatial coverage will be of magnitude 166–195 mm (82%)
under RCP 2.6 scenario, 181–210 mm (91%) under RCP 4.5 scenario and 181–210 mm (91%)
under RCP 8.5 scenario. A 200-year rainfall that ranges between 196–225 mm under RCP
4.5 and 8.5 have high spatial coverage of at least 79% and 82%, respectively.
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Figure 18. Maps of spatial rainfall distribution under RCP 4.5 climate scenario at 10–year, 50–year,
100–year, 150–year and 200–year recurrence interval.
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Therefore, necessary to improve scientific research on hydro-climatic variables to reduce 
associated risks. This study analyses the characteristics of annual total and annual 

Figure 19. Maps of spatial rainfall distribution under RCP 8.5 climate scenario at: (a) 10–year,
(b) 50–year, (c) 100–year, (d) 150–year and (e) 200–year recurrence intervals.

Table 13. Areal change in rainfall distribution at 10–year, 50–year and 100–year recurrence intervals
in the study area for the 1981–2020 study period.

Rainfall (mm) 10–Year Area (km2) 50–Year Area (km2) 100–Year Area (km2)

61–75 11
76–90 1434 (99%)91–105 6095

106–120 76 87
121–135 960 5
136–150 4468 (86%) 231
151–165 2095 1584 (81%)166–180 6 4661
181–195 1128
196–210 7

Note: The percentage in brackets represents the rainfall range with the largest spatial coverage.

Table 14. Areal change in rainfall distribution under RCP 2.6 climate scenario at 10–year, 50–year,
100–year, 150–year and 200–year recurrence intervals.

Rainfall
(mm)

10–Year Area
(km2)

50–Year Area
(km2)

100–Year Area
(km2)

150–Year Area
(km2)

200–Year Area
(km2)

76–90 271
91–105 6013 (96%)106–120 1334 55

121–135 346 9
136–150 3663 (92%) 199 34
151–165 3396 1504 (87%) 205 87
166–180 156 5120 1537 (82%) 252
181–195 688 4764 1996 (89%)196–210 96 933 4776
211–225 143 389
226–240 116

Note: The percentage in brackets represents the rainfall range with the largest spatial coverage.
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Table 15. Areal change in rainfall distribution under RCP 4.5 climate scenario at 10–year, 50–year,
100–year, 150–year and 200–year recurrence intervals.

Rainfall
(mm)

10–Year Area
(km2)

50–Year Area
(km2)

100–Year Area
(km2)

150–Year Area
(km2)

200–Year Area
(km2)

76–90 6
91–105 1162 (97%)106–120 6293

121–135 155 167
136–150 1985 (94%) 84
151–165 5190 392 120 12
166–180 274 3494 (92%) 422 190
181–195 3500 3376 (91%) 1246
196–210 146 3517 3913 (79%)211–225 181 2121
226–240 134

Note: The percentage in brackets represents the rainfall range with the largest spatial coverage.

Table 16. Areal change in rainfall distribution under RCP 8.5 climate scenario at 10–year, 50–year,
100–year, 150–year and 200–year recurrence intervals.

Rainfall
(mm)

10–Year Area
(km2)

50–Year Area
(km2)

100–Year Area
(km2)

150–Year Area
(km2)

200–Year Area
(km2)

76–90 466
91–105 6231 (94%)106–120 919

121–135 123
136–150 501 59
151–165 3438 (91%) 255 87
166–180 3520 1819 (83%) 259 146
181–195 34 4524 1755 331
196–210 951 4034 (92%) 2110 (82%)211–225 8 1442 4173
226–240 39 820

Note: The percentage in brackets represents the rainfall range with the largest spatial coverage.

4. Discussion

Climate change has brought uncertainties and variations in hydro-metrological events
by increasing and decreasing temperature trends, rainfall, droughts, and floods. Therefore,
necessary to improve scientific research on hydro-climatic variables to reduce associated
risks. This study analyses the characteristics of annual total and annual maximum rainfall
for observed and under-projected climate scenarios. Annual total rainfall characteristics are
required for water resources planning and management, while annual maximum rainfall
characteristics are necessary for disaster management and risk assessment.

The Long Ashton Research Station Weather Generator (LARS-WG) statistical down-
scaling model was applied to downscale rainfall data from ten gauging stations in the
Shashe catchment. Its performance was assessed using the Chi-square, t-test, and f-test
statistics alongside their p-values at a 5% significance level. Generally, the Chi-square
and t-test performed well, with over 95% of datasets having a p-value greater than the
0.05 critical value details in Appendix B section Table A2. Three distinctive trend analysis
methods and one frequency analysis method were used in this study. The Mann-Kendall
method for trend detection, Sen’s Slope to determine the magnitude of the trend, and the
Innovative Trends Analysis (ITA) for quantifying and visualizing the distribution of trends.
Regional frequency analysis based on L-moment was applied to annual maximums of
observed and future rainfall projections to determine the magnitude of rainfall at given
recurrence intervals. The magnitudes of rainfall were then mapped to provide a visual
representation of rainfall in various scenarios.

Table 3 shows that there are inconsistencies between observed and projected total
annual rainfall for all trend detection methods. Francistown Mathangwane and Ramokg-
webana show a decrease in observed rainfall while futuristic projections are increasing.
Observed total rainfall trends for Masunga, Matsiloje, Sebina and Siviya are increasing
while projections are decreasing for both Sen’s Slope and ITA method.

Analysis of total annual rainfall based on the ITA plot shows a decreasing trend in
rainfall for minimum values for Francistown, Masunga, Mathangwane, Matsiloje, Ramokg-
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webana, and Siviya in Figures 8–11. An increase in trends for minimum values is observed
in Tonota and Senyawe. Jackalas_2 shows no significant observable trend. An increase in
the trend for maximum values is observed in Masunga, Matsiloje, Sebina and Siviya. In
contrast, a decrease in the trend for maximum values for observed total rainfall is observed
in Francistown, Mathangwane, Ramokgwebana, and Tonota as shown in Figure 8. Trends
for total rainfall projections under RCP 2.6 scenario in Figure 9 shows an increasing trend in
minimum values and a decrease in trends for maximum values, except for Mathangwane,
Sebina and Senyawe, which show an increasing trend in maximum values. The same pat-
tern is repeated for projected total annual rainfall under RCP 4.5 and 8.5 climate scenarios,
as shown in Figures 10 and 11. However, Ramokgwebana shows an increasing trend for
minimum and maximum values under the RCP 8.5 climate scenario.

As for annual maximum rainfall, the ITA method shows consistency in the direction
of observed and projected trends for Ramokgwebana, Senyawe and Tonota for all climate
scenarios. The same consistency is maintained for Francistown (RCP 4.5), Jackalas_2 (RCP
4.5 and 8.5, Masunga (RCP 4.5), Sebina (RCP 4.5) and Siviya (RCP 4.5 and 8.5). However,
inconsistencies between observed and projected annual maximum values are shown in
Mathangwane for all climate scenarios, while Francistown, Jackalas_2, Masunga, Sebina,
and Siviya for RCP 2.6. Inconsistencies are also notable between the trend magnitude of
both Sen’s Slope and ITA.

The trend distribution for the ITA for annual maximum rainfall for both observed and
projected climate scenarios is shown in Figures 12–15. The plots for observed data sets show
a decreasing trend for minimum values for Francistown, Jackalas_2, Masunga, Ramokgwe-
bana, and Sebina. Only Mathangwane and Tonota show an increasing trend for minimum
values. There are notable high outlying points with maximum values for Francistown,
Ramokgwebana, Sebina, Siviya, and Senyawe, have shown in Figure 12. Climate projec-
tions of annual maximum rainfall distribution pattern plots using ITA for Francistown,
Masunga, Ramokgwebana, and Sebina show no significant trend in minimum rainfall val-
ues also, no significant trend is observed for maximum rainfall in Tonota. Ramokgwebana
and Jackalas_2 show an increasing trend in maximum rainfall values, while decreasing
trend in maximum rainfall is observed for Francistown, Masunga, Mathangwane, Matsiloje,
Sebina, Senyawe and Siviya.

There is large rainfall variability in semi-arid regions, unlike in monsoon and tropical
regions with less rainfall variability. Inconsistencies in trend analysis methods are prevalent
in hydro-metrological studies. A recent study by [47,48] found inconsistencies between
Mann–Kendall test, the Modified Mann–Kendall (MMK) and the innovative trend analysis
(ITA) method when analyzing precipitation data. Rainfall trends have also been found
by several studies to be more unstable compared to temperature. Discrepancies between
observed and projected trends may be due to significant uncertainties in climate model
simulations [3,82], and difficulties in climate models in understanding local climate pro-
cesses [83]. A study by [84,85] also indicated that uncertainties in hydrological regimes
might be due to climate scenarios, General Circulation Models (GCMs), and the choice of
downscaling method.

The catchment is homogeneous as there is no discordant site in the region. The discor-
dancy measure of all the sites in all four different study periods is less than the 2.491 critical
value. Data for the 1981–2020 period and under RCP 8.5 is acceptably homogeneous as
heterogeneity measure (H) is between 1 ≤ H < 2 while under RCP 2.6 and RCP4.5, the
region is considered heterogeneous as H ≥ 2. Even though RCP 2.6 and RCP 4.5 were
heterogeneous, they were also included in the analysis for comparison purposes. The Gen-
eralized Logistic distribution was the best-fit distribution for observed and under-climate
projection data. The assessment was based on the Z-Value, which is less than the critical
value of 1.64. Therefore, it was used to estimate the quantiles for the region.

The quantiles have been estimated using the Generalized Logistic distribution. For
observed data, quantiles were estimated for the following recurrence intervals: 10-, 50-,
100-year, while for combined dataset (observed and projected climate scenarios), quantiles
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were estimated for 10-, 50-, 100-, 150-, 200-year. The selection of these frequencies is
based on the fact that return intervals should not be more than three times the size of the
datasets, beyond which the accuracy reduces [18]. It is also necessary to include higher
recurrence intervals since previous extreme rainfall within and beyond 150 and 200-year
quantiles has been recorded recently. Typically, between 1991–2011 over seven rainfall
gauging stations recorded rainfall between 148–250 mm, consistent with 150 and 200-year
recurrence intervals, with the highest being 250 mm recorded in Senyawe in 2004. It is
observed in Tables 14–16 that under climate projections, spatial areal coverage for lower
rainfall ranges decreases while higher rainfall ranges increase. In a 10-year return interval
for RCP 8.5, a rainfall range between 91–120 mm covers at least 94% of the entire catchment
area. Similarly, a 10-year rainfall range between 106–120 mm under RCP 4.5 covers over
80% of the entire catchment area. A 50-year rainfall with magnitude 136–165 mm will have
spatial areal coverage around 86%, 92% and 94% based on observed RCP 2.6 and RCP 4.5,
respectively, when it happens. Spatial coverage of a 100-year rainfall between 151–180 will
be 81% based on observed data and 87% based on projected data under RCP 2.6 scenario.
Under RCP 4.5 scenario, 92% of the area will be covered by rainfall between 166–195 mm. A
150-year rainfall with high spatial coverage will be of magnitude 166–195 mm (82%) under
RCP 2.6 scenario, 181–210 mm (91%) under RCP 4.5 scenario and 181–210 mm (91%) under
RCP 8.5 scenario. A projected 200-year rainfall that ranges between 196–225 mm under
RCP 4.5 and 8.5 is likely to have a spatial coverage of at least 79% and 82%, respectively.

These results agree with a study by [15], which indicates that Botswana’s population
exposed to floods is likely to increase by 100% if the temperature rises by 3 ◦C. For instance,
a 100-year rainfall higher than 181 mm has a spatial coverage of only 15% under current
conditions compared to over 95% coverage under RCP 8.5 future climate scenario.

It is also observed that under climate projections, spatial areal coverage for lower
rainfall ranges decreases while higher rainfall ranges increase. The interpretation of the
result is that if a rainfall of high magnitude is to happen, it is highly likely to have more
spatial coverage. Another notable observation is that rainfall increases from the west
and northwest towards the east and northeastern parts of the catchment. The west and
northwest receive relatively lower rainfall than the east and northeastern parts of the
catchment. The north and northeastern are currently receiving rainfall of high magnitudes,
and projections indicate that the magnitudes will increase further. This combination will
increase rainfall runoff downstream, increasing the likelihood of floods.

One interesting discovery in this study is that floods have been hitting most places in
the catchment, such as Francistown, the second capital city, because of its location relative
to rainfall spatial distribution. For example, Francistown is in the eastern part of the
catchment, which receives high rainfall magnitude. It is also located at the confluence
of two significant rivers whose upstream is developed and receives high rainfall. Even
though extreme rainfall is decreasing in the Francistown area, as indicated in Tables 3 and 4,
other factors, such as high-intensity rainfall and a combination of changing land use which
increases surface runoff and reduces infiltration, can influence floods. Land use change has
the potential to shift the natural hydrological and hydro-ecological cycles and processes,
resulting in changes in structures, forces and parameters driving these cycles [86–88].
It can modify the runoff process, increasing risk and vulnerability to climate change
and associated natural disasters such as floods. Land use modification has a significant
influence in determining time to concentration, travel time and discharge volume. Urban
development lowers retardancy to flow, reduces infiltration rate, and decreases the time of
concentration and travel time due to increasing the peak discharge [19,89–93]. Therefore,
it is unsurprising that despite insignificant trends in extreme rainfall events, floods are
experienced in the catchment. Therefore, this study recommends further studies on the
potential effect of land use change on the rainfall-runoff process.
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5. Conclusions

Efficient water resource management and flood risk management are necessary to
ensure sustainable water resources and reduce vulnerability and exposure to infrastructure
and people. Detection of trends and magnitude of floods at different return periods form
the basis for water resource planning and management and flood risk assessment at both
local and regional scales. This study presented a robust trend detection method-based
Mann-Kendall, Sen’s slope, and ITA frequency estimation method based on L-moment.
With these approaches, we analyzed trends and frequency based on 40 years of observed
data and 70 years of combined data (40 years of observed and 30 years of projected data).
The major findings of this study are:

• The LARS-WG statistical downscaling model performed well, with over 95% of
datasets having a p-value greater than the 0.05 critical value using the Chi-square and
t-test. This indicates that this model is capable of generating future rainfall datasets
which have the same statistical properties as the observed datasets.

• There are inconsistencies between observed and projected trends in both trend detec-
tion methods.

• Overall results indicate an increasing trend in annual total rainfall for over 70% of
gauging stations by a range between 0.1 mm to 8 mm per year for both observed and
projected rainfall scenarios.

• The trend of annual maximum rainfall is decreasing for 60% of gauging stations for
observed and under RCP 4.5, while 80% of the stations show an increasing trend
under RCP 2.6 and RCP 8.5 with high inconsistencies between observed and projected
rainfall. The increase and decrease are between −1 mm and 1 mm per year.

• As per the L-Moment analysis, the catchment has shown to be homogeneous as there
is no discordant site in the region and the Generalized Logistic distribution was found
to be the best-fit distribution for both observed and under climate projection data.

• Spatial coverage of a 100-year rainfall between 151–180 mm will be 81% based on
observed data and 87% based on projected data under RCP 2.6 scenario when it
happens. A 200-year rainfall that ranges between 196–240 mm under RCP 4.5 and 8.5
have high spatial coverage, at least 90%.

• Another notable observation is that rainfall increases from the west and northwest
towards the east and northeastern parts of the catchment.

The increasing trend of rainfall in this region has great potential to trigger floods in
the future. Although the catchment is already experiencing floods, climate change will
amplify the existing risks causing severe impacts on both natural and human ecosystems.
Further studies on the hydrologic response of semi-arid catchments under different climate
scenarios are necessary to give insight into future extreme events, such as droughts and
floods, locally. Such studies are essential as these regions are highly variable and uncertain.
This information will be helpful in flood-prone areas to assist planners in inappropriate
flood planning as it is evident that more than 80% of the area will likely be covered
by floods.

6. Future Outlooks

• Generally, there are inconsistencies in the trend detection methods. Therefore, future
studies may consider applying modified versions of the time series data by Trend
Free Prewhitening (TFPW), Block Bootstrapping (BBS), Bias Corrected Prewhitening,
Prewhitening (PW) and Variance Correction Approach by calculating effective sample
size.

• Semi-arid basins are highly variable and subject to uncertainties in modeling hydro-
climatic systems. Machine learning-based downscaling techniques and climate pro-
jections are suggested for future research as these approaches can learn non-linear
patterns such as climate change.
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Appendix A

Table A1. General Circulation Models (GCMs) from Coupled Model Inter-comparison Project Phase
5 (CMIP5) were used in rainfall projections in this study.

Model Name Model Country Model Agency

ACCESS1_3 Australia Commonwealth Scientific and Industrial Research Organisation, Australia),
and BOM (Bureau of Meteorology, Australia)

bcc-csm1-1 China Beijing Climate Center, China Meteorological Administration

BNU-ESM China College of Global Change and Earth System Science, Beijing Normal
University, China

CanESM2 Canada Canadian Centre for Climate Modeling and Analysis

CMCC_CM Italy Centro Euro-Mediterraneo per I Cambiamenti Climatici

CNRM-CM5 France National Centre of Meteorological Research, France

CSIRO-Mk3-6-0 Australia Commonwealth Scientific and Industrial Research Organization/Queensland
Climate Change Centre of Excellence, Australia

EC_EARTH Sweden EC-EARTH consortium

GFDL-ESM2M USA NOAA Geophysical Fluid Dynamics Laboratory, USA

HadGEM2-ES United Kingdom Met Office Hadley Center, UK

inmcm4 Russia Institute for Numerical Mathematics, Russia

IPSL-CM5A-MR France Institut Pierre Simon Laplace, France

MIROC5 Japan
Atmosphere and Ocean Research Institute (The University of Tokyo), National

Institute for Environmental Studies, and Japan Agency for Marine-Earth
Science and Technology

MIROC-ESM Japan
Japan Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute (The University of Tokyo), and National Institute for
Environmental Studies

MIROC-ESM-CHEM Japan
Japan Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute (The University of Tokyo), and National Institute for
Environmental Studies

MRI-CGCM3 Japan Meteorological Research Institute, Japan

NorESM1-M Norway Norwegian Climate Center, Norway

NCAR_CCSM4 USA National Center of Atmospheric Research, USA

https://esgf-index1.ceda.ac.uk
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Figure A1. Typical rainfall projections using General Circulation Models (GCMs) from Coupled 
Model Inter-comparison Project Phase 5 (CMIP5) for the ten gauging stations in the Shashe 
catchment.

Figure A1. Typical rainfall projections using General Circulation Models (GCMs) from Coupled
Model Inter-comparison Project Phase 5 (CMIP5) for the ten gauging stations in the Shashe catchment.
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Appendix B

Table A2. Accuracy assessment for the Long Ashton Research Station Weather Generator (LARS-WG) used in rainfall projections in this study.

Masunga Mathangwane Jackalas 2

Month KS
Statistic p-Value t-Test p-Value f-Test p-Value KS

Statistic p-Value t-Test p-Value f-Test p-Value KS
Statistic p-Value t-Test p-Value f-Test p-Value

J 0.105 0.999 1.58 0.118 1.63 0.104 0.156 0.92 −1.491 0.14 1.241 0.468 0.075 1 0.863 0.391 3.315 0.001
F 0.097 1 0.839 0.403 1.629 0.104 0.202 0.685 0.311 0.756 1.232 0.484 0.055 1 −0.341 0.734 1.201 0.585
M 0.115 0.996 −2.074 0.041 2.303 0.008 0.085 1 −1.574 0.119 2.634 0.002 0.037 1 0.563 0.575 1.849 0.072
A 0.207 0.655 −0.673 0.503 1.159 0.634 0.138 0.971 −0.85 0.398 1.672 0.096 0.042 1 −0.522 0.604 1.382 0.34
M 0.348 0.096 −0.841 0.402 1.913 0.037 0.258 0.373 1.004 0.318 2.872 0.001 0.054 1 0.039 0.969 1.921 0.056
J 0.304 0.196 1.337 0.185 5.899 0 0.096 1 0.432 0.667 2.304 0.006 0.162 0.897 −1.76 0.083 1.009 0.991
J 0.522 0.002 0.205 0.838 1.356 0.308 0.254 0.393 0.567 0.572 8.054 0 0.052 1 0.339 0.735 1.064 0.846
A 0 1 −0.316 0.753 3.283 0 0.192 0.744 −0.58 0.563 1.239 0.473 0.05 1 −1.268 0.209 1.062 0.85
S 0.131 0.982 −1.98 0.051 6.867 0 0.19 0.755 0.663 0.509 1.934 0.028 0.113 0.997 0.519 0.606 1.878 0.065
O 0.251 0.407 0.422 0.674 1.309 0.383 0.152 0.934 0.631 0.53 1.165 0.607 0.045 1 1.409 0.163 1.654 0.139
N 0.156 0.92 −0.654 0.515 1.637 0.111 0.137 0.972 −1.041 0.301 2.089 0.018 0.031 1 −0.32 0.75 1.465 0.261
D 0.109 0.998 1.629 0.107 1.423 0.238 0.151 0.937 −0.579 0.564 1.198 0.56 0.043 1 −0.479 0.633 1.445 0.278

Matsiloje Ramokgwebana Senyawe

Month KS
Statistic p-Value t-Test p-Value f-Test p-Value KS

Statistic p-Value t-Test p-Value f-Test p-Value KS
Statistic p-Value t-Test p-Value f-Test p-Value

J 0.123 0.991 0.265 0.792 1.671 0.097 0.121 0.993 −0.475 0.636 1.474 0.208 0.143 0.959 −1.794 0.076 1.559 0.151
F 0.133 0.979 −0.069 0.945 1.335 0.348 0.082 1 −1.695 0.094 2.051 0.021 0.114 0.997 −0.635 0.527 1.587 0.135
M 0.119 0.994 0.717 0.475 1.215 0.514 0.125 0.989 −1.065 0.29 1.55 0.156 0.235 0.492 −0.214 0.831 1.072 0.81
A 0.168 0.87 0.59 0.557 1.238 0.474 0.217 0.595 −0.253 0.801 1.576 0.14 0.286 0.256 −0.921 0.36 3.59 0
M 0.174 0.842 0.818 0.415 1.596 0.119 0.266 0.337 −0.968 0.336 1.591 0.132 0.299 0.212 −0.464 0.644 2.777 0.001
J 0.305 0.193 0.59 0.557 2.036 0.018 0.291 0.238 −1.021 0.31 1.298 0.398 0.092 1 −0.663 0.509 3.397 0
J 0.609 0 −0.612 0.542 1.311 0.379 0.338 0.113 −1.506 0.136 12.318 0 0.15 0.94 0.325 0.746 5.527 0
A 0 1 −1.154 0.252 3.077 0 0.645 0 −1.477 0.143 1.883 0.041 0.367 0.068 −0.616 0.54 1.337 0.347
S 0.217 0.595 −0.809 0.421 3.325 0 0.295 0.225 −2.654 0.009 4.304 0 0.311 0.176 −1.179 0.241 1.288 0.412
O 0.144 0.957 0.655 0.514 1.06 0.856 0.142 0.962 −1.024 0.309 1.76 0.068 0.172 0.851 0.367 0.715 1.199 0.558
N 0.138 0.971 0.229 0.82 1.921 0.035 0.138 0.971 −0.531 0.597 2.595 0.002 0.059 1 −0.583 0.562 2.276 0.008
D 0.127 0.987 −0.006 0.995 1.008 0.972 0.083 1 0.166 0.869 1.971 0.029 0.062 1 −0.655 0.514 1.38 0.296

Sebina Siviya Tonota

Month KS
Statistic p-Value t-Test p-Value f-Test p-Value KS

Statistic p-Value t-Test p-Value f-Test p-Value KS
Statistic p-Value t-Test p-Value f-Test p-Value

J 0.237 0.481 −0.289 0.774 1.148 0.641 0.062 1 1.257 0.212 1.307 0.37 0.065 1 −0.14 0.889 1.334 0.335
F 0.181 0.805 0.504 0.616 1.095 0.772 0.064 1 −0.793 0.43 1.046 0.874 0.103 0.999 −2.057 0.043 1.455 0.224
M 0.174 0.842 0.071 0.944 1.141 0.656 0.138 0.971 −0.744 0.459 2.253 0.009 0.086 1 −0.996 0.322 2.784 0.001
A 0.209 0.643 2.344 0.021 2.391 0.004 0.217 0.595 1.032 0.305 1.537 0.152 0.116 0.996 0.739 0.462 1.205 0.531
M 0.217 0.595 −0.595 0.553 1.408 0.267 0.289 0.245 1.573 0.119 18.752 0 0.261 0.359 0.002 0.998 1.156 0.624
J 0.218 0.589 0.627 0.532 6.305 0 0.309 0.182 0.442 0.659 1.384 0.292 0.522 0.002 0.659 0.511 3.842 0
J 0.217 0.595 −0.295 0.769 1.211 0.536 0.419 0.024 0.923 0.358 22.504 0 0.609 0 0.934 0.353 18.33 0
A 0.261 0.359 −0.588 0.558 1.417 0.258 0.506 0.003 1.195 0.235 490.881 0 0.696 0 −1.333 0.186 2.457 0.004
S 0.348 0.096 −0.53 0.598 2.638 0.002 0.244 0.443 0.25 0.803 2.813 0.001 0.261 0.359 −1.223 0.225 3.975 0
O 0.229 0.526 0.92 0.36 1.124 0.692 0.169 0.866 −0.391 0.697 3.918 0 0.066 1 −1.055 0.294 1.803 0.057
N 0.215 0.607 0 1 1.334 0.35 0.154 0.927 1.5 0.137 1.796 0.059 0.093 1 −0.527 0.599 1.034 0.92
D 0.125 0.989 −0.59 0.557 1.778 0.063 0.086 1 −0.034 0.973 1.055 0.867 0.124 0.99 −0.024 0.981 1.277 0.412
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