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Abstract: The Lake Victoria basin’s expanding population is heavily reliant on rainfall and river flow
to meet their water needs, making them extremely vulnerable to changes in climate and land use. To
develop adaptation and mitigation strategies to climate changes it is urgently necessary to evaluate the
impacts of climate change on the quantity of water in the rivers that drain into Lake Victoria. In this
study, the semi-distributed hydrological SWAT model was used to evaluate the impact of current land
use and climate changes for the period of 1990–2019 and assess the probable future impacts of climate
changes in the near future (2030–2060) on the Simiyu river discharge draining into Lake Victoria,
Northern Tanzania. The General Circulation Model under RCPs 4.5, 6.0 and 8.5 predicted an increase
in the annual average temperature of 1.4 ◦C in 2030 to 2 ◦C in 2060 and an average of 7.8% reduction
in rainfall in the catchment. The simulated river discharge from the hydrological model under RCPs
4.5, 6.0 and 8.5 revealed a decreasing trend in annual average discharge by 1.6 m3/s from 5.66 m3/s
in 2019 to 4.0 m3/s in 2060. The increase in evapotranspiration caused by the temperature increase
is primarily responsible for the decrease in river discharge. The model also forecasts an increase in
extreme discharge events, from a range between 32.1 and 232.8 m3/s in 1990–2019 to a range between
10.9 and 451.3 m3/s in the 2030–2060 period. The present combined impacts of climate and land
use changes showed higher effects on peak discharge at different return periods (Q5 to Q100) with
values of 213.7 m3/s (Q5), 310.2 m3/s (Q25) and 400.4 m3/s (Q100) compared to the contributions
of climate-change-only scenario with peak discharges of 212.1 m3/s (Q5), 300.2 m3/s (Q25) and
390.2 m3/s (Q100), and land use change only with peak discharges of 295.5 m3/s (Q5), 207.1 m3/s
Q25) and 367.3 m3/s (Q100). However, the contribution ratio of climate change was larger than
for land use change. The SWAT model proved to be a useful tool for forecasting river discharge in
complex semi-arid catchments draining towards Lake Victoria. These findings highlight the need for
catchment-wide water management plans in the Lake Victoria Basin.

Keywords: SWAT; hydrological model; Simiyu catchment; river discharge; water quantity;
agricultural land; deforestation

1. Introduction

Catchment topography, soil type, and climatic and vegetation dynamics are the major
variables that affect the hydrology of a watershed [1–4]. Vegetation is a major component
of terrestrial ecosystems as a primary producer of organic material, and thus plays an
important role in energy flow, the water cycle and buffering against desertification [5].
In addition, terrestrial vegetation offers regulatory services that include flood attenua-
tion and nutrient retention, soil erosion control, climate regulation and enhancing river
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discharge [6–11]. Permanent vegetation and soil organic matter intercept rainfall, pro-
mote infiltration and protect the soil surface from evaporation. When those two factors
are reduced, less rainfall will infiltrate the soil, leading to more runoff over the surface.
However, recent observed increased flashiness in river discharges around the globe is
mostly attributed to anthropogenic factors such as land cover changes and global climatic
changes, which have caused changes in the hydrologic cycle and increases in the catch-
ment’s climate [12]. Recent advances in remote sensing data have shown great potential
for studying land use land cover changes threatening catchments’ ecosystem functions
and services [13–16]. Remote sensing techniques allow for repeatable imaging of the same
area needed to determine changes and temporal patterns in catchment ecosystems [14–16].
However, in semi-arid environments, precipitation and evapotranspiration vary seasonally
with climate variability and anthropogenic activities, making the Soil and Water Assess-
ment Tool (SWAT) an ideal choice for this study due to its proven performance under these
conditions [17,18].

In the Lake Victoria Basin in Northern Tanzania, an increasing demand for food
and energy from a growing population has led to an expanse in agricultural areas and
widespread deforestation [19,20]. The pressure has even led to alterations in the catchment’s
agricultural practices, shifting from traditional mixed perennial agriculture toward more
intensive cropping with minimal devotion to soil and water conservation [21,22].

Recent expansions of gully networks have also increased the connectivity from hill-
slopes to the river networks, leading to increased drainage rates [23]. This higher hydrolog-
ical connectivity generally leads to bigger and more rapid differences between the peak and
base flows, which increases the risks of both floods and droughts [24–26]. The dynamics of
surface runoff, evapotranspiration, infiltration, groundwater flow, and river discharge are
significantly impacted by poor land and water management associated with unsustainable
agriculture and deforestation in the catchments [24,27,28]. Therefore, it is important to
understand how present and future climate variability and land use change will influence
the discharge of the rivers draining towards Lake Victoria. The Simiyu River contributes on
average 16 m3/s to Lake Victoria and thereby is fifth largest in terms of water flow, behind
Kagera (225 m3/s), Mara (50 m3/s), Ngono (27 m3/s) and Grumeti (20 m3/s) Rivers [24].
The catchment is of significant interest to national, regional and international reputation
as it is part of the Nile basin, which is shared by 11 riparian countries and Lake Victoria.
Additionally, it is crucial for maintaining the country’s economy, supporting local commu-
nities, and for biodiversity conservation. The catchment’s major economic activities include
rainfed smallholder agriculture, fishing and pastoralism [29]. The Simiyu river provides
water for both domestic and industrial uses in some towns around Mwanza Region. The
river and its tributaries are also targeted for supply of additional water for irrigation in the
catchment. The water demands in the catchment are rapidly growing and are anticipated to
increase even further in the future [29]. However, due to erosion, inadequate human waste
management, unsustainable land use management practices, degradation of wetlands, and
sand mining in the river, the catchment’s water resources are declining in both quality
and quantity [26,27]. Increasing agricultural activity makes catchments more susceptible
to both floods and droughts by increasing runoff and decreasing infiltration [30]. The
Simiyu catchment has experienced flooding in the last decades, which has impacted both
human safety and agricultural yields [31]. In 2007, the study area received intensive rains
that culminated into floods, eventually resulting in the injury, damage and loss of life and
assets, local infrastructure distraction, and forced relocation [20,32,33]. Studies in the area
assume that the increased flood peaks are caused by increasing settlements that have led to
deforestation, wetland degradation and increased impervious surfaces [34,35]. However,
there is little to no empirical evidence about how the land use and climatic variability
affect the current discharge, nor do we know how future climate change will affect this
either. Dynamic catchment models can be calibrated using existing hydrological data and
subsequently applied to reconstruct and forecast river discharges [36,37]. They are founded
on the water balance equation of the basic water cycle elements (such as precipitation,
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infiltration, evapotranspiration) and the physical catchment features that influence runoff,
such as topography, soil type and land use [38]. Locally calibrated catchment models
can be instrumental for simulating the impacts of land use change, soil management and
climate change on the flow of water and nutrients. The catchment’s semi-arid environment,
distinct rainfall seasonality and climate conditions made the Soil and Water Assessment
Tool (SWAT) an ideal choice for this study because of its demonstrated performance in
such conditions [17,18]. The model is semi-distributed and spatially referenced to a specific
catchment or sub-catchment where the smallest defined sub-catchments are routed together
using the stream network. The sub-catchments are built on hydrological response units
(HRUs), which are groups of similar land uses, soils, and slopes within the sub-catchment.
Understanding the detailed spatially explicit datasets of HRUs of watersheds to the sig-
nals of physical (land use) and climatic (rainfall and air temperature) variables is thus an
important component of water resources planning management. Therefore, this study
aimed to evaluate the impacts of climate and land use change on the streamflow at the
critical agro-ecological region of the Simiyu catchment. The findings from this study will
give insights for developing and implementing adaptation and mitigation measures to
minimize the impacts of climate change and land use on water resources for sustainable
economic development.

2. Materials and Methods
2.1. Description of the Study Site

The Simiyu River catchment is situated in the Simiyu and Mwanza regions between
Itilima, Bariadi, Busega and Magu Districts in the Lake Victoria Basin (LVB) (Figure 1).
The catchment covers an area of circa 11,000 km2 and drains towards Lake Victoria. The
catchment extends between latitude 2◦15′ and 3◦15′ South and longitudes 33◦15′ and
35◦00′ East, and its altitude ranges between 1100 and 2000 m.a.s.l. The catchment ex-
periences semi-arid environments, with periodic variations in rainfall, most of which
falls during the two rainy seasons of extended rains from March to May and short rains
from October to December [29]. Between June and September there is a dry season,
and January and February serve as the transitional months between the seasons [29,39].
The region also has significant interannual variation in rainfall with drier and wetter
years. The mean annual rainfall in the catchment varies spatially as well, with the lower
parts receiving an average of 750 mm annually and upper parts receiving an average of
1100 mm annually [29] (Supplementary Materials S1). The trend of rainfall is shown in the
Supplementary Materials S1 for a period between 1990 to 2019. The natural vegetation of
the area follows the altitudinal rainfall gradient, but is also impacted by human activities
and downstream flood regimes. As a result, the catchment has nine (9) major land use
and land cover types: grassland, forest, bush land, cultivated land, urban areas, woodland,
water bodies, wetland, and bareland. The catchment is mostly underlined by granitoids,
migmatite, mafic and ultramafics and meta-sediments, while fine-coarse clastic sediments,
mafic volcanics, meta-basalts, phyllite, volcanic ashes, tephra, calcareous tuffs and sandy,
gravelly, silty sediments represent smaller portions of the catchment [39] (Supplementary
Materials S2). The map (Supplementary Materials S3) displays the study area’s soil classes,
where the major soil types are sandy clay (1.9%), loam (2.9%), clay (5%), clay loam (12.9%),
sandy clay loam (13.5%) and sandy loam (63.8%) [26,29].

2.2. Data Preparation

SWAT requires spatial data, hydrological data and meteorological data for, respectively,
building, calibrating, and forcing the model. The required input data were collected
from different sources and prepared in the ArcGIS 10.2.1 environment to acquire the
necessary setup essential for the ArcSWAT12 database. A digital elevation model (DEM)
of the Simiyu catchment with a resolution of 1 arc second (30 m × 30 m) was included
in the spatial data and was acquired from the United States Geological Surveys (USGS)
website (http://gdex.cr.usgs.gov/gdex/ accessed on 28 March 2020), and was used to

http://gdex.cr.usgs.gov/gdex/
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delineate the watershed and the stream networks following the procedure in [17,40]. The
land use/cover map of 1990 and 2019 (Figure 2a and b, respectively) were downloaded
from Earth Explorer in May 1990 with Landsat 5 (resolution 30 m) and Landsat 8 images
(resolution 30 m) captured in May 2019 and interpretation, atmospheric correction and
geometric rectification performed using impact toolbox software (http://glovis.usgs.gov/
accessed on 17 December 2021). Geotagged photographs and field notes were collected
from numerous ground observation operations (through field surveys and interviews
with local people) to ensure full documentation of the land cover spectrum. Using these
ground observations, supplemented by Google Earth imagery, the main land cover types
in the region were mapped into a spectral signature file developed from training samples.
The supervised classification according to ArchMap’s maximum likelihood algorithm
method uses these signature files to estimate predefined land cover classes from the entire
Landsat image database. Visual inspection and comparison with high-resolution aerial
images provided by Google Earth was used to remove potentially misclassified features.
A raster calculator function was used to determine the appropriate elevation for specific
land use classes based on expert knowledge of the study area as detailed by Taweesuk
et al. [41]. Expert classification aims to improve the classification accuracy used to combine
remote sensing data with other sources of georeferencing information such as digital
elevation models (DEMs), land use and spatial texture data. The accuracy assessment
was performed to determine the level of agreement between classified images and ground
features. Overall accuracy ratings for images observed in 1990 and 2019 were 87.37% and
85.74%, respectively. This value meets the minimum accuracy threshold of 85% required
for effective and realistic land use/cover change analysis and modeling [42,43]. The results
of this study are considered acceptable because the accuracy values are greater than 80%,
as reported by Jensen [44].
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Figure 2. Land cover maps derived from Landsat imagery of (a) 1990 and (b) 2019, detailing the
changes in land use land cover from 1990 to 2019.

The Lake Victoria Basin Water Board (LVBWB) provided the meteorological data
such as daily rainfall (rainfall records for 5 stations Maswa, Sumve, Talaga, Sagata and
Kisesa) and minimum and maximum temperature [40] (Table 1), supplemented by data
from Tanzania Meteorological Agency (TMA) (satellite data from the Earth System Grid
Federation (ESGF)). The hydrological data included the daily river discharge records
from Ndagalu gauging station (−2.65299◦ S, 33.541930◦ E) between 1 January 1972 and
31 December 1996. The soil data were obtained from FAO Harmonized global soils database
at (http://www.waterbase.org/download_data.html accessed on 17 December 2021) Digi-
tal Soil Map of the World (DSMW) [45] (Supplementary Materials S4). However, there were
missing data in the rainfall patterns that could hide true patterns in the data and impede
the analysis and interpretation of the flow variability results in complexity and uncertainty
in modelling. Encountering data gaps is unavoidable, particularly in developing countries,
hence various methods for handling infilling of missing data have been developed. In this
study, filling missing data was performed using the RClimtool software version 1.

Table 1. Meteorological stations in the Simiyu catchment.

Station ID Meteorological
Stations

Latitude
◦ S

Longitude
◦ E Elevation Daily Rainfall Percentage Missing

(NA%)

933305 Maswa −3.182 33.79098 1334 1971–2019 7.182
923301 Sumve −2.751 33.2265 1243 1971–2019 30.814
923240 Talaga −2.932 33.46581 1237 1971–2019 0.691
923401 Sagata −2.75 34.25 1394 1971–2019 17.227
933406 Kisesa −3.05 34.15 1343 1971–2019 45.915

2.3. SWAT Model Setup, Sensitivity Analysis, Calibration and Validation

There are two main categories of statistical evaluations used to assess the performance
of the best parameter sets chosen in the sensitivity analysis, i.e., model performance evalua-
tion and uncertainty in model predictions. The statistical analysis parameters proposed
by [46], such as the Nash–Sutcliffe efficient (NSE), a ratio of the root mean square error
to the standard deviation of measured data (RSR) and the percentage bias (PBIAS), were
used to assess the model performance in predicting the catchment conditions [47]. The
r-factor and the p-factor were used for model prediction uncertainty [18]. The p-factor
is the percentage of observations covered by the 95% prediction uncertainty, while the
r-factor refers to the thickness of the 95% prediction uncertainty (95PPU) envelope. The

http://www.waterbase.org/download_data.html
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p-factor value ideally falls between 0 and 100%, while the r-factor falls between 0% and
infinity [48]. An exact simulation of the measured data has a p-factor of 1 and r-factor of
zero [49]. The extent to which model results deviate from these values can be used to assess
the model’s representativeness and the need for further calibration. A p-factor value of
>70% and r-factor value of around 1 are suggested in semi-arid regions [50].

In this study, the catchment’s hydrological responses to land use and climate changes
were quantified using the climate scenario and the annual runoff coefficients of each land
use. This enables the evaluation of the water resource dynamics, which are controlled by
the succession of wet and dry years in the studied catchment. The multi-decadal climate
prediction was analyzed in accordance with [51] using 30-year average annual and monthly
results to obtain river discharge predictions for reference and future scenario periods.
All the elements of the water balance in the study catchment were estimated using the
hydrological component of the SWAT model. The model was built by partitioning the
catchment into sub-catchments that are composed of several HRUs with relatively uniform
combinations of land use/land cover, soil types, and topography. It is assumed that each
HRU has similar hydrological processes [18,40,52]. The required climatic driving variables
(daily rainfall, minimum and maximum temperature) were subsequently fed into the model,
consequently determining the evapotranspiration rate by using the Hargreaves method [53].
After all the above processes were completed, the model was calibrated, validated, and
assessed for performance accuracy and efficiency. Validation was carried out by using the
split sample test whereby two time periods were selected for this analysis [54]: a calibration
period of 1972–1982 and a validation period of 1988–1992. The daily river discharge data of
1972 to 1982 and 1988 to 1992 from the Ndagalu gauging station were used to calibrate and
validate the SWAT model, respectively. SWATCUP SUFI-2, a semi-automatic calibration and
uncertainty program, was used for the calibration and validation [18]. Model initialization
was carried out during model calibration over a four-year warm-up period, from 1988
to 1992. Validation used the same number of calibration iterations as before; however,
the sensitivity analysis was first performed then followed by the calibration process. The
number of iterations used for calibration was maintained for validation [55]. Sensitivity
analysis, according to [56], entails identifying the parameters that are most sensitive for a
given basin and calculating the rate at which model outputs change as a result of changing
model inputs. Sensitivity analysis was performed in ArcSWAT with and without discharge
data from gauging stations and in SWAT-CUP using the SUFI procedures by running the
model 1000 times. To rank the sensitivity of the parameters, the t-statistic and p-values
are used. The most sensitive parameters are those with the lowest p-value and the highest
absolute value of the t-stat. For the details on the whole calibration and validation of the
model, readers can be referred to [49,50].

2.4. Calibration and Validation of Future Climate Data

General Circulation Models (GCMs) are useful for describing and forecasting future
climate change patterns. In this study, the 1990–2019 period was used as the baseline
and the near-future (2030–2060) was accounted for in climatic projections. Considering
expansive numbers of accessible climate models and computational and human resource
constraints, detailed climate change impact studies cannot incorporate all projections. In
practice, one climate model or a small ensemble of climate models that covers more cli-
matological variables using cluster analysis algorithms [57,58] is usually selected for the
assessment based on their skill to simulate the present and near-future climate [59,60].
In addition, the poor temporal and coarse spatial resolutions of GCM outputs (usually
precipitation and temperature) might be biased, limiting the effectiveness of GCM model
outputs in providing useful information at the regional scale [61], and are thus down-
scaled to convert GCM outputs into regional high-resolution meteorological fields required
for reliable hydrological modelling of particular catchments. For this study, 4 climate
models from the Coupled Model Intercomparison Project 5 (CMIP5), i.e., CMCC.CM, AC-
CESS 1.3, MIROC5 and CNRM.CM, were downscaled and compared to find the most
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representative of the Simiyu catchment climatological patterns and spatial variations [62]
(Supplementary Materials S5). The three (3) climate models (MIROC5, CNRM.CM5 and
ACCESS 1.3) replicated climate variability of the Simiyu catchment (Northen Tanzania) with
high accuracy coefficient correlations of 0.96, 0.97 and 0.98, respectively (Figure 3); thus,
3 climate models were assumed to be the most representative in simulating spatial patterns
in the decadal change of climate zones [63] in the catchment (Supplementary Materials S5).
Forecasting climate change impacts on water resources is cumbersome [64] and requires
using viable scenario changes detailed by the Intergovernmental Panel on Climate Change
(IPCC) [64]. As shown in the Supplementary Materials S6, the IPPC’s fifth assessment report
from 2014 presented four Representative Concentration Pathways (RCPs) emission scenar-
ios: RCP 2.6 (low emission scenario), RCP 4.5 (low–medium emission scenario), RCP 6.0
(medium–high emission scenario) and 8.5 (high emission scenario). In this study, three RCPs
(4.5, 6.0 and 8.5) were used to analyze the future (2030–2060) climate change impacts be-
cause they assume an increase in GHG emissions until 2080, followed by a decline [65].
The steps outlined in the Guide for Running AgMIP Climate Scenario Generation Tools
with R were used to create the near-future climate scenario of precipitation and tempera-
tures [24,65,66]. The RCPs 4.5, 6.0 and 8.5 with ensembled GCM (ACCESS1.3, MIROC5 and
CNRM.CM5) models were subsequently downscaled to the watershed level [67] using the
Simple Delta Method, as it retains the historical patterns of the gridded observations [24].
In order to statistically downscale the selected models, the delta change algorithm that
was acquired [64], along with the CMIP5-GCMs, was used to calculate the change factor or
the ratio between a mean value in the future and historical run [64]. In order to create a
time series that represents the future climate, this change factor was then applied to the
observed time series 2030–2060 [64,68]. The downscaled and selected 3 GCMs climatic data
points under RCPs 4.5, 6.0, and 8.5 were used as forcing data to forecast the river discharge
under a future climate.
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2.5. Simulating the Impacts of Land Use and Climate Change on Stream Discharge

The baseline land use/cover of 1990 was replaced in the calibrated SWAT model with
the 2019 land use/cover of the Simiyu catchment. The 2019 land use/cover scenario was
then used to simulate the impact of the change in land cover on river discharge without
changing the other SWAT input data (soils, slope and weather). The major assumption of
this study is that the calibrated parameter set is still valid under changing land use and
climatic conditions. The potential combined effect of land use and climate change on river
discharge was evaluated using scenarios derived from a suite of 3 GCM models under the
RCPs 4.5, 6.0 and 8.5 Greenhouse Gas Emission scenarios, which represent a wide range of
simulated future (2030–2060) climate conditions (Table 2). Scenario 1 (S1) is the baseline
with land use from 1990 and climate data from 1972–1990. Scenario 2 (S2) represented river
discharge under land use change only. Scenario 3 (S3) was climate change only. Finally,
scenario 4 (S4) represented the combined effect of land and climate change.

Table 2. Scenario results for the highest discharge at return periods 5, 25 and 100.

Flow Index Peak Discharge (m3s−1)
Difference

Value %

Q5
Baseline 206.8

LULC-Change (S2) 207.5 0.74 0.36
Climate Change (S3) 212.2 5.36 2.59

Combined Change(S4) 213.7 6.91 3.34
Q25

Baseline 294.1
LULC-Change (S2) 295.1 0.92 0.31

Climate Change (S3) 300.2 6.09 2.07
Combined Change (S4) 310.2 16.08 5.47

Q100
Baseline 366.2

LULC-Change (S2) 367.3 1.06 0.29
Climate Change (S3) 390.2 24.01 6.56

Combined Change (S4) 400.4 34.13 9.32

To quantify the impacts of land use and climate change on river discharge in the
Simiyu catchment for the years 1990 to 2019, the four scenarios (S1) to (S4) were used to
run the calibrated SWAT model, and their outputs were compared.

For future simulation of climate change impacts to discharge (2030–2060), only
S1 and S3 were considered since no predictions were made on future land use.

3. Results
3.1. Sensitivity Analysis, Model Calibration and Validation

The parameters’ rankings remained relatively stable with and without observed data.
The significant difference was observed in CH_N2, Alpha_BF, SURLAG, and CH_K2, which
consequently provides an insight into the most sensitive parameters. The top 20 parameters
were ranked based on sensitivity analysis (Table 3), and the 16 most sensitive parameters
(Table 4) were used for calibration.

The most sensitive parameter Cn2 has a high optimal value, which denotes a low
infiltration capacity. The NSE, PBIAS and RSR had values of 0.42, +1.5 and 0.74, respec-
tively, before calibration, which were deemed good/satisfactory for NSE and PBIAS and
unsatisfactory for RSR according to Moriasi et al., [46], while the p-factor was 39% and
r–factor 65%. However, the model efficiency improved to 0.57, −0.70 and 0.53 for NSE,
PBIAS and RSR, respectively, for the monthly time step. The p factor was 47%, r factor was
57% and NSE was 0.36 during the validation period (1988–1992) for the daily time step.
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Table 3. Sensitivity analysis parameter ranking and fitted values after calibration.

Parameter Description Rank
With Obs Without Obs

Cn2 Curve number for moisture condition 11 1 1
Esco Soil evaporation compensation factor 2 2

Ch_K2 Efficient hydraulic conductivity in the main
channel alluvium (mm/hr) 3 13

Surlag Surface runoff lag coefficient 4 16
Alpha_Bf Baseflow alpha factor 5 12

Ch_N2 Manning n value for the main channel 6 15
Canmx Maximum canopy index 7 5

Blai Maximum potential leaf area index 8 8
Sol_Awc Available water capacity of the soil layer 9 4

Sol_Z Soil depth(mm) 10 3
Slope Average slope steepness(mm) 11 7

Revapmn Threshold depth of water in the shallow aquifer
for revap or percolation to deep aquifer to occur 12 10

Sol_K Saturated hydraulic conductivity (mm/h) 13 6
Gw_Revap Ground water “revap” coefficient 14 11

Gwqmn Threshold depth of water in the shallow aquifer
required for return flow to occur 15 9

Epco Plant uptake compensation factor 16 14
Gw_Delay Ground water delay 17 18

Biomix Biological mixing coefficient 18 19
Slsubbsn Average slope length 19 20

Table 4. Sensitive parameters used in model calibration.

Sn Parameter Name Fitted Value Min Value Max Value

1 R__CN2.mgt −0.13 −0.13 −0.11
2 V__ALPHA_BF.gw 0.64 0.60 0.66
3 V__GW_DELAY.gw 413.55 350.39 492.33
4 V__GWQMN.gw 1080.60 813.15 1092.62
5 V__GW_REVAP.gw 0.17 0.16 0.19
6 V__RCHRG_DP.gw 0.27 0.23 0.31
7 V__SURLAG.bsn 8.94 8.70 9.56
8 V__CH_N2.rte 0.16 0.16 0.17
9 V__CH_K2.rte 71.18 59.67 87.27

10 V__ESCO.hru 0.37 0.36 0.38
11 V__CANMX.hru 0.04 0.04 1.67
12 R__HRU_SLP.hru 0.46 0.40 0.48
13 R__SOL_AWC(..).sol −0.12 −0.13 -0.08
14 R__SOL_K(..).sol 0.51 0.40 0.51
15 R__SLSUBBSN.hru 0.13 0.12 0.20
16 V__EPCO.hru 0.79 0.78 0.83

3.2. Impacts of the Current Land Use and Climate Change on the River Discharge

The World Meteorological Organization’s recommendation to use the 18-year-period
as a baseline was adopted to represent the baseline for land use and climate data from 1972
to 1990 [69]. The land use change (S2) was attributed to an increased peak discharge of
0.32% from the baseline. The climate-change-only (S3) scenario showed an increase in peak
discharge by 3.72%. The combined impacts (S4) estimated an increase in peak discharge by
6.04%, indicating a synergistic impact of land use and climate change. For the discharges
at a return period (T) of 25 years, the baseline discharge (S1) was 294.1 m3s−1 and S2
increased the discharge by 0.31%, S3 by 2.07% and S4 by 5.47%. The T = 100 years discharge
events demonstrated that S3 had a higher increase (6.55%) compared to S2 (0.29%), while
S4 caused an increase of 9.32% (Table 2).
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3.3. Future Climate Changes under RCPs 4.5, 6.0 and 8.5
3.3.1. Projected Future Temperature and Precipitation Changes

The downscaled ensemble of GCM (ACCESS1.3, MIROC5 and CNRM.CM5) models
predicted the change in the mean annual temperature from 21.8 ◦C in 1990 to about 22.2 ◦C
at the end of 2019, an increase of about 0.4 ◦C over the past 30 years. The temperatures of
the period between 2030 and 2060 under RCPs 4.5, 6.0 and 8.5 were predicted to increase
by 0.6 ◦C from 22.6 ◦C in 2030 to 23.2 ◦C in 2060 in response to increasing greenhouse
gas (GHG) concentrations and a reduction in the rainfall amount (Figures 4 and 5). The
future temperature increases are mostly concentrated from December to August, while
in September, October and November the future temperature is predicted to decrease
very slightly.
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Figure 4. Comparison between the current 1990–2019 (baseline) and future temperature (2030–2060)
at Simiyu catchment.
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3.3.2. Projected Future Annual and Seasonal River Discharge

The results showed that the river discharge varies across the months following the
spatial and interannual variability in rainfall across the two wet seasons with the long
rains from March to May, short rains in October to December and two intermediate dry
seasons [29]. In general, the discharge increased from October through January, decreased
afterwards up to March and then started increasing again until May, reaching its peak
in April (Figure 6). These large differences between seasons are driven by the seasonal
differences in precipitation and temperature changes. Mean monthly discharge forecasts
during 2030–2060 under RCPs 4.5, 6.0 and 8.5 showed the maximum in April, which is
consistent with the timing of the observed mean monthly discharge in the current period
(1990–2019). In addition, predicted average monthly discharges are lower in the months
from June to September, which is in line with the historical data. According to the model,
the annual average river discharge of the Simiyu will significantly decrease (Figure 6) due
to projected decreasing rainfall and increasing temperature in the catchment. Under RCPs
4.5, 6.0 and 8.5, the average annual river discharge decreased from 5.7 m3/s in 1990–2019
to 4.0 m3/s in 2030–2060, which is equivalent to a 29% decline (Table 2).
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Figure 6. Comparison of the current and future flows.

4. Discussion
4.1. Sensitivity Analysis, Model Calibration and Validation

The sensitive parameters show that the catchment seems to be governed more strongly
by surface runoff parameters compared to base flow parameters, which is expected in the
semi-arid tropical systems [46]. A poor p-factor in validation is attributed to uncertainties
in the data and the failure of the model to capture some hydrological catchment processes
typical for semi-arid tropical catchments. Moreover, the model simulations for the daily
time step slightly underestimated the peak river discharges (Figures 7 and 8). Similar results
were obtained by [70] who validated the poor SWAT performance on accurate estimations
of the daily catchment rainfall and lack of spatial distribution in climate data. Nonetheless,
our model performed reasonably well since the efficiency performance of the independent
parameters RSR, NSE and PBIAS attained during the calibration and validation period
were within the recommended values (NSE > 0.5, PBIAS < ±25% and RSR < 0.7) [46]. In
order to study the impact of future climate data on river discharge, the calibrated models
were combined with downscaled future climate data.
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Figure 7. Observed and simulated daily flows for the calibration period (1988–1992).
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Figure 8. Observed and simulated daily flows for the validation period (1993–1996).

The NSE and RSR goodness-of-fit evaluation revealed that the simulated flow fitted the
observed flow best as indicated in Figures 7 and 8. It was also observed that precipitation
positively correlates with simulated and observed flows (Figures 7 and 8). The average
performance of the model when simulating specific peaks was probably due to errors in
estimation of daily catchment rainfall, spatial variability in rainfall in the catchment, and
inadequate representation of Hortonian overland flow in the model. Other reasons might
be water abstractions for domestic and socioeconomic activities (e.g., irrigation practices
and mineral processing) that are not included in the modulation. Earlier studies reported
that the SWAT model tends to underestimate the discharge peaks [71].

4.2. Projected Future Climatological Change Variables under RCPs 4.5, 6.0 and 8.5

According to IPCC (2021), the projection for high to moderate emission scenarios
shows that by the middle and end of this century, the maximum and minimum tempera-
tures over equatorial East Africa will rise and that there will be warmer days compared
to the current situation. In the Simiyu catchment, this trend has begun to emerge because
the first nine months of the year showed an increasing trend and the final three months
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showed a very slight decreasing trend. Increasing soil evaporation and plant transpiration
due to increasing rising temperatures as a result of climate change may have an impact
on the soil–water balance, which would then have an impact on crop growth and agricul-
tural productivity [62]. According to these results, the rainfall will be declining over time
(Figure 5). The ensemble of GCMs (ACCESS1.3, CMCC.CM, MIROC5 and CNRM.CM5)
under RCPs 4.5, 6.0 and 8.5 predicted that from 2030 to 2060, rainfall over the Simiyu River
catchment will be reduced by 7.75% on average, according to the climate change models
that are currently available.

The predicted low discharge in the dry season between June to September under all
the land use and climate change scenarios is due to low rainfall and warm temperatures
that lead to higher evapotranspiration, which often decreases runoff and discharge. The
single peak discharges are frequently linked to vastly heavy rainfall events and likely occur
on timescales smaller than the daily time step of the simulation period (Figure 6). The
catchment is likely to experience longer and more pronounced droughts in the future,
which has also been highlighted by the IPCC (2021) in the East Africa region. However,
changes in precipitation are also predicted to drive changes in flood regimes [72]. The
ensemble GCM models (ACCESS1.3, MIROC5 and CNRM.CM5) under RCPs 4.5, 6.0 and
8.5 predict higher incidences of extreme discharge as shown in Table 5 and in the flow
duration curve at Ndagalu gauging station (Figure 9), which indicates frequent flood
occurrence in the future (2030–2060) compared to the current period (1990–2019), with
extreme discharges of 451.3 m3s−1 and 232.8 m3s−1 at exceedance probabilities of 0.01%
and 99.99%, respectively. This might be attributed to mutual effects of increased land use
and climate change. Intense precipitation events are predicted to produce a larger fraction
of runoff that increases the probability of Hortonian overland flow in the catchment. The
higher incidence of high-intensity rainfall is thus predicted to cause both more intense
flood and drought events. In addition, extreme events will occur more frequently and
also intensify, with large discharge events (floods) generally increasing in magnitude and
frequency in the wet months March and April and low flows (droughts) occurring in the
dry months of June to September in particular (Figure 6). These findings show less extreme
discharge events [73] for the period of 1990–2019 compared to the future projected river
discharge (2030–2060), which shows increased extreme events in the catchment because of
higher intensity rainfall events following dry periods due to land degradation and short
spells of heavy rainfall and prolonged dry spells (Figure 5).

The present climate-change-only scenario (1990–2019) caused the highest increase
in discharge at different return periods compared to the land use change only scenario.
The mutual impacts of climate and land use changes showed a disproportional increase
in discharge compared to the single contributions, which indicates synergistic effects of
land cover and climate change. However, the contribution ratio of climate change was
larger than for land use change. The model simulations under projected climate change
(2030–2060) showed a significant decrease in the discharge at different return periods.
The dominant factor for the decrease in discharge was the decrease in precipitation. The
observation that discharge dynamics were mainly controlled by precipitation variability
rather than temperature is realistic due to the smaller relative differences in temperature
between the seasons and future climate scenarios compared to those in rainfall. These
results are in line with the IPCC [74] projected impacts of climate change in developing
countries. According to the IPCC (2001), developing countries are the most vulnerable
to climate change and climate variability [54]. As such, the availability and variability of
fresh water will be greatly impacted by climate change in response to global warming,
thus significantly affecting the economy of developing countries that heavily depend on
agricultural production [75,76]. Most likely, the anticipated changes in the rainfall patterns
and intensity in the river discharges will have an impact on crop growth and put farmers
at risk from floods, soil erosion and drought. These findings underline the vulnerability
of river discharge to rising greenhouse gas concentrations resulting from alterations in
the climate system and stress the significance of global emission reduction strategies and
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measures to protect future water resources. Since 80% of the Tanzania population is
largely dependent on agriculture [77,78], we anticipate further increases in water demand
as a result of population increases. It is therefore important to establish adaptation and
mitigation measures to minimize the impacts of climate change on water resources.

Table 5. Comparison of the extreme discharges at exceedance probabilities of Simiyu catchment at
Ndagalu gauging station (5D1).

Exceedance
Probability (%)

Extreme Discharge
(m3/s)

(Baseline)

Extreme Discharge
(m3/s)

(RCP4.5)

Extreme Discharge
(m3/s)

(RCP6.0)

Extreme Discharge
(m3/s)

(RCP8.5)

0.01 379.6 466.0 451.3 413.2
1 232.8 276.9 214.3 239.7
5 102.2 136.5 72.3 129.3
10 34.2 65.5 32. 62.6
20 14.8 16.8 10.9 16.8
25 10.6 10.9 8.0 11.1
50 6.5 3.9 5.3 3.8
75 5.1 2.8 3.9 3.0
90 4.0 2.0 2.8 2.6
95 3.2 1.9 1.9 2.7
99 1.4 0.1 0.2 0.1

100 1.2 0.00 0.0 0.00
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tual effect of land use and climate change is predicted to have increased the chances of 
extreme discharges, more so than the singular effects of either climate change or land use 
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Figure 9. Flow duration curves at Ndagalu gauging Station (5D1) for current and future flows.

While the model performance was decent, there remained some challenges and weak-
nesses. The model’s underestimations of high-flow events are the main cause of uncertainty
and have an impact on the simulations of land use and the climate. The most significant
source of uncertainty is due to the model underestimating high-flow events, which affects
land use and climate simulations. This underestimation can be partly explained by the
absence of enough gauged hydrometric and rainfall stations in the catchment to capture the
high spatial and temporal variability in rainfall, thereby affecting simulated flow. Moreover,
we simulated discharge on a daily scale, but rainfall in the study area often comes in high-
intensity torrential rains. The high intensity of the rainfall in real life often passes the soil
infiltration threshold, leading to Hortonian overland flow. However, in the daily setting,
the model might assume that the rainfall is distributed evenly in the day and therefore
predict that more of the rainfall infiltrates. In this context, stream discharge models in the
East African region could be improved by rehabilitating non-operating rainfall stations and
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collecting rainfall data on a higher spatial resolution. Discharge and rainfall monitoring
should also aim to increase the resolution to hourly time steps for capturing high intensity
rainfall events. Herein, future modelling exercises can follow suit and model stream dis-
charge on hourly time steps, allowing a better representation of Hortonian overland flow.
This will enhance the model’s performance during calibration and hydrological simulations
in upcoming studies. Choosing the GCM model(s) and defining the emission scenarios is
also expected to have a major impact on future simulations [58–60]. This study used an en-
semble of GCM models (ACCESS1.3, MIROC5 and CNRM.CM5) and three representative
concentration pathways (RCPs 4.5, 6.0 and 8.5) to understand the impact of future climate
change on the Simiyu river discharge (Figures 3 and 9). Different GCM models have shown
discrepancies over regional climate change [79,80], e.g., due to differences in the spatial
domains and predictor variables, downscaling with dynamic and statistical downscaling
methods [79,81,82] or even within different statistical downscaling methods [83,84]. How-
ever, this was overcome by locally validating the models and selecting the one with the
lowest inaccuracies for discharge modelling.

A further area of uncertainty relates to the hydrological model, which is used to inter-
pret the impact of how future climate data will affect hydrological responses (e.g., influence
on streamflow). The model structure, parameter uncertainty, and a lack of data all con-
tribute to the hydrological model uncertainty [85]. However, this was partly overcome with
local calibration using a semi-automatic calibration and uncertainty program, SWATCUP
SUFI-2 [18]. While the parameters are calibrated for a specific climate and environment, it
is not guaranteed that these settings remain optimal when changes in climate and land use
occur. In spite of the model’s limitations, this study made every effort to reduce the degree
of uncertainty in the model’s prediction to reasonably comprehend the feasible impact
of climate change on the stream flow in Simiyu catchment. This study has revealed that
the SWAT model is a robust method for predicting the hydrological response of semi-arid
tropical catchments to changes in climate and land use. The model is thus an important
tool for informing soil and water management strategies in these data-poor regions. Nev-
ertheless, these findings should be hypothesized as best available simulations and not as
empirical observations because of the temporally and spatially simplified representations
of the catchment environment and hydrological processes.

5. Conclusions

In this study, the semi-distributed hydrological SWAT model was applied to evaluate
the impact of current land use and climate change and assess the probable future effects
of climate change in the near future (2030–2060) on Simiyu River discharge under RCPs
4.5, 6.0 and 8.5. The results indicated a significant increase in temperature of about 0.4 ◦C
over the past 30 years (21.8 ◦C in 1990 to about 22.2 ◦C at the end of 2019). The climate
model predicted the average annual temperature to increase by 1.4 ◦C in 2030 and by
2 ◦C in 2060, while the precipitation in the catchment is predicted to reduce by 7.8% in
2060 compared to the 1990–2019 baseline. These results imply that these changes will
be accountable for alterations of the hydrological cycle by decreasing the Simiyu river
discharge. The climate elasticities of the discharge revealed that the predicted changes in
climate will result in a 29.0% total decrease in discharge in the catchment, which would
result in a negative effect on the catchment’s water resource availability. Moreover, the
mutual effect of land use and climate change is predicted to have increased the chances
of extreme discharges, more so than the singular effects of either climate change or land
use change. Understanding the impact of climatic and land use changes on river discharge
dynamics underpins constructive water management practices, particularly in vulnerable,
arid and semi-arid environments of the Simiyu catchment. The findings from this research
support the design of improved water resource management and adaptation strategies to
climate change. Although the simulations of SWAT for the daily time step underestimated
peak stream flow, the model has proved to be an appropriate tool for water flow prediction
in large-scale catchments.



Earth 2023, 4 380

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/earth4020020/s1.

Author Contributions: Conceptualization, R.J.S., M.W., K.M.M., J.N. and K.N.N.; data curation,
R.J.S., A.I.A. and M.W.; formal analysis, R.J.S. and A.I.A., investigation, R.J.S.; methodology, R.J.S.,
A.I.A., M.W., K.M.M., J.N. and K.N.N.; project administration, R.J.S. and K.M.M.; resources, R.J.S.
and A.I.A., software, R.J.S., A.I.A. and M.W., supervision, K.M.M., J.N. and K.N.N., validation, R.J.S.,
A.I.A. and, M.W., writing—original draft, R.J.S., writing—review and editing, M.W. and A.I.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Lake Victoria Basin Water Board (LVBWB) which also
covers the article processing charges.

Data Availability Statement: The data used to support the findings of this study are included in
this article.

Acknowledgments: The first author would like to acknowledge the moral support and patient given
by his family during this study.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Miao, C.; Ni, J.; Borthwick, A.G.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water

discharge and sediment load in the Yellow River. Glob. Planet. Chang. 2011, 76, 196–205. [CrossRef]
2. Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff

decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [CrossRef]
3. Choi, W.; Nauth, K.; Choi, J.; Becker, S. Urbanization and rainfall–runoff relationships in the Milwaukee River basin. Prof. Geog.

2016, 68, 14–25. [CrossRef]
4. Jonoski, A.; Popescu, I.; Zhe, S.; Mu, Y.; He, Y. Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River

Simulation Models Coupled with Global Optimization Algorithms. Geosciences 2019, 9, 509. [CrossRef]
5. Zhao, X.; Zhou, D.; Fang, J. Satellite-based Studies on large-scale vegetation changes in China. J. Integr. Plant Biol. 2012, 54,

713–728. [CrossRef] [PubMed]
6. McCartney, M.P.; Rebelo, L.M.; Senaratna, S.S.; de Silva, S. Wetlands, Agriculture and Poverty Reduction; Research Report 137;

International Water Management Institute (IWMI): Colombo, Sri Lanka, 2010; p. 39.
7. Adam, E.M.; Mutanga, O.; Rugege, D.; Ismail, R. Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent

species using random forest and hyperspectral data resampled to HYMAP. Int. J. Remote Sens. 2012, 33, 552–569. [CrossRef]
8. Wood, A.; Dixon, A.; McCartney, M.P. People-Centred Wetland Management. In Wetland Management and Sustainable Livelihoods in

Africa; Wood, A., Dixon, A., McCartney, M.P., Eds.; Routledge: New York, NY, USA, 2013; pp. 1–42.
9. Meli, P.; Benayas, J.M.R.; Balvanera, P.; Ramos, M.M. Restoration enhances wetland biodiversity and ecosystem service supply,

but results are context-dependent: A meta-analysis. PLoS ONE 2014, 9, e9350. [CrossRef] [PubMed]
10. Scott, D.B.; Frail-Gauthier, J.; Mudie, P.J. Coastal Wetlands of the World: Geology, Ecology, Distribution and Applications; Cambridge

University Press: Cambridge, UK, 2014.
11. Sieben, E.J.J.; Nyambeni, T.; Mtshali, H.; Corry, F.T.J.; Venter, C.E.; MacKenzie, D.R.; Matela, T.E.; Pretorius, L.; Kotze, D.C.

The herbaceous vegetation of subtropical freshwater wetlands in South Africa: Classification, description and explanatory
environmental factors. S. Afr. J. Bot. 2016, 104, 158–166. [CrossRef]

12. Fischer, S.; Pluntke, T.; Pavlik, D.; Bernhofer, C. Hydrologic effects of climate change in a sub-basin of the Western Bug River,
Western Ukraine. Environ. Earth Sci. 2014, 72, 4727–4744. [CrossRef]

13. Pettorelli, N.; Nagendra, H.; Rocchini, D.; Rowcliffe, M.; Williams, R.; Ahumada, J.; Agelo, C.D.; Atzberger, C.; Boyd, D.;
Buchanan, G. Remote sensing in ecology and conservation: Three years on. Remote Sens. Ecol. Conserv. 2017, 3, 53–56. [CrossRef]

14. Thamaga, K.H.; Dube, T.; Shoko, C. Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa
Advances in satellite remote sensing of the wetland. Geocarto Int. 2021, 37, 5891–5913. [CrossRef]

15. Orusa, T.; Viani, A.; Cammareri, D.; Borgogno Mondino, E. A Google Earth Engine Algorithm to Map Phenological Metrics in
Mountain Areas Worldwide with Landsat Collection and Sentinel-2. Geomatics 2023, 3, 221–238. [CrossRef]

16. Chiloane, C.; Dube, T.; Shoko, C. Multispectral remote sensing of potential groundwater dependent vegetation in the greater
Floristic region of the Western Cape, South Africa. S. Afr. Geogr. J. 2023, 1–19. [CrossRef]

17. Hosseini, M.; Amin, M.; Tabatabaei, M. The soil and water assessment tool: Historical development, applications, and future
research directions. Trans. ASABE 2007, 50, 1211–1250.

18. Arnold, J.; Kiniry, J.; Srinivasan, R.; Williams, J.; Haney, E.; Neitsch, S. SWAT Input/Output Documentation Version 2012; Texas Water
Resources Institute: College Station, TX, USA, 2012; pp. 1–65.

19. Wynants, M.; Solomon, H.; Ndakidemi, P.; Blake, W.H. Pinpointing areas of increased soil erosion risk following land cover
change in the Lake Manyara catchment, Tanzania. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 1–8. [CrossRef]

https://www.mdpi.com/article/10.3390/earth4020020/s1
https://www.mdpi.com/article/10.3390/earth4020020/s1
https://doi.org/10.1016/j.gloplacha.2011.01.008
https://doi.org/10.1016/j.jhydrol.2013.12.052
https://doi.org/10.1080/00330124.2015.1007427
https://doi.org/10.3390/geosciences9120509
https://doi.org/10.1111/j.1744-7909.2012.01167.x
https://www.ncbi.nlm.nih.gov/pubmed/22974506
https://doi.org/10.1080/01431161.2010.543182
https://doi.org/10.1371/journal.pone.0093507
https://www.ncbi.nlm.nih.gov/pubmed/24743348
https://doi.org/10.1016/j.sajb.2015.11.005
https://doi.org/10.1007/s12665-014-3256-z
https://doi.org/10.1002/rse2.53
https://doi.org/10.1080/10106049.2021.1926552
https://doi.org/10.3390/geomatics3010012
https://doi.org/10.1080/03736245.2023.2183890
https://doi.org/10.1016/j.jag.2018.05.008


Earth 2023, 4 381

20. Amasi, A.I.M.; Wynants, M.; Kawalla, R.A.; Sawe, S.; Munishi, L.; Blake, W.H.; Mtei, K.M. Reconstructing the Changes in
Sedimentation and Source Provenance in an East African Hydropower Reservoirs: A Case Study of Nyumba ya Mungu in
Tanzania. Earth 2021, 2, 485–514. [CrossRef]

21. Wynants, M.; Kelly, C.; Mtei, K.; Munishi, L.; Patrick, A.; Rabinovich, A.; Nasseri, M.; Gilvear, D.; Roberts, N.; Boeckx, P.; et al.
Drivers of increased soil erosion in East Africa’s agro-pastoral systems: Changing interactions between the social, economic and
natural domains. Reg. Environ. Chang. 2019, 19, 1909–1921. [CrossRef]

22. Amasi, A.I.M.; Wynants, M.; Blake, W.; Mtei, K. Drivers, Impacts and Mitigation of Increased Sedimentation in the Hydropower
Reservoirs of East Africa. Land 2021, 10, 638. [CrossRef]

23. Blake, W.H.; Kelly, C.; Wynants, M.; Patrick, A.; Lewin, S.; Lawson, J.; Nasolwa, E.; Page, A.; Nasseri, M.; Marks, C.; et al.
Integrating land-water-people connectivity concepts across disciplines for co-design of soil erosion solutions. Land Degrad. Dev.
2021, 32, 3415–3430. [CrossRef]

24. Zhang, G.; Majaliwa, M.J.; Xie, J. Leveraging the Landscape: Case Study of Erosion Control through Land Management in the Lake Victoria
Basin; Natural Resource and Blue Economy Global Practice; World Bank: Washington, DC, USA, 2020.

25. Van Griensven, A.; Popescu, I.; Abdelhamid, M.; Ndomba, P.M.; Beevers, L.; Betrie, G.D. Comparison of sediment transport
computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania. Phys. Chem. Earth Parts A/B/C
2013, 61, 12–21. [CrossRef]

26. Rwetabula, J.; De Smedt, F.; Rebhun, M. Prediction of runoff and discharge in the Simiyu River (tributary of Lake Victoria,
Tanzania) using the WetSpa model. Hydrol. Earth Syst. Sci. 2007, 4, 881–908.

27. Kimwaga, R.; Bukirwa, F.; Banadda, N.; G Wali, U.; Nhapi, I.; Mashauri, D.A. Modelling the impact of land use changes on
sediment loading into Lake Victoria using SWAT model: A Case of Simiyu Catchment Tanzania. Open Environ. Eng. J. 2012,
5, 66–76. [CrossRef]

28. Natkhin, M.; Dietrich, O.; Schäfer, M.P.; Lischeid, G. The effects of climate and changing land use on the discharge regime of a
small catchment in Tanzania. Reg. Environ. Chang. 2015, 15, 1269–1280. [CrossRef]

29. James, R.; Amasi, A.I.; Wynants, M.; Nobert, J.; Mtei, K.M.; Njau, K. Tracing the dominant sources of sediment flowing towards
Lake Victoria using geochemical tracers and a Bayesian mixing model. J. Soils Sediments 2023, 23, 1568–1580. [CrossRef]

30. Lugomela, C.; Machiwa, J. Nutrients, Microalgae Sedimentation Sediment Associations at the Mouth of Simiyu River Lake Victoria, (Magu
Bay of Speke Gulf) Lake Victoria, Tanzania; A Report Submitted to Lake Victoria Environmental Management Project (LVEMP); East
African Community: Arusha, Tanzania, 2002; pp. 22–39.

31. Cecinati, F. Precipitation Analysis for a Flood Early Warning System in the Manafwa River Basin, Uganda; Massachusetts Institute of
Technology: Cambridge, MA, USA, 2013.

32. Foley, J.; DeFries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global
Consequences of Land Use. Science 2005, 309, 570–574. [CrossRef] [PubMed]

33. Byerlee, D.; Stevenson, J.; Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur.
2014, 3, 92–98. [CrossRef]

34. Bamutaze, Y.; Tenywa, M.M.; Majaliwa, M.J.G.; Vanacker, V.; Bagoora, F.; Magunda, M.; Obando, J.; Wasige, J. Infiltration
characteristics of volcanic sloping soils on Mt. Elgon Eastern Uganda. Catena 2010, 80, 122–130.

35. Bingwa, F. A Quantitative Analysis of the Impact of Land. Use Changes on Floods in the Manafwa River Basin; Massachusetts Institute of
Technology: Cambridge, MA, USA, 2013.

36. Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [CrossRef]
37. Ullrich, A.; Volk, M. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management

practices on water quality and quantity. Vegetation and erosion Processes and environments. Agric. Water Manag. 2009,
96, 1207–1217. [CrossRef]

38. Ullrich, A.; Volk, M. Application of soil and water assessment tools model for runoff estimation. Am. J. Appl. Sci. 2011, 8, 486–494.
39. Lubini, A.; Adamowski, J. Assessing the potential impacts of four climate change scenarios on the discharge of the Simiyu River,

Tanzania using the SWAT model. Int. J. Water Sci. 2013, 2, 1–12. [CrossRef]
40. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas

Water Resources Institute: College Station, TX, USA, 2011; pp. 1–47.
41. Taweesuk, S.; Thammapala, P. Expert classification technique for mapping teak plantation areas in Thailand. In Proceedings of

the Pecora 16 “Global Priorities in Land Remote Sensing”, Sioux Falls, SD, USA, 23–27 October 2005.
42. Araya, Y.H.; Cabral, P. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sens.

2010, 2, 1549–1563. [CrossRef]
43. Ahmed, B.; Ahmed, R.; Zhu, X. Evaluation of Model Validation Techniques in Land Cover Dynamics. ISPRS Int. J. Geo-Inf. 2013,

2, 577–597. [CrossRef]
44. Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1996.
45. Dewitte, O.; Jones, A.; Spaargaren, O.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Gallali, T.; Hallett, S.; Jones,

R. Harmonisation of the soil map of Africa at the continental scale. Geoderma 2013, 211, 138–153. [CrossRef]
46. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic

quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

https://doi.org/10.3390/earth2030029
https://doi.org/10.1007/s10113-019-01520-9
https://doi.org/10.3390/land10060638
https://doi.org/10.1002/ldr.3791
https://doi.org/10.1016/j.pce.2013.02.003
https://doi.org/10.2174/1874829501205010066
https://doi.org/10.1007/s10113-013-0462-2
https://doi.org/10.1007/s11368-023-03440-y
https://doi.org/10.1126/science.1111772
https://www.ncbi.nlm.nih.gov/pubmed/16040698
https://doi.org/10.1016/j.gfs.2014.04.001
https://doi.org/10.1016/j.aqpro.2015.02.126
https://doi.org/10.1016/j.agwat.2009.03.010
https://doi.org/10.5772/56453
https://doi.org/10.3390/rs2061549
https://doi.org/10.3390/ijgi2030577
https://doi.org/10.1016/j.geoderma.2013.07.007
https://doi.org/10.13031/2013.23153


Earth 2023, 4 382

47. Wang, X.; Kemanian, A.R.; Williams, J.R. Special features of the EPIC and APEX modeling package and procedures for param-
eterization, calibration, validation, and applications. In Methods of Introducing System Models into Agricultural Research; Wiley:
Hoboken, NJ, USA, 2011; Volume 2, pp. 177–208.

48. Teklay, A.; Dile, Y.T.; Asfaw, D.H.; Bayabil, H.K.; Sisay, K.; Ayalew, A. Modeling the impact of climate change on hydrological
responses in the Lake Tana basin, Ethiopia. Dyn. Atmos. Ocean. 2022, 97, 101278. [CrossRef]

49. Abbaspour, K.C. User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs; Swiss Federal Institute of
Aquatic Science and Technology (Eawag): Duebendorf, Switzerland, 2007; Volume 93.

50. Abbaspour, K.C. SWAT Calibration and Uncertainty Programs; Swiss Federal Institute of Aquatic Science and Technology (Eawag):
Dubendorf, Switzerland, 2015; pp. 17–66.

51. Krysanova, V.; Kundzewicz, Z.; Piniewski, M.; Singh, V. Assessment of climate change impacts on water resources. In Handbook of
Applied Hydrology; McGraw-Hill Education: New York, NY, USA, 2016; Chapter 148; pp. 1–12.

52. Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT Interface for SWAT2012: User’s Guide; Blackland Research and
Extension Center, Agrilife Research: Temple, TX, USA; Grassland, Soil Water Research Laboratory, USDA Agricultural Research
Service: Temple, TX, USA, 2013; pp. 1–464.

53. Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
54. Santos, C.A.; Almeida, C.; Ramos, T.B.; Rocha, F.A.; Oliveira, R.; Neves, R. Using a hierarchical approach to calibrate SWAT and

predict the semi-arid hydrologic regime of northeastern Brazil. Water 2018, 10, 1137. [CrossRef]
55. Abbaspour, K.C. SWAT Calibration Uncertainty Program—A User Manual SWAT-Cup 2012; Swiss Federal Institute of Aquatic

Science and Technology (Eawag): Dubendorf, Switzerland, 2013.
56. Mutenyo, I.; Nejadhashemi, A.; Woznicki, S.; Giri, S. Evaluation of SWAT performance on a mountainous watershed in tropical

Africa. Hydrol. Curr. Res. 2013, 6, 1–7.
57. Houle, D.; Bouffard, A.; Duchesne, L.; Logan, T.; Harvey, R. Projections of future soil temperature and water content for three

Southern Quebec forested sites. J. Clim. 2012, 25, 7690–7701. [CrossRef]
58. Cannon, A.J. Selecting GCM scenarios that span the range of changes in a multimodel ensemble: Application to CMIP5 climate

extremes indices. J. Clim. 2014, 28, 1260–1267. [CrossRef]
59. Pierce, D.W.; Barnett, T.P.; Santer, B.D.; Gleckler, P.J. Selecting global climate models for regional climate change studies.

Proc. Natl. Acad. Sci. USA 2009, 106, 8441–8446. [CrossRef] [PubMed]
60. Biemans, H.; Speelman, L.H.; Ludwig, F.; Moors, E.J.; Wiltshire, A.J.; Kumar, P.; Gerten, D.; Kabat, P. Future water resources

for food production in five South Asian river basins and potential for adaptation—A modeling study. Sci. Total Environ. 2013,
468–469, S117–S131. [CrossRef] [PubMed]

61. Wilby, R.L.; Wigley, T.M.L. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys.
Geogr. 1997, 21, 530–548. [CrossRef]

62. Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security–A Review. Prog. Nat.
Sci. 2009, 19, 1665–1674. [CrossRef]

63. Bodian, A.; Dezetter, A.; Diop, L.; Deme, A.; Djaman, K.; Diop, A. Future climate change impacts on streamflows of two main
West Africa river Basins: Senegal and Gambia. Hydrology 2018, 5, 21. [CrossRef]

64. Hyandye, C.B. Impacts of Future Climate and Land Use Changes on Surface-Groundwater Balance in Usangu Catchment. Ph.D.
Thesis, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 2019.

65. Mfwango, H.L.; Ayenew, T.; Mahoo, H.F. Impacts of climate and land use/cover changes on streamflow at Kibungo sub-catchment,
Tanzania. Heliyon 2022, 8, e112. [CrossRef]

66. Hudson, N.; Ruane, A.C. Appendix 2—Guide for Running AgMIP Climate Scenario Generation Tools with R in Windows, Version 2.3;
Imperial College Press: London, UK, 2013.

67. Shrestha, B.; Babel, M.; Maskey, S.; Van Griensven, A.; Uhlenbrook, S.; Green, A.; Akkharath, I. Impact of climate change on
sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. Hydrol. Earth Syst. Sci. 2013, 17, 1.
[CrossRef]

68. Feleke, G. Evaluating the Impact of Climate Change on Hydrology in Scale Watershed, in Upper Blue Nile Basin. Ph.D.
Dissertation, Bahir Dar University, Bahir Dar, Ethiopia, 2020.

69. WMO. WMO Statement on the State of the Global Climate in 2016; World Meteorological Organization: Geneva, Switzerland, 2017.
70. Ndomba, P.; Mtalo, F.; Killingtveit, A. SWAT model application in a data scarce tropical complex catchment in Tanzania. Phys.

Chem. Earth Parts A/B/C 2008, 33, 626–632. [CrossRef]
71. Taylor, S.D.; He, Y.; Hiscock, K.M. Modelling the impacts of agricultural management practices on river water quality in Eastern

England. J. Environ. Manag. 2016, 180, 147–163. [CrossRef]
72. Patterson, L.A.; Lutz, B.; Doyle, M.W. Streamflow Changes in the South Atlantic, United States During the Mid-and Late 20th

Century. J. Am. Water Resour. Assoc. 2012, 48, 1126–1138. [CrossRef]
73. Kay, A.L.; Watts, G.; Wells, S.C.; Allen, S. The impact of climate change on UK river flows: A preliminary comparison of two

generations of probabilistic climate projections. Hydrol. Process. 2020, 34, 1081–1088. [CrossRef]
74. Intergovernmnetal Panel of Climate Change (IPCC). Impacts, Adaptation and Vulnerability: The Third Assessment Report of the

Intergovernmental Panel on Climate Change—Renewable Energy; Cambridge University Press: Cambridge, UK, 2001; Volume 20, pp.
133–191.

https://doi.org/10.1016/j.dynatmoce.2021.101278
https://doi.org/10.13031/2013.26773
https://doi.org/10.3390/w10091137
https://doi.org/10.1175/JCLI-D-11-00440.1
https://doi.org/10.1175/JCLI-D-14-00636.1
https://doi.org/10.1073/pnas.0900094106
https://www.ncbi.nlm.nih.gov/pubmed/19439652
https://doi.org/10.1016/j.scitotenv.2013.05.092
https://www.ncbi.nlm.nih.gov/pubmed/23928370
https://doi.org/10.1177/030913339702100403
https://doi.org/10.1016/j.pnsc.2009.08.001
https://doi.org/10.3390/hydrology5010021
https://doi.org/10.1016/j.heliyon.2022.e11285
https://doi.org/10.5194/hess-17-1-2013
https://doi.org/10.1016/j.pce.2008.06.013
https://doi.org/10.1016/j.jenvman.2016.05.002
https://doi.org/10.1111/j.1752-1688.2012.00674.x
https://doi.org/10.1002/hyp.13644


Earth 2023, 4 383

75. Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007—Impacts, Adaptation and Vulnerability:
Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007;
Volume 4.

76. Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing potential land suitable for
surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13. [CrossRef]

77. Kassie, M.; Marenya, P.; Tessema, Y.; Jaleta, M.; Zeng, D.; Erenstein, O.; Rahut, D. Measuring farm and market level economic
impacts of improved maize production technologies in Ethiopia: Evidence from panel data. J. Agric. Econ. 2018, 69, 76–95.
[CrossRef]

78. Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable
intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [CrossRef]

79. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects; United Nations:
New York, NY, USA, 2019.

80. Amasi, A.I.; Wynants, M.; Kawalla, R.A.; Sawe, S.; Munishi, L.; Blake, W.H.; Mtei, K.M. Evaluating Soil Carbon as a Proxy for
Erosion Risk in the Spatio-Temporal Complex Hydropower Catchment in Upper Pangani, Northern Tanzania. Earth 2021, 2,
764–780. [CrossRef]

81. Wilby, R.L.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River
Thames, UK. Water Resour. Res. 2006, 42, W02419. [CrossRef]

82. Zhang, X.; Xu, Y.-P.; Fu, G. Uncertainties in SWAT extreme flow simulation under climate change. J. Hydrol. 2014, 515, 205–222.
[CrossRef]

83. Qiao, L.; Zou, C.B.; Gaitán, C.F.; Hong, Y.; McPherson, R.A. Analysis of precipitation projections over the climate gradient of the
Arkansas Red River basin. J. Appl. Meteorol. Climatol. 2017, 56, 1325–1336. [CrossRef]

84. Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling
techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [CrossRef]

85. Brigode, P.; Oudin, L.; Perrin, C. Hydrological model parameter instability: A source of additional uncertainty in estimating the
hydrological impacts of climate change? J. Hydrol. 2013, 476, 410–425. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.apgeog.2017.05.010
https://doi.org/10.1111/1477-9552.12221
https://doi.org/10.1016/j.landusepol.2014.08.016
https://doi.org/10.3390/earth2040045
https://doi.org/10.1029/2005WR004065
https://doi.org/10.1016/j.jhydrol.2014.04.064
https://doi.org/10.1175/JAMC-D-16-0201.1
https://doi.org/10.1002/joc.1556
https://doi.org/10.1016/j.jhydrol.2012.11.012

	Introduction 
	Materials and Methods 
	Description of the Study Site 
	Data Preparation 
	SWAT Model Setup, Sensitivity Analysis, Calibration and Validation 
	Calibration and Validation of Future Climate Data 
	Simulating the Impacts of Land Use and Climate Change on Stream Discharge 

	Results 
	Sensitivity Analysis, Model Calibration and Validation 
	Impacts of the Current Land Use and Climate Change on the River Discharge 
	Future Climate Changes under RCPs 4.5, 6.0 and 8.5 
	Projected Future Temperature and Precipitation Changes 
	Projected Future Annual and Seasonal River Discharge 


	Discussion 
	Sensitivity Analysis, Model Calibration and Validation 
	Projected Future Climatological Change Variables under RCPs 4.5, 6.0 and 8.5 

	Conclusions 
	References

