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Abstract: Urbanization is one of the biggest challenges for developing countries, and predicting
urban growth can help planners and policymakers understand how spatial growth patterns interact.
A study was conducted to investigate the spatiotemporal dynamics of land use/land cover changes
in Salem and its surrounding communities from 2001 to 2020 and to simulate urban expansion in 2030
using cellular automata (CA)–Markov and geospatial techniques. The findings showed a decrease
in aerial vegetation cover and an increase in barren and built-up land, with a rapid transition from
vegetation cover to bare land. The transformed barren land is expected to be converted into built-up
land in the near future. Urban growth in the area is estimated to be 179.6 sq km in 2030, up from
59.6 sq km in 2001, 76 sq km in 2011, and 133.3 sq km in 2020. Urban sprawl is steadily increasing in
Salem and the surrounding towns of Omalur, Rasipuram, Sankari, and Vazhapadi, with sprawl in the
neighboring towns surpassing that in directions aligned toward Salem. The city is being developed
as a smart city, which will result in significant expansion and intensification of the built-up area
in the coming years. The study’s outcomes can serve as spatial guidelines for growth regulation
and monitoring.

Keywords: urbanization; geospatial; support vector machine; transition matrix; validation; sustainability

1. Introduction

Rapid and unplanned urban sprawl causes issues such as landscape fragmentation,
decreased arable land, increased urban poverty, and environmental degradation. The
United Nations estimates that urban areas will encompass 60 percent of the world’s rural
populations by 2050. In developing countries such as India, the population in medium-
sized urban areas with less than 1 million people has increased significantly [1]. One of
the objectives of the United Nation’s Sustainable Development Agenda is to ensure safe,
resilient, and sustainable cities by 2030. Policies to promote the sustainable development
of cities, especially in developing nations, require precise and timely monitoring and un-
derstanding of urban growth. Urban models serve as a quantitative tool for urban and
environmental planning, capability management, and land suitability for development [2].
Although the models’ extent of applicability is broad, their ability to analyze spatial re-
lationships is limited. Geospatial techniques provide a better environment for spatially
addressing the issue at hand. Resource satellites and image processing tools have made
urban sprawl modeling more realistically achievable. GIS, on the other hand, uses satellite
technology to monitor and model geographically referenced morphological changes in
metropolitan areas.

Rapid urbanization and resulting land use and cover changes have become a primary
global concern in natural resource management and sustainable development worldwide.
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Since the 1960s, researchers have discussed models such as cellular automata [3], the ar-
tificial neural network [4], the Markov chain [5], geographically weighted regression [6],
the non-ordinal and Sleuth model [7], the analytic hierarchy process [8], machine learning
models [9] and an urban sprawl matrix [10] to analyze the growth and patterns. Markov
chain analysis is the best method for modeling LU/LC changes, especially when transitions
and processes in the landscape are difficult to characterize [11]. The Markov chain is a
time series model based on machine learning that forecasts change in LU/LC based on
prior rates of change [12]. The model, however, predicts future LU/LC changes in the
temporal dimension but not in the geographical dimension [13]. In contrast to the Markov
chain model, the cellular automata (CA) model has a spatial component in which specific
rules from surrounding cells anticipate future change [14]. Simulating urban dynamism
using remote sensing, GIS, and basic transition rules is simple. Despite its advantages,
CA’s technical infrastructure is insufficient to deal with real-world urban dynamics. Fur-
thermore, it will not consider the impact of external forces on urban expansion. On the
other hand, it has been proposed that incorporating Markov chain analysis into CA models
will help to overcome these limitations [15,16]. Cellular automata (CA)–Markov models
have been widely used in urban studies, particularly in simulating and understanding
urban dynamics, transportation network developments, and planning infrastructure [17,18].
The application of the CA–Markov models has yielded several significant findings. For
instance, studies have shown that the availability of infrastructure and the expansion of
transportation networks can significantly impact urban sprawl and the conversion of agri-
cultural land to urban use [19]. Similarly, the effects of population growth and income on
urban expansion have been studied, with results indicating that income levels are critical in
determining urban growth patterns. Despite their benefits, the application of CA–Markov
models in urban studies has several gaps. Firstly, more research on the calibration and
validation of these models is needed, particularly in areas with limited data [20]. Secondly,
the impact of local policy interventions on urban growth patterns and land-use changes
needs to be investigated further [21]. The study here aimed to address the first gap in the
implementation of the model.

Driver variables are commonly used in CA–Markov models to simulate urban growth
and land-use change. However, a simple CA–Markov model can still shed light on urban
dynamics. Without driver variables, they are more straightforward, making models simpler
to comprehend and communicate to the public and policymakers. Furthermore, they will be
helpful when it is impractical or impossible to implement complicated models with many
parameters. Another benefit of employing CA–Markov models without driver variables is
the ability to create a baseline scenario for urban growth and change that can be compared
to scenarios that include driver variables. This can provide light on the linkages between
various urban growth drivers and help determine the relative relevance of various factors.

Dynamic urban growth simulation studies have typically focused on including driver
variables to increase accuracy [22]. Even with the inclusion of driving variables in the
model, the majority of studies acquire an accuracy of 0.68 kappa [23], 0.78 [24], 0.75 Kappa
standard [25], and 0.79 kappa coefficient (kappa = correlation between two variables) [26].
Furthermore, obtaining the dataset for depicting drivers and integrating it into the model is
a real challenge. It is possible to achieve significant results by incorporating the neighboring
state and by limiting LU/LC changes [26]. This hypothesis is the foundation for the present
study to determine whether desirable accuracy can be obtained using spatiotemporal
changes and constraints as input into the model.

The role of India’s smaller and medium-sized cities is projected to grow significantly
by the year 2030 [27]. It is time that tier II cities became the primary focus of attention. As a
result, Salem was chosen as the area of focus. Salem, a two-tier city in Tamil Nadu, has seen
a rapid increase in human population since 1901, when it was 70,621, and it has increased
nearly twelvefold to 829,267 in 2011. Rural migration and small-scale industry activity in
Salem town contribute significantly to its urban growth. Additionally, Salem is one of Tamil
Nadu’s upcoming smart cities. Consequently, it will be established as a commercial and
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industrial hub with a diverse economic base, providing equitable opportunities to all and
resulting in increased agglomeration and sprawl. As a result, there is a need to concentrate
on studying and projecting urban growth in this region.

Several researchers limit their sprawl studies to the city boundary [28–34]. However,
the city boundary is not permanent and is susceptible to alteration according to the sprawl
rate. The authors in [35] advocate defining a circular buffer around the city center, although
there is no evidence to justify the radius. Sprawl occurs when individuals move to a city
from outside the area. In the case of non-metropolitan cities, most of these migrations are
from nearby towns; thus, the study region needs to be established by embracing the major
towns surrounding the city under study. Therefore, this paper discusses a study that uses
the CA–Markov model to predict sprawl in Salem city and its environs without relying on
driving variables. It also reveals the proportional impact of geographical and temporal
changes in LU/LC on urban sprawl in our region of interest.

2. Study Area

The city chosen as a region of interest is Salem, a nonmetropolitan city listed as a
to-be smart city. It is located at 11◦39′13′′ N latitude and 78◦09′12′′ longitude, surrounded
by Nagarmalai to the north, Jeragamalai to the south, Kanjanamalai to the west, and
Godumalai to the east. It is an upland plateau and undulating terrain with a gentle slope
to the east. The Thirumanimuthar river flows through the city and divides it into two.
The southern and western sides of town are primarily plain agricultural lands with a few
irrigation tanks. The Palar River constitutes the northern boundary of the town. The
northeast monsoon significantly contributes to rainfall; the average annual precipitation
ranges from 800 to 1600 mm. With such favorable living conditions, the city continues
to expand; the encroachments are also gradually consuming more and more farmland.
Salem’s smart city plan must include proper monitoring and controlled expansion of
urban sprawl.

Most urban sprawl studies focus on the city boundary extent, but it is not sensible
because it is not constant, unlike other administrative boundaries. Aside from the dynamics
of city boundaries, there will always be influences from nearby urban agglomerations. As
a result, there is a need to broaden the scope of the research. The Salem City Municipal
Corporation manages the city’s civic administration and urban infrastructure. Salem is
one of the 100 cities selected under the national Smart Cities Mission, with the objective
of providing core infrastructure and improving the quality of life for citizens. The city
has experienced a 2% population growth during 2001–2011, with most of it concentrated
in the outskirts, and it supports a significant floating population from the surrounding
areas [28]. Three national highways pass through the city, connecting it with major towns
in the vicinity. Salem serves as the economic hub for these emerging towns located at
varying distances along major highways. Hence, these towns, namely Omalur to the north,
Rasipuram to the south, Sankari to the southwest, and Vazhapadi to the east, were included
in the research. As shown in Figure 1, the extent of the boundary covering an area of
3891.68 sq. km has been considered for the study. The Yercaud forest in the northeast and a
few other forests, such as the Jarugumalar reserved forest and the Nayinarmalai forest in
the southwest, serve as a breakpoint for urban sprawl from Salem.
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Figure 1. This is a figure. Schemes follow the same formatting. If there are multiple panels, they
should be listed as: (a) Description of what is contained in the first panel. (b) Description of what is
contained in the second panel. Figures should be placed in the main text near to the first time they
are cited. A caption on a single line should be centered.

Table 1. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Title 1 Title 2 Title 3

Entry 1 Data Data
Entry 2 Data Data 1

1 Tables may have a footer.

The text continues here (Figure 2 and Table 2). 64

Figure 1. Map showing study area limit over a base map.

3. Data and Software

The satellite images used in this study for mapping land use features are Landsat 8 OLI
(Operational Land Imager) data for 2020 and Landsat 7 ETM+ (Enhanced Thematic Mapper
Plus) data for time slices 2011 and 2001 (Table 1). The Level 1 images were downloaded from
Earth Explorer (https://earthexplorer.usgs.gov/, 18 March 2023), georeferenced in WGS84,
and projected in UTM (UTM, zone 44 North). QGIS was used to perform atmospheric
correction, and ERDAS Imagine 2014 was used for other preprocessing procedures. To
generate LU/LC, the support vector machine algorithm was used in the Google Earth
Engine code editor with JavaScript. Markov, Cell Atom, CA–Markov, and Validate module
of Terrset software were used to run prediction modeling. The area of each class was
computed, and the accuracy was assessed in the ArcGIS environment.

Table 1. Details of the satellite datasets used in this study.

Year of Study Satellite Acquisition Date Path/Row Spatial Resolution

2001 Landsat 7 ETM+ 09 December 2001 143/052 30 m
2011 Landsat 7 ETM+ 19 January 2011 143/052 30 m
2020 Landsat 8 OLI 20 January 2020 143/052 30 m

4. Methodology

Figure 2 depicts the flow of processes involved in the study. The support vector
machine algorithm was used to classify preprocessed Landsat data for three years: 2001,
2011, and 2020. The accuracy of datasets was then assessed using various parameters,
followed by CA–Markov modeling for prediction.

https://earthexplorer.usgs.gov/
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4.1. Data Preprocessing

Using the Semi-Automatic Classification Plugin (SCP) tool in QGIS, the atmospheric
correction was applied to both the Landsat 7 and 8 datasets. At the same time, scan line
correction was performed before atmospheric correction for the Landsat 7 (2011) dataset.
Then, using layer stacking of bands, a false-color composite was created, which was then
subset to the study area boundary. Pan-sharpening was used after removing no data value.

To enhance spatial resolution, pan-sharpening can be performed using resolution
merge. Landsat tiles are provided with a multi-spectral sensor (MSS) and panchromatic
(PAN) datasets, making it easy to pan-sharpen. The pan-sharpening method is determined
by the input image and the purpose for which it is used [36]. The emphasis in our case is
on delineating built-up structures. After several trials, a principal component (PC)-based
pan-sharpening method was chosen. Regarding resampling methods, cubic convolution
produced images with distinct boundaries compared to others that produced blurred
boundaries. Pan-sharpening was performed in ERDAS IMAGINE using the resolution
merge tool.

4.2. LU/LC Classification

Machine learning has significantly developed for LU/LC classification in recent years.
Most of the research focuses on support vector machine (SVM) classification [37–41]. Al-
though there is no optimal classifier, a comparative study based on performance indicators
will aid in preparing a refined dataset [42–44]. Researchers compared different machine
learning classifiers for the pan-sharpened Landsat dataset and revealed that SVM provided
higher precision [45]. Accordingly, the support vector machine classifier was used to gener-
ate the land use/land cover (LU/LC) datasets. The algorithm is based on the concept of
defining hyperplanes that serve as class boundaries. There can be n number of hyperplanes,
of which the optimum one must be decided. The algorithm uses the nearest training point
to the plane, also known as support vectors. The user-defined kernel is another parameter
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used to address the generalization problem. The algorithm is run in the Google Earth
engine using Java script for all three years (2001, 2011, and 2020), and the classified image
is exported for further processing.

To capture land changes among major land types, six classes were considered: agri-
cultural, forest, built-up, mining, water bodies, wasteland, and fallow land. The classifiers
were then used to regroup the land into four categories: vegetation (including forest and
agricultural land), built-up (including built-up and mining areas), water bodies, and others
(wasteland and fallow land), which were then exported. As the next step, the mining and
forest masks were manually prepared and applied. The final consolidated classes for modeling
were agricultural, built-up, others (wasteland and fallow land), and restricted (water bodies,
mining, and forest). In modeling the predicted growth, the class “restricted” will serve as a
constraint for urban sprawl.

4.3. Accuracy Assessment

The accuracy of LU/LC datasets was validated by sampling. First, the optimal number
of samples for each class was calculated using Yamane’s formula (Equation (1)), [46].

n =
N

1 + N(e)2 (1)

where n represents the sample size, N is the total population, and e denotes the allowed
margin of error. A stratified random sampling technique was then used to allocate the
samples spatially. The sampling was performed using the “random points in the layer
bounds” tool in QGIS for each feature separately, as the number of points for the built-up
class was different from the remaining classes. A confusion matrix was then created to
compare the actual and predicted classes.

Several statistical measures were developed to evaluate the accuracy of the classifica-
tions. Overall accuracy and error rate are standard measures for classification results across
classes. Accuracy and error rate are complementary. Furthermore, the error rate portrays
the test set rather than the entire population. Kappa coefficient is an alternative method for
defining classification agreement [47,48]. Accuracy, error rate, and kappa coefficient (k) can
be determined using the formulas given in Equations (2)–(4).

Accuracy =
TP + TN

All
(2)

Error rate = (1− Accuracy) (3)

κ =
2× (TP ∗ TN − FN ∗ FP)

(TP + FP) ∗ (FP + TN) + (TP + FN) ∗ (FN + TN)
(4)

TP, FP, TN, and FN represent true positives, false positives, true negatives, and false
negatives, respectively. TP and TN mean that the presence and absence of class are correctly
classified. FP denotes wrongly classified pixels in a class, and FN denotes those pixels of
the class that are misclassified into another class.

To assess class performance, we employ additional measures such as recall (or sensitivity),
precision, specificity, and the F-score or F-measure [49–51]. Precision and recall are measures
of incorrect classification and their associated misclassification errors (Equations (5) and (6)).
The F-measure is a score to assess both in a single variable (Equation (7)). Equation (8) [52]
provides a formula for calculating specificity, a measure of the total negative recognition rate.

Recall or sensitivity =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)
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F−measure = 2 ∗ Precision ∗ recall
Precision + recall

(7)

Speci f icity =
TN

TN + FP
(8)

In addition, we graph the receiver operating characteristics (ROC) curve, plotting true
positive rates (TPR) and false positive rates (FPR) from Equation (9) and calculating the
area under the curve. The area under the curve that equals 1 is the ideal classification result.
The sensitivity is the true positive rate, and the true negative rate is the complement of
specificity and is thus calculated as

FPR = 1− Speci f icity (9)

Thus, the classified images of 2001, 2011, and 2020 were evaluated for accuracy.

4.4. Change Detection and Urban Growth Analysis

Change detection is required as a manifestation to infer that sufficient sprawl has
occurred to define urban sprawl modeling. This ensures the study’s validity and helps
to understand how LU/LC classes influence the spatial occurrence of urban sprawl. The
classified images were used to compute the magnitude and rate of change. A change
detection matrix was used to detect changes. The primary advantage of post-classification
comparison is that the dates of images are classified separately, reducing the problem of
systematic and non-systematic remote sensing errors.

The rate of change of urban sprawl is calculated by dividing the area of each LU/LC
class into two-time slices [53]. The formula for calculating the rate of change is provided in
Equation (10).

p =
1

(t2− t1)
(a2− a1)

a1
(10)

where p denotes the annual rate of change (percentage per year), and a1 and a2 represent
the area of the LU/LC classes at times t1 and t2, respectively. Finally, the change in urban
extent is observed using the computed values, and inferences were made.

4.5. Hybrid CA–Markov Modeling

The Markov chain process, a machine learning approach that models the LU/LC
change on various scales with several assumptions, serves as the foundation of the CA–
Markov model [24]. One of the assumptions is that changes in LU/LC are a stochastic
process and that the various classes in LU/LC represent the state at any given time. When
predicting how a variable changes over time, the Markov model considers previous states.
The model produced the probabilities of the states of conversion between each LU/LC.
Equations (11) and (12) show the mathematical representation of the Markov model [54]:

L(t+1) = Pij ∗ L(t) (11)

and

Pij =


P11 P12
P21 P22

. . . P1m

. . . P2m
. . . . . .
Pm1 Pm

. . . . . .

. . . Pmm

 (12)

where L(t) and L(t+1) are the LU/LC status at periods t + 1 and t.

0 ≤ Pij < 1 and ∑m
j=1Pij = 1

where (j = 1, 2, . . . ,m) is the transition probability matrix in a state. Cross-tabulation of
two LU/LC maps of different times yields a transition probability matrix. It calculates the
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likelihood of a pixel in one LU/LC class transitioning to another during that period. On
the other hand, a transition area matrix contains the number of pixels that are projected to
shift from one class to another within a certain period. Thus, the model creates a transition
probability and transition area matrix. Once the transition probability is computed, the
CA–Markov model can predict LU/LC [55,56].

This model requires inputs, namely a base year image for which projection is to be
performed, a transition area file derived from the Markov model, a transition suitability
image, and a filter. The transition suitability image was generated using the CellAtom
module in Terrset. Based on the particular transition rule, a self-reproductive cell on the
grid space will assume a finite number of alternative cell states, which may interact with
the states of its immediate neighbors on the same grid space. Specific transition rules that
regulate changes in the cell state can be used to forecast the changes. The module requires
two inputs: a reclass file (stating the possible transitions) and a filter. A contiguity filter
was used for both analyses.

To produce spatially distributed continuous weighing factors, a kernel size of 5 × 5
that accounts for the neighborhood pixels was chosen, as shown in Figure 3. Pixels further
away from the existing LU/LC class were deemed less suitable than pixels closer to the
existing LU/LC class [57,58]. The present study used Markov chain and CA–Markov
models available in Terrset. The Markov model was used to develop a transition matrix,
and CA–Markov was used for prediction. Under existing socioeconomic conditions, it is
assumed that the LU/LC changes observed between 2001 and 2011 will continue in the
future. As a result, the transition potential matrix in this scenario was computed using
annual transition probabilities from 2001 to 2011. The model was then configured to run
from 2011 to 2020 (base year). Finally, the model’s accuracy was validated by comparing
the simulated LU/LC (2020) to the actual LU/LC (2020). The transition matrix can be used
to model the measurement of change in each transition. Briefly, the model assesses how
variables influence future change, measures the difference between 2001 and 2011, and
estimates a relative transition to 2030.
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5. Results and Discussions
5.1. Classification and Accuracy Assessment

Pan-sharpened Landsat 7 and Landsat 8 data were used to classify LU/LC by perform-
ing the support vector machine algorithm in Google Earth Engine. Finally, the output was
exported, and masks were applied. Final LU/LC classes of 2001, 2011, and 2020 obtained
through the analysis of multi-temporal satellite images were illustrated as thematic maps
in Figures 4–6.
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Figure 6. LU/LC classes in the year 2020.

As the first step for accuracy assessment, the optimum samples were calculated. In
the Yamane formula, we assumed the margin of error as 8% for built-up and 10% for the
remaining classes to give more weightage for built-up. The optimum number of samples
for all three years was determined as follows: Vegetation = 100, Built-up = 150, Others = 100,
and Restricted = 100. Accuracy assessment was performed for all three LU/LC maps using
their corresponding high-resolution satellite images, Google Earth, and ground checks as
reference. It was found that the overall accuracies were 91.4, 92.3, and 95.2%, and kappa
statistics were 0.884, 0.896, and 0.935 for 2001, 2011, and 2020, respectively. The remaining
statistics are discussed in Tables 2–4, and the ROC curves are shown in Figure 7. The area
under the ROC curve was calculated and found as 0.942, 0.950, and 0.976 for 2001, 2011,
and 2020. These measures prove that the LU/LC maps are accurate for further analysis.

Table 2. Results of accuracy assessment—2001.

Vegetation Built-Up Others Restricted

Recall/Sensitivity 0.890 0.896 0.910 0.970
Precision 0.918 0.939 0.805 1.000
Specificity 0.921 0.923 0.915 0.898
F1 Score/F Measure 0.904 0.917 0.854 0.985
FPR 0.079 0.077 0.085 0.102
TPR 0.890 0.896 0.910 0.970
Kappa Statistics 0.884
Overall Accuracy 91.4
Error Rate 0.086
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Table 3. Results of accuracy assessment—2011.

Vegetation Built-Up Others Restricted

Recall/Sensitivity 0.930 0.896 0.910 0.970
Precision 0.921 0.939 0.835 1.000
Specificity 0.921 0.937 0.927 0.910
F1 Score/F Measure 0.925 0.917 0.871 0.985
FPR 0.079 0.063 0.073 0.090
TPR 0.930 0.896 0.910 0.970
Kappa Statistics 0.896
Overall Accuracy 92.3
Error Rate 0.077

Table 4. Results of accuracy assessment—2020.

Vegetation Built-Up Others Restricted

Recall/Sensitivity 0.930 0.922 0.980 0.990
Precision 0.959 0.993 0.852 1.000
Specificity 0.958 0.967 0.944 0.941
F1 Score/F Measure 0.944 0.956 0.912 0.995
FPR 0.042 0.033 0.056 0.059
TPR 0.930 0.922 0.980 0.990
Kappa Statistics 0.935
Overall Accuracy 95.2
Error Rate 0.048
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5.2. Time Series Analysis of LU/LC and Urban Growth

The support vector machine algorithm in Google Earth Engine was used to classify
LU/LC using pan-sharpened Landsat 7 and Landsat 8 data. The output was then ex-
ported, and masks were applied. Final LU/LC classes of 2001, 2011, and 2020 obtained
from multi-temporal satellite images are shown in Figures 4–6. The data are shown in
Tables 4 and 5. Urban sprawl can be quantified by comparing time series change over three
years. Consequently, the changes between each time slice (2001–2011 and 2011–2020) were
investigated by intersecting the respective LU/LC layers. The percentage of the difference
between classes was then computed (Tables 5 and 6).
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Table 5. LU/LC change matrix (2001–2011) (in %).

Year 2001

LU/LC Categories Vegetation Built-Up Others Restricted

Year 2011

Vegetation 80.01 0.07 19.77 0.15
Built-up 9.09 69.82 20.93 0.15
Others 53.35 0.42 46.15 0.08

Restricted 0.28 0.01 0.47 99.24

Class total 100.00 100.00 100.00 100.00

Table 6. LU/LC change matrix (2011–2020) (in %).

Year 2011

LU/LC Categories Vegetation Built-Up Others Restricted

Year 2020

Vegetation 68.45 0.86 30.44 0.25
Built-up 12.34 37.07 49.9 0.69
Others 38.72 1.39 59.65 0.25

Restricted 0.28 0.04 0.12 99.56

Class total 100.00 100.00 100.00 100.00

Tables 5 and 6 show that the majority of the “others class” (barren land, wasteland, and
cropland) have been converted into built-up land. Similarly, the vegetation cover has been
transformed into built-up land. Thus overall, the two-time slices have shown a steadily
rising trend, indicating the presence of unchecked urban growth in the area. The annual
rate of change represents the average annual conversion rate of LU/LC classes per unit
area [59]. From Tables 7 and 8, a decline in LU/LC can be inferred from the negative rate of
change in vegetation between 2001–2011 and 2011–2020. On the other hand, an increase is
observed in the “others class” during the above time slices. However, the built-up cover,
in contrast, demonstrated the smallest increase. The vastness of the study area could be a
plausible explanation for the low representation. Furthermore, under Indian law, fertile
land cannot be converted to be used for residential purposes. Only parcels of dry or barren
land could be converted. Hence, it can be presumed that the vegetation cover has been
changed to “other class” and that it will be converted to “built-up” in the near future
(Table 8). The transition rate is expected to accelerate in the near future, especially after the
implementation of the Salem smart city mission.

Table 7. Area and rate of change (per year) of different LU/LC classes (2001–2011).

LU/LC Categories
2001 2011 Change in Area (2001–2011) Rate of Change

Km2 % Km2 % Km2 % per Year

Vegetation 1648.080 42.248 1277.458 32.747 −370.622 −0.022
Built-up 59.606 1.528 76.922 1.972 17.316 0.029
Others 807.323 20.695 1153.024 29.557 345.701 0.043
Restricted 1386.001 35.529 1393.605 35.724 7.604 0.001

Total 3901.010 100.000 3901.010 100 – –
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Table 8. Area and rate of change (per year) of different LU/LC classes (2011–2020).

LU/LC Categories
2011 2020 Change in Area (2011–2020) Rate of Change

Km2 % Km2 % Km2 % per Year

Vegetation 1277.4583 32.747 1135.595 29.110 −141.863342 −0.012
Built-up 76.922223 1.972 133.300 3.417 56.378252 0.081
Others 1153.0242 29.557 1239.226 31.767 86.202187 0.008
Restricted 1393.6052 35.724 1392.888 35.706 −0.717099 0.000

Total 3901.010 100 3901.010 100 – –

5.3. CA–Markov Modeling

The model was trained using data from 2001 and 2011 and projected for 2020. Initial
execution of the Markov model provides the 2001–2011 transition area and probability
matrices. Tables 9 and 10 depict that the maximum transition that occurs from vegetation
to others with a probability of 0.3640. Although restricted classes provide constraints in
LU/LC change modeling, it was realized that some transitions from the restricted to remain-
ing classes are possible but with insignificant probabilities. Because water bodies are one
of the classes included in the restricted class and can become covered by algae deposition,
dry up and act as barren land, or be covered by built-up structures, the aforementioned
transition is possible. There was also a transition from others to vegetation observed with
a probability of 0.3056, which is the result of fallow land in the first year being mapped
as “others”, being covered by cropland in the following year, and later being mapped as
“vegetation”. Since we are concentrating on urban sprawl, this will not have any direct
impact on the results of the analysis.

Table 9. Transition area matrix for 2001–2011.

Cells in: 15 m
Expected to Transition to

Vegetation Built-Up Others Restricted

Vegetation 3,579,819 18,913 2,066,187 10,857
Built-up 1225 363,688 1225 1225
Others 1,559,392 95,489 3,409,269 38,246
Restricted 48,375 2828 22,338 6,118,712

Table 10. Transition probability matrix for 2001–2011.

Given
Probability of Changing To

Vegetation Built-Up Others Restricted

Vegetation 0.6307 0.0033 0.3640 0.0019
Built-Up 0.0033 0.9900 0.0033 0.0033
Others 0.3056 0.0187 0.6682 0.0075
Restricted 0.0078 0.0005 0.0036 0.9881

Suitability images were created as the next step in the modeling process, using reclass
and filter, which define which class will be converted to which class and how much
neighboring cells will influence this change spatially. Finally, using the matrices and
suitability files, the CA–Markov model was used to forecast 2020. (Figure 8). The observed
transition probability of 0.3056 from the other classes to the vegetation class in the predicted
image demonstrates that the model significantly underestimates the quantity of vegetation
present (Table 10). Similar findings were discussed by [60,61], who found that the model
underestimated agricultural land. As previously stated, because the trade-off is only
between vegetation and other classes, it will have no effect on the prognosis of urban sprawl.
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5.4. Model Validation

Validation is essential for any machine learning prediction algorithm. The IDRISI
Terrset includes a VALIDATE module used for evaluating the results. To determine the
accuracy of the models, we first compare the reference (actual) and predicted maps. The
filter file is modified to generate suitable images if the results are deemed insufficient.
Several types of kappa statistics exist, including the Kappa standard (Kstandard), Kappa
for no information (Kno), Kappa for location (Klocation), and Kappa for location strata
(Klocationstrata), which can be computed using the VALIDATE tool in Terrset. When kappa
is greater than 0.6, actual and predicted classes agree perfectly [62]. With a 5 × 5 filter,
the outcomes of the model were validated, and the kappa statistics are shown in Table 11.
It can be inferred that values were higher than 0.75, suggesting that the model is statis-
tically significant. These results are similar to the ANN-CA–Markov model with driver
variables [49]. The comparison of results demonstrates that the method used in this pa-
per is highly satisfactory for non-metropolitan Indian cities such as Salem, even without
driver variables.

Table 11. Kappa values for predicted LU/LC for the year 2020.

Kappa Statistics Values

Kstandard 0.7734
Kno 0.7861

Klocation 0.7811
KlocationStrata 0.7811

5.5. Prediction of Urban Sprawl

Following the validation and acceptance of the model, the CA–Markov model is
used to predict the LU/LC for 2030 using the same reclass and filter file assumptions.
The Markov model was applied to determine the transition area and potential matrices
for 2020–2030 (Tables 12 and 13). According to the transition probability matrix, classes
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such as vegetation, built-up, and others are transitory categories that are subject to more
changes over time. Vegetative and other areas (primarily fallow, barren, and wasteland)
shifted primarily to built-up areas. The suitability file for 2020 was then created to train the
model and to understand the changes from 2020. Finally, the CA–Markov model was run
with 2020 LU/LC as the base image and a time step of 10 years to forecast the year 2030
(Figure 9).

Table 12. Transition area matrix for 2011–2020.

Cells in: 15 m
Expected to Transition to

Vegetation Built-Up Others Restricted

Vegetation 2,705,764 63,320 2,219,952 16,728
Built-up 11,128 672,256 24,633 1811
Others 1,930,618 344,750 3,150,912 8436
Restricted 39,383 12,359 42,345 6,093,394

Table 13. Transition probability matrix for 2011–2020.

Given
Probability of Changing to

Vegetation Built-Up Others Restricted

Vegetation 0.5405 0.0126 0.4435 0.0033
Built-Up 0.0157 0.9471 0.0347 0.0026
Others 0.3552 0.0634 0.5798 0.0016
Restricted 0.0064 0.0020 0.0068 0.9848
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Figure 9. LU/LC classes predicted for the year 2030.

Table 14 summarizes the area of each class from 2001 to 2030. It is reasonable to
conclude that a consistent decline in vegetation cover results in the loss of cropland and
plantations. These covers may or may not be developed into a built-up structure, but they
are more likely turned into barren or fallow land. However, these covers are susceptible to
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urbanization in the years to come. Only for modeling purposes are the mining, forested,
and water body classes consolidated into the restricted class. From 2001 to 2020, it was seen
that the mining areas in the northwest expanded steadily. This serves as one of the pull
factors for urban sprawl around Salem city. The sprawl can also be seen in the neighboring
towns of Omalur, Rasipuram, Sankari, and Vazhapadi. The proximity between Salem and
these towns, as well as the existence of a connection between them, will promote future
urban expansion.

Table 14. Actual (2001, 2011, and 2020) and predicted area of LU/LC for 2030 (sq. km).

LU/LC Class 2001
(Actual)

2011
(Actual)

2020
(Actual)

2020
(Predicted)

2030
(Predicted)

Vegetation 1648.080 1277.458 1135.595 1055.351 1080.189
Built-up 59.606 76.922 133.300 244.483 179.638
Others 807.323 1153.024 1239.226 1223.791 1262.751

Restricted 1386.001 1393.605 1392.888 1377.385 1378.432

Total 3901.010 3901.010 3901.010 3901.010 3901.010

6. Conclusions

The study investigated the spatial–temporal pattern of LULC change, particularly the
urban expansion dynamics of Salem city, India, with the aid of Landsat multitemporal
imageries, from 2001 to 2020, and predicted future changes by 2030 using the CA–Markov
chain model. The analysis explored the remarkable increase in barren land and a significant
decline in the agricultural area. Especially, the built-up area has increased from 59.6 sq km
in 2001 to 76.9 sq km in 2011 and 133.3 sq km in 2020. The modeling results also predicted
a continued growth to 179.6 sq km by 2030. Thus, it is reasonable to conclude that urban
sprawl in Salem and the neighboring towns is steadily increasing (Omalur, Rasipuram,
Sankari, and Vazhapadi). Even though the increase in urban land is marginal, the con-
version of agricultural land to barren land is prominent. As previously discussed, these
barren lands would eventually be developed into built-up areas in the years to come. As
the city has enormous development potential due to its employment opportunities and
further as it becomes a smart city, the transitions from agricultural and barren/wasteland
to built-up areas will proliferate exponentially. The expansion of mining areas sends a
warning message not only about urban sprawl but also about environmental degradation.

In this study, the spatial changes have been examined in terms of how the land area is
being impacted by cells that are located in close proximity to one another. The validation
of these underlying principles has shown satisfactory accuracy. Earlier studies on urban
sprawl that included driver variables have yielded similar prediction accuracy. Therefore,
the proposed methodology can be used to study urban sprawl with acceptable precision
even when driver variables are unavailable. The spatial understanding of sprawl through
the decades and from prediction shows that the sprawl of the neighboring towns is more
prominent in the direction aligned toward Salem except for Omalur. The sprawl in Omalur
is projected in the northwest direction, but Salem’s growth rate is high in the northwest,
which is toward Omalur. These findings emphasize the fact that in the future, any of
these towns could merge with Salem city. Hence, urban planners and policymakers must
also consider this as a perspective when planning or improvising infrastructural facilities
for Salem city. The urban sprawl modeled and predicted in this study will be helpful
in understanding morphological changes and estimating the city’s population growth.
Policymakers could use the study’s findings to develop appropriate urban management
plans. Salem has the potential to be a well-planned smart city if careful measures are taken
and sustainable management protocols are implemented.

The approach of implementing the CA–Markov model without the driver variables
has its own advantage, as it can provide a baseline scenario for urban growth and change,
which can then be compared with scenarios that include driver variables. This can reveal
the relative importance of different factors and their interactions as urban growth drivers.
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However, using CA–Markov models without driver variables has limitations, especially
concerning accuracy and reliability. Furthermore, they may fail to capture the complexity
and heterogeneity of urban processes and land-use changes, which are especially important
in rapidly urbanizing cities. In terms of future scope, the proposed works are as follows:
(a) incorporating driver variables such as population growth, income, and employment
opportunities may improve the model’s predictions; (b) including the impact of natural
disasters and climate change on urban sprawl may provide a more comprehensive under-
standing of the phenomenon; (c) applying the model to different geographic regions and
comparing the results may aid in identifying the factors that influence urban sprawl in
various contexts; and (d) finally, because this temporal calculation of urban sprawl does not
account for morphological changes, a directional study of urban sprawl and its pattern can
be undertaken to comprehend the relationship between Salem and the neighboring towns.
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