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Abstract: In the recent past, the Horn of Africa witnessed an upsurge in the desert locust (Schistocerca
gregaria) invasion. This has raised major concerns over the massive food insecurity, socioeconomic
impacts, and livelihood losses caused by these recurring invasions. This study determined the
potential vegetation damage due to desert locusts (DLs) and predicted the suitable habitat at high risk
of invasion by the DLs using current and future climate change scenarios in Kenya. The normalized
difference vegetation index (NDVI) for the period 2018–2020 was computed using multi-date Sentinel-
2 imagery in the Google Earth Engine platform. This was performed to assess the vegetation changes
that occurred between May and July of the year 2020 when northern Kenya was the hotspot of the
DL upsurge. The maximum entropy (MaxEnt) algorithm was used together with 646 DL occurrence
records and six bioclimatic variables to predict DL habitat suitability. The current (2020) and two
future climatic scenarios for the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5 from the
model for interdisciplinary research on climate (MIROC6) were utilized to predict the future potential
distribution of DLs for the year 2030 (average for 2021–2040). Using Turkana County as a case, the
NDVI analysis indicated the highest vegetation damage between May and July 2020. The MaxEnt
model produced an area under the curve (AUC) value of 0.87 and a true skill statistic (TSS) of 0.61,
while temperature seasonality (Bio4), mean diurnal range (Bio2), and precipitation of the warmest
quarter (Bio18) were the most important bioclimatic variables in predicting the DL invasion suitability.
Further analysis demonstrated that currently 27% of the total area in Turkana County is highly
suitable for DL invasion, and the habitat coverage is predicted to potentially decrease to 20% in the
future using the worst-case climate change scenario (SSP5-8.5). These results have demonstrated
the potential of remotely sensed data to pinpoint the magnitude and location of vegetation damage
caused by the DLs and the potential future risk of invasion in the region due to the available
favorable vegetational and climatic conditions. This study provides a scalable approach as well as
baseline information useful for surveillance, development of control programs, and monitoring of DL
invasions at local and regional scales.

Keywords: food security; insect pest upsurge; Kenya; MaxEnt; Sentinel-2; species distribution model;
vegetation index

1. Introduction

Desert locusts (DLs), Schistocerca gregaria, are migratory pests that are part of a group
of short-horned grasshoppers belonging to the Acrididae family [1]. They are a major threat
to agriculture, forestry, and animal husbandry, leading to a vulnerability in the food and
nutrition security systems and socioeconomic networks [2,3]. Particularly, the damage
caused by DLs on farm- and pastureland is a threat to the food and nutrition security of
over 60 countries in Africa, the Middle East, and Southwest Asia regions that account
for approximately 10% of the world’s human population [4,5]. Additionally, vegetation
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loss due to DL invasions in the arid and semi-arid regions of the Horn of Africa could
impact the grazing potential for nearly 685,000 pastoral and agro-pastoral households [6].
The United Nations Food and Agriculture Organization (FAO) reports that a large swarm
covering a square kilometer can consume 200 tons of vegetation in a day causing severe
impacts and destroying vital vegetation cover [7]. Earlier studies have demonstrated that
DLs can cause devastating impacts in the agricultural sector, with the potential to cause
between 20% and 100% losses in cropland [8–10]. These studies have shown that the pest
can severely destroy both crop- and pasturelands, hence shattering food systems [10]. A
DL invasion in Sahel countries in 2004 resulted in at least 8 million people suffering from
immense crop damage and famine in the affected households [8]. Thus, the DL infestations
caused acute food shortages, reduced grazing areas, and led to offsetting of the market
prices for livestock and cereals [8]. Again, Burkina Faso, Mali, and Mauritania incurred
losses of up to 90% in legume production and 80–100% in cereal production during the 2004
DL invasion. In the same period, Mali and Burkina Faso incurred a 30% loss in pastureland,
while Mauritania recorded the highest loss of up to 85% in fodder production [9].

Typically, DL invasions have been observed and predicted to occur in the desert and
semi-arid areas of India, Mauritania, West Africa, and the Horn of Africa, through the
Middle East to Southwest Asia [6,8]. Like other insects, DLs respond to general climatic
conditions where above-average rainfall leads to an increase in green vegetation cover and
aboveground vegetation biomass promoting their occurrence. Further, temperature, wind,
soil properties (sand content, moisture, and texture), slope and food availability contribute
immensely to the pest propagation. For instance, soil physical properties influence the
behavior of female DLs to lay eggs and the viability and optimal hatching time of the
eggs [8]. Hence, under suitable conditions, the breeding of DLs often results in very rapid
increment in their populations, leading to large concentration densities within periods of
one to two months [2].

Recently in 2019, the DL invasion in the Horn of Africa raised concerns and questions
over the socioeconomic well-being and livelihood sustainability in the region as well as the
level of preparedness for future events. This invasion was witnessed for the first time in
70 years, spreading from Yemen, crossing over the Gulf of Aden into Djibouti, Ethiopia,
Somalia, and Kenya and further into the Sahelian countries through Sudan, desolating
farmlands across the Horn of Africa [11,12]. This invasion was attributed to the favorable
conditions of heavy and unusual precipitation, temperature, and vegetation that supported
the pest’s feeding for survival and development [13]. In Kenya, the pest’s implication was
realized in the impact it had on most of the crop- and pasturelands. This reduced the grazing
potential, which is the base of livelihood for most smallholder farmers and pastoralists in
the country [14]. Essentially, damage to vegetation from this outbreak, critically weakened
the socioeconomic systems of these marginalized communities in Kenya, particularly in
Turkana County. Subsequently, mapping and quantifying these impacts using geospatial
technologies have not been fully explored to provide critical information on the extent
and time steps of the DL invasion and vegetation damage, specifically in remote and
inaccessible areas. In addition, this approach affords an understanding of potential future
damage to enhance the level of preparedness for such incidences.

Geospatial technologies have been successfully utilized by other studies to detect
vegetation change in the arid areas of Sudan caused by DLs [15]. These earlier studies
mostly relied on the moderate resolution imaging spectroradiometer (MODIS) sensors and
an enhanced vegetation index (EVI) as a derivative to assess the damage caused during an
infestation that confirmed a substantive amount of damage on vegetation [15,16]. More-
over, FAO relies on remotely sensed data to monitor and forecast DL outbreaks in breeding
areas through vegetation greenness maps. The FAO uses satellite imagery to report on
rainfall estimates and ecological conditions, such as vegetation development estimates
at international and local levels, to forecast, inform early warning, and guide sustainable
control measures [17,18]. Moreover, Latchininsky and Sivanpillai [18] discussed the poten-
tial applications of remote sensing and GIS in mapping locust habitats for early warning,
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damage, and risk assessment using different approaches and platforms in analysing and
evaluating the vegetation state.

Prediction of pest distribution based on the influence of current and future climate
scenarios using machine learning techniques and remotely sensed data has been success-
fully used by previous studies [19–23]. These techniques have been used to inform current
and future habitat distributions and the existing correlation between climate and pest
distribution using environmental variables as key model predictors [24–26]. For instance, a
number of species distribution models (SDMs), such as the maximum entropy (MaxEnt),
random forest (RF), generalized linear model (GLM), support vector machines (SVM),
etc., are widely used to predict habitat suitability of crop insect pests [11,27]. In addition,
an ensemble model of several SDMs was utilized to assess pest (e.g., DL) habitats and
establishment sites. The MaxEnt model, which is the most widely used SDM, has demon-
strated reliable predictions of species habitats using a small sample size compared to other
models, i.e., genetic algorithm for rule-set prediction (GARP) [28]. Moreover, MaxEnt
uses presence-only species records and correlates them to a set of relevant environmental
variables in determining the habitat suitability of the species under study [29]. Likewise,
other process-based models, such as CLIMEX, are used to predict pest risks [30].

Furthermore, the abovementioned studies have utilized 16-day MODIS products
recorded at 250 m spatial resolution to study vegetation states at regional extents. However,
the accuracy of detecting vegetation state depends largely on the pixel size, hence utilizing
MODIS products would result in inaccurate vegetation detection at 250 m spatial resolution,
particularly when the vegetation in some DL habitats is sparse [15,16]. On the other hand,
using 5-day Sentinel-2 imagery that is of a medium spatial resolution (10 m) would improve
the accuracy and reliability in assessing vegetation damage compared to the MODIS
products [31]. Therefore, this study aimed to use relatively recent and moderate spatial
resolution remotely sensed data and geospatial modelling techniques to assess the potential
DL risk of invasion (current and future) and vegetation damage using Turkana County
in Kenya as a case study. We computed NDVI for the period of 2018–2020, which was a
period that experienced good rainfall during the long rainy season in Kenya, particularly
in 2019–2020. Therefore, it was not anticipated that any abiotic stress, such as drought,
could have caused a reduction in NDVI in Turkana County. The long rainy season in 2020
coincided directly with the DL upsurge. Therefore, we hypothesized that any decline in
NDVI could be due to DL damage owing to the massive invasion and the devastating
feeding pattern of the pest.

2. Methods
2.1. Study Area

This study was conducted in Turkana County (Figure 1), a semi-arid region in north-
western Kenya covering approximately 68,232.9 km2 with a population of 926,976 people
and an annual population growth rate of 0.81% [32]. Turkana lies between latitudes of
1◦30′00′′ N and 5◦30′00′′ N and longitudes of 34◦30′00′′ E and 36◦40′00′′ E. The elevation
in the study area ranges between 369 m around Lake Turkana and 900 m above sea level
located at the border between Kenya and Uganda. Administratively, the study area is
divided into six sub-counties; Turkana North, Turkana Central, Turkana South, Turkana
West, Turkana East, and Loima [33].

The region has a bimodal rainfall pattern with ‘long rains’ occurring during the period
between April and July and ‘short rains’ occurring between October and November [34].
On average, yearly precipitation ranges between 52 mm and 480 mm with an annual
average of 200 mm. The annual temperature range is between 20 ◦C and 41 ◦C with an
annual mean of 30.5 ◦C [33]. The county is susceptible to drought with 80% of the total area
considered either arid or semi-arid, with the driest periods occurring in January, February,
and September [33].
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Figure 1. Location of Turkana County in Kenya and locations of the six sub-counties in Turkana.

The vegetation characteristics in the study area are diverse, ranging from patchy
grassland, herbaceous plants combined with shrubs, and riverine woody species [35–37].
Additionally, the area is dominated by dwarf shrubs, bushy tree species, and riverine
vegetation along the main rivers [30,31,38]. Furthermore, Acacia reficiens and Acacia melifera
are the most dominant and critical forage tree species for animal browsing in the study area,
while Aristida mustabilis and Cenchrus ciliaris are the most common annual and perennial
pasture species [31–33]. On the other hand, invasive tree species, such as Prosopis juliflora,
are also densely distributed in the region outcompeting the herbaceous plants that grow
under their canopy [30,31,34].

2.2. Data Acquisition and Processing

The data considered in this study included Sentinel-2 (S2) imagery, DL occurrence
observations, and bioclimatic predictor variables. The S2 imagery was used in this study
because it provides relatively moderate spatial resolution (10 m × 10 m), which is con-
sidered by other studies as one of the best satellite data sources for assessing vegetation
damage and change [39,40]. Additionally, S2 data are freely and readily available, making
them more useful in resource-restrained regions such as Kenya. Future climate scenarios
of the shared socioeconomic pathways (SSP) that are projected by the coupled model
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intercomparison project version 6 (CMIP6) were used in this study to represent the future
climate scenarios [41], whereas the DL occurrence data were obtained from the FAO DL
hub (https://locust-hub-hqfao.hub.arcgis.com/ accessed on 10 June 2021). Furthermore,
climatic data from the national aeronautics and space administration (NASA) prediction of
worldwide energy resources (https://power.larc.nasa.gov/ accessed on 10 June 2021) were
analyzed to provide a baseline in weather trends for the study period, i.e., 2018 to 2020.

2.3. Sentinel-2

Multi-date S2 imagery was acquired and analyzed in Google Earth Engine (GEE) for
the period 2018, 2019, and 2020 in May, June, and July (n = 771 scenes). The S2 imagery is
provided by the European Space Agency (ESA) with a 5-day revisit time at the equator and
2–3 days at mid-latitudes collected from two satellite sensors, i.e., S2A and S2B. These two
S2 sensors provide 13 spectral bands (Table 1), each of varying pixel size of 10 m (at visible:
blue, green, and red bands), 20 m (at infrared: red edge 1, red edge 2, and red edge 3, narrow
near-infrared, shortwave infrared 3, and shortwave infrared 4 bands) and 60 m (at water
vapor: shortwave infrared 1, and shortwave infrared 2 bands) at a swath width of 290 km2.
In this study, we used the level 1C of the S2 product, which is a top-of-the-atmosphere
(TOA), orthorectified imagery. The size of each image was 100 km × 100 km, projected into
the Universal Transverse Mercator (UTM)/WGS84. Furthermore, the median mosaicking
approach for 771 scenes that had less than 20% cloud cover was used to generate the image
data used in the analysis. Only the red (band 4) and near-infrared (band 8) were selected
to calculate the normalized difference vegetation index (NDVI) that was used as a proxy
for vegetation coverage and density in the study area. Specifically, the first 10 S2 images
of every month matching the “long rain” season, i.e., when vegetation productivity and
level of greenness were expected to be above average and coincided with the time of the
invasion of DLs in 2020 in Turkana County, were used.

Table 1. Sentinel-2 multispectral sensor bands, description, wavelength, and their respective pixel
size. The bold, i.e., bands 4 (Red) and 8 (NIR) were the only bands used in this study.

Band Band Description Central Wavelength (nm) Pixel Size (m)

B1 Coastal aerosol 443 60
B2 Blue 490 10
B3 Green 560 10
B4 Red 665 10
B5 Red-edge 1 (RE1) 705 20
B6 Red-edge 2 (RE2) 740 20
B7 Red-edge 3 (RE3) 783 20
B8 Near-infrared (NIR) 842 10
B8a Narrow NIR (NNIR) 865 20
B9 Short wave infrared (SWIR1)-water vapor 940 60
B10 Short wave infrared (SWIR2)-cirrus 1375 60
B11 Short wave infrared (SWIR3) 1610 20
B12 Short wave infrared (SWIR4) 2190 20

2.4. Daily Climatic Data in the Study Area

Monthly average precipitation and temperature data were obtained from NASA’s
prediction of worldwide energy resources (https://power.larc.nasa.gov/, accessed on
10 June 2021) to analyze monthly weather trends in the period 2018 to 2020. Monthly
temperature (◦C) at 2 m above the ground surface and monthly precipitation (mm·month−1)
both at 0.5 × 0.5 degrees (55 × 55 km) resolution were visualized in R-software [42] using
the ggplot2 package [43]. These data were explored to demonstrate and relate the weather
conditions that prevailed during the period of DL invasion (May, June, and July 2020) in
the study area (Figure 2).

https://locust-hub-hqfao.hub.arcgis.com/
https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
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Figure 2. (a) Monthly mean precipitation and (b) temperature for Turkana County from 1 January
2018 to 31 December 2020.

2.5. Desert Locust (DL) Occurrence Data

Freely available data on DL occurrence were acquired from the FAO DL hub
(https://locust-hub-hqfao.hub.arcgis.com, accessed on 10 June 2021). Data of the DLs at
the adult stage were used in this study because they cause severe damage to vegetation
compared to other stages of development, e.g., the hoppers stage. The DL occurrence
data that were collected between 1 February and 31 August 2020 were used. This period
coincided with the peak populations and DL invasion in the East African region [11]. How-
ever, we selected May, June, and July as the study months because these were the months
that were reported to have recorded the highest DL populations and the largest invasion
spatial extent in the region. The data underwent rigorous cleaning for redundancy and
positional accuracy using R-software and Google Earth, respectively to remove duplicates
and outliers. After this elimination process, a total of 646 data points were retained from an
initial 847 data points obtained from the FAO DL database. Even though spatial thinning
is a necessary process that addresses problems associated with spatial sampling bias, it
was not considered in this study, because the data were assumed free from sampling bias
as the DL observations were collected at different periods representing an occurrence in
space and in time. Hence, we needed to retain the data for a widespread spatiotemporal
representation, such an approach was performed in earlier studies [8,44].

2.6. Bioclimatic Data

Table 2 illustrates the 19 bioclimatic variables that were used to predict the current
and future potential habitat distribution of DLs. These current and future bioclimatic
variables were obtained from the Worldclim2 database (www.worldclim.org, accessed
on 10 June 2021) [45]. The bioclimatic data from WorldClim (version 2.1) used in this

https://locust-hub-hqfao.hub.arcgis.com
www.worldclim.org
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study comprised monthly minimum, maximum, mean temperature, and precipitation
variables [45].

Table 2. The 19 bioclimatic variables that were considered in the desert locust distribution modelling.
The bold variables were used in the final analysis after the elimination of the correlated variables
accessed on 10 June 2021.

Bioclimate Code Variable Description Unit

Bio1 Annual mean temperature ◦C
Bio2 Mean diurnal range ◦C
Bio3 Isothermality NU *
Bio4 Temperature seasonality NU *
Bio5 Max temperature of warmest month ◦C
Bio6 Min temperature of coldest month ◦C
Bio7 Temperature annual range ◦C
Bio8 Mean temperature of wettest quarter ◦C
Bio9 Mean temperature of driest quarter ◦C

Bio10 Mean temperature of warmest quarter ◦C
Bio11 Mean temperature of coldest quarter ◦C
Bio12 Annual precipitation mm
Bio13 Precipitation of the wettest month mm
Bio14 Precipitation of the driest month mm
Bio15 Precipitation seasonality NU *
Bio16 Precipitation of the wettest quarter mm
Bio17 Precipitation of the driest quarter mm
Bio18 Precipitation of the warmest quarter mm
Bio19 Precipitation of coldest quarter mm

* NU = no unit

The current environmental variables were obtained at 30 s (1 km) spatial resolution,
and future climatic scenarios from the model for interdisciplinary research on the climate
(MIROC 6) model [46] were acquired at 2.5 min (5 km) spatial resolution. The “resampling”
function of the raster package in R [38,42] was used to attain spatial homogeneity where
future climatic scenarios at 5 km were resampled to 1 km, retaining pixel information
with current scenarios as the baseline [47,48]. A collinearity test was performed on the
19 bioclimatic variables using the “virtual species” package in R-software to explore the
clusters of the spatial correlation of the 19 bioclimatic variables [49]. Correlated variables
were clustered into 6 groups (r ≥ 0.70 Pearson correlation coefficient), and 1 predictor
variable with the least correlation value in each cluster was selected for use in the DL habitat
distribution model experiment [49]. The 6 bioclimatic variables that were retained and
used in developing the model from this collinearity were Bio 1 (annual mean temperature),
Bio 2 (mean diurnal range), Bio 4 (temperature seasonality), Bio 12 (annual precipitation),
Bio 15 (precipitation seasonality), and Bio 18 (precipitation of warmest quarter).

The future bioclimatic variables are based on two narratives of SSPs. The SSPs provide
narratives describing alternative socioeconomic developments with intermediate green-
house gases emission (GHG) SSP2-4.5 (middle of the road) and very high GHG emission
SSP5-8.5 (fossil fueled development) were used to predict the current and future potential
geographic distribution of DLs [50]. The SSPs scenarios represent the middle of the road
and the highest radioactive forcing of 4.5 W/m2 and 8.5 W/m2, respectively, for the carbon
dioxide (CO2) concentration for the period 2021–2040 averaged at 2030 [51].

2.7. Vegetation Damage Analysis Using the Normalized Difference Vegetation Index (NDVI)

The multitemporal normalized difference vegetation index (NDVI) analysis was per-
formed across the three study years (2018, 2019, and 2020) to assess the general condition
of vegetation in the study area. Monthly analysis was performed to determine vegetation
damage during the peak of DL infestation. Three months of May, June, and July that
coincided with the “long rains” season and the DL outbreak in the area were selected to
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check against optimal vegetation greenness. The NDVI is an indicator that can be used
to estimate the quantity of green vegetation over an area using the magnitude of green-
ness [52]. The index utilizes the reflectance at the near-infrared (NIR) and visible red bands
to analyze vegetation conditions using a normalized band ratio as shown in Equation (1).
The NDVI values that are close to zero indicate reflectance from rocks and bare soil, while
water, clouds, and snow have negative index values attributable to a higher reflectance in
visible red than NIR [47–50]. Sparse vegetation could have values of 0.2–0.3, and densely
vegetated areas have value ranges between 0.4 to 0.8 [53].

The NDVI analysis was computed in the GEE cloud-based platform for spatial and
temporal geoprocessing since it possesses high computation capabilities over a large
dataset [54–56]. A median compositing approach was used over the time series imagery,
thereby reducing the huge image collection dataset into an individual image across the
selected months for each of the years 2018, 2019, and 2020. In this case, the output was a
product of a median value from all the images in the collection across the month at a loca-
tion computed in each pixel [57–59]. Nine NDVI maps (three for each year) were generated
and exported for further processing in Quantum GIS (QGIS) software, version 3.18.0. The
mosaicking function was used to generate a single composite image for the entire study
area to facilitate seamless analysis.

NDVI =
(PNIR− PR)
(PNIR + PR)

(1)

where

NDVI = normalized difference vegetation index,
PNIR = near-infrared reflectance, and
PR = red reflectance.

The NDVI image was categorized into three classes, i.e., (i) low (−1.0 to 0.2), (ii) mod-
erate (0.2 to 0.5), and (iii) high (0.5 to 1.0) following [59]. In 2020, for vegetation damage
analysis (i.e., months of May, June, and July), the NDVI was categorized into values
less than 0.2 to indicate high vegetation damage, values between 0.2 and 0.5 to indicate
moderate vegetation damage, and values more than 0.5 as low vegetation damage.

During the study months, the study area did not witness any drought or dry spells that
might have affected the vegetation performance in the study area; hence, we hypothesized
that the decrease in the vegetation greenness, density, and cover was largely due to DL
damage. Therefore, we compared the areas that showed high (hotspots) and no vegetation
changes with the DL occurrence and density observations to obtain insights into the effect
of DLs on vegetation damage in Turkana County.

2.8. Current and Future Desert Locust Invasion Risk Analysis

We utilized the MaxEnt model (MaxEnt version 3.4.4) [29] to predict the current and
future distribution of DLs in the study area. The MaxEnt model uses presence-only data and
has been reported by other studies to provide higher predictive performance in modelling
species habitat suitability compared to other machine learning methods [8,23,26,56,60].
The MaxEnt algorithm estimates a probability of distribution of species occurrence that
is most spread against environmental constraints and does not require a high number of
observations [28,61].

The variable contribution to the model was compared using the Jackknife test [61,62].
The ‘ENMevaluate’ function in the package ‘ENMeval’ [63] available in R-software [42]
was used to find the most optimum parameters for the MaxEnt model. The ‘ENMevaluate’
function aids in the empirical selection of the best model settings that balance goodness-of-
fit and model complexity and calculates multiple metrics using the presence-only reference
points of the species being analyzed [60,61,64]. In this study, the optimum model parame-
ters derived from the ‘ENMevaluate’ were linear/quadratic/product/hinge (LQPH): 0.050,
categorical: 0.250, threshold (H): 1.000, hinge: 0.50, and beta-multiplier: 3.0. Initially, we
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ran the MaxEnt model with the default parameters which resulted in an overfitting model;
therefore, we sought for optimum values using the ‘ENMevaluate’ tool. QGIS software
was used to categorize the DL potential distribution maps into five suitable habitat scores,
which were determined based on [65]. Specifically, the potential DL distribution classes
(i.e., suitable habitat scores) were regrouped into 5 categories as follows: (i) 0–0.2 (very low),
(ii) 0.2–0.4 (low), (iii) 0.4–0.6 (moderate), (iv) 0.6–0.8 (high), and (v) 0.8–1.0 (very high).

2.9. Ecological Niche Modelling Performance Validation

The receiver operating characteristic (ROC) was employed to calibrate and determine
the robustness of the MaxEnt model [19]. The area under the curve (AUC) of the ROC
was further used to examine and estimate the model performance. The AUC values range
from 0 (random prediction) to 1 (perfect prediction) [22,26]. We used 70% (n = 258) of
the DL occurrence data to train the model, while 30% (n = 65) were used to test the per-
formance of the predicted modelling outputs [8,55]. A 5-fold cross-validation approach
with 10,000 background points and 500 iterations was used to evaluate the precision of the
model [22,62,66]. In addition, the true skill statistic (TSS) which is based on the components
of the standard confusion matrix representing matches and mismatches between observa-
tions and predictions was used to evaluate the accuracy of the model by calculating the
sensitivity and specificity of the models (TSS = sensitivity + specificity − 1). The TSS was
calculated for all the five model replicates, and a mean TSS score was determined. The
TSS values range from −1 to 1 with negative and 0 values suggesting a random prediction,
while values close to 1 indicating agreement between predictions and observations [26].

3. Results
3.1. Vegetation Damage Analysis

In 2018, vegetation greenness was relatively low across the three months of May, June,
and July. Most parts of the study area indicated low vegetation greenness in May, which
further reduced in June and July, particularly in the northern regions of Turkana, which
indicated very low NDVI values (Figure 3).

Comparatively, in 2019, an increase in vegetation greenness was observed across the
three months compared to 2018 (Figure 3). It was also observed that areas around the
borders of Uganda and South Sudan showed an increase in vegetation greenness across
the three study months peaking from May through July compared to central regions and
regions along the shoreline of Lake Turkana (Figure 3). The northern and southern parts
towards the borders of the county demonstrated an increase in vegetation greenness. These
parts exhibited high vegetation performance in July compared to June with a moderate
vegetation performance in most of those areas.

In 2020, the analysis revealed that vegetation greenness performance was much better
across the three months compared to the previous years of 2018 and 2019. However,
a comparison across the months in 2020 showed that May recorded relatively higher
vegetation greenness compared to June. In July, a slight increase in vegetation greenness
was observed as opposed to June.
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Figure 3. Level of vegetation greenness represented by the normalized difference vegetation index
(NDVI) for May, June, and July 2018 and 2019.

Monthly Normalized Difference Vegetation Index (NDVI) Trend and Vegetation Damage
for the Period May–July 2020

The highest NDVI recorded in May 2020 was 0.61 at the start of the second week. A
varying degree of vegetation greenness in a decreasing trend across May and constant
greenness at the end of the second week recorded a low NDVI value of 0.36 with an increase
at the end of the third week (Figure 4a). In June, the NDVI values were comparatively
low with a decreasing trend in the second week and towards the third week of the month,
which recorded a low NDVI value of 0.22 (Figure 4b). Moreover, a higher NDVI of 0.59
was recorded at the start of the fourth week of June followed by a decrease in July to the
lowest NDVI of 0.24. A varying trend in greenness into July was observed with the first
week of the month indicating a decreasing trend with a low NDVI of 0.18 and a sharp
increase into the second week recording the highest NDVI of 0.53 (Figure 4c). A decline
was recorded at the end of the second week towards the third week at 0.10 with a slight
increase in the fourth week. There was also a fairly constant and possible increase in NDVI
towards August. Nonetheless, May performed slightly better than June and July, which
recorded relatively low greenness.
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Figure 4. Normalized difference vegetation index (NDVI) trend in Turkana County, Kenya in May (a);
June (b); and July (c) 2020. These three months were the peak desert locust infestation period in the
county in 2020.

In general, the vegetation greenness across the three months was on a decreasing
trend. May showed the highest vegetation greenness with June and July indicating a
further decrease in different areas in the county (Figures 5–7). In May, in the sub-counties
of Loima, Turkana East, Turkana Central, and Turkana West, the vegetation damage was
moderate to high. The vegetation reduction in these sub-counties was assumed to be
a result of DL infestations, which were reported in these areas. This trend was further
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continued in the subsequent months of June and July, where the DL-infested sub-counties
demonstrated NDVI values of less than 0.5, implying moderate to high vegetation damage.
Furthermore, Loima, Turkana South, and Turkana East consistently recorded a high number
of DL observations with Turkana West and Central recording low records across the three
months (Figures 5–7). However, the northern parts showed considerable moderate to high
vegetation damage despite the low DL observations records. This is an indication of a
possibility of no surveillance due to inaccessibility and lack of resources.
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color shows areas of low vegetation damage, light green and pale red show areas with moderate and
high vegetation damage, respectively.
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Figure 6. Vegetation damage assessment indicated by (a) the normalized vegetation index (NDVI)
and (b) desert locust occurrence records for June 2020 in Turkana County in Kenya. The dark green
color shows areas of low vegetation damage, light green and pale red show areas with moderate and
high vegetation damage, respectively.
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Figure 7. Vegetation damage assessment indicated by (a) the normalized vegetation index (NDVI)
and (b) desert locust occurrence records for July 2020 in Turkana County in Kenya. The dark green
color shows areas of low vegetation damage, light green and pale red show areas with moderate and
high vegetation damage, respectively.

3.2. Current and Future Desert Locust Invasion Risk
3.2.1. Maximum Entropy (MaxEnt) Model Evaluation

The MaxEnt model for predicting DL habitat suitability and invasion risk achieved
high AUC values of 0.87 ± 0.009 (Figure 8) and TSS of 0.61, which were greater than a
threshold of 0.5 indicating a high model performance.
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Figure 8. Maximum entropy (MaxEnt) model validation using area under the curve (AUC) showing
the model performance in predicting desert locust invasion risk in Turkana County. The red line
indicates the mean AUC value for the MaxEnt replicates, while the blue shades show the AUC
standard deviation on the model replicates, and the black line indicates the performance of the model
using random predictions.
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3.2.2. Predictor Variable Contribution on the Maximum Entropy Model

The Jackknife test result (Figure 9) illustrated the various bioclimatic variables’ con-
tribution (%) towards predicting DL habitat suitability. Bio 4 (temperature seasonality)
contributed the most (83.10%) to the DL distribution in Turkana County, followed by Bio 2
(mean diurnal range), and Bio 18 (precipitation of the warmest quarter), respectively (Table 3).
In general, temperature-based variables were more important than the precipitation variables
in predicting DLs in Turkana County. Moreover, the Bio 4 variable demonstrated the highest
gain in the MaxEnt model when utilized in isolation and the lowest gain when omitted from
the MaxEnt modelling experiment (Figure 9).
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Table 3. The relative contribution of the six bioclimatic predictor variables utilized in the maximum
entropy (MaxEnt) model to predict the current and future invasion risk of desert locusts in Turkana
County, Kenya.

Bioclimate Code Variable Description Contribution (%)

Bio4 Temperature seasonality 83.1
Bio2 Mean diurnal range 4.8

Bio18 Precipitation of the warmest quarter 4.0
Bio12 Annual precipitation 3.9
Bio15 Precipitation seasonality 2.4
Bio1 Annual mean temperature 1.7

3.2.3. Predicted Current Desert Locust Invasion Risk

The MaxEnt model predicted sub-counties of Turkana Central, Turkana South, Loima,
and parts of Turkana East to be at the highest risk as they provide the most suitable
habitats for DLs under the current (2020) climatic conditions (Figure 10a). Turkana East
was predicted to have low to moderately suitable habitats to the south with patches of very
low suitability scattered in the area. Turkana North and Turkana West indicated patches of
low habitat suitability near the borders of Loima and Turkana Central sub-counties with
large portions of very low habitat suitability evenly distributed across the two sub-counties.
Generally, the northern part of Turkana was predicted to be unsuitable for DLs, and the
central sub-counties were predicted to be highly to very highly suitable, with low suitability
in the south of the area (Figure 10a).
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Figure 10. Predicted habitat suitability for desert locust invasion in Turkana County, Kenya: (a) in
the current (2020); (b) future under the SSP2-4.5 scenario; and (c) future under the SSP5-8.5 scenario.

3.2.4. Predicted Potential Future Desert Locust Invasion Risk

Future (2030) DL prediction (Figure 10b,c) showed relative similarity in distribution
when contrasted with the current distribution prediction; however, a decrease in the
suitability and invasion risk range for both SSP2-4.5 and SSP5-8.5 scenarios was noted.
Additionally, SSP2-4.5 showed relatively low DL habitat suitability at 23.58% compared
to SSP5-8.5, which predicted an increase in suitability range at 35.17%. In SSP5-8.5, there
was a shift in habitat suitability concentration towards the edge of Loima and Turkana
South sub-counties with high to very high habitat suitability. In both scenarios, in the
northern sub-counties of Turkana West and Turkana North, the suitability range was
relatively low. For SSP5-8.5, the habitat suitability range remained the same compared
to the current predicted conditions. However, a decrease in habitat suitability levels was
observed with large portions predicted to range from low to moderately suitable. Moreover,
for SSP2-4.5, the geographical range was limited to low and moderate suitability with a
decreased DL habitat coverage by 2030. The optimal habitat suitability (0.6–1.0) under the
SSP2-4.5 scenario will decrease to 9.25%, and the SSP5-8.5 scenario will decrease to 20.34%
from the current suitability of 27.15% of the total area (Table 4).

Table 4. Area and percentage of optimal desert locust habitat suitability for invasion (0.6–1.0) for
current and future (2030) climate scenarios.

Period Climate Scenario
(MIROC 6 Climate Model) Area (km2)

Percentage of the
Total Area

Current 18,937.67 27.15
2030 SSP2-4.5 6455.62 9.25

SSP5-8.5 14,192.74 20.34

4. Discussion
4.1. Vegetation Change Analysis

This study highlighted the change in vegetation across May, June, and July of 2018,
2019, and 2020 using S2 multispectral imagery at a medium spatial resolution of 10 m.
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These three months were targeted as they represented the peak of DL invasion in the study
area in 2020. Thus, this study aimed to use relatively recent and moderate spatial resolution
remotely sensed data and geospatial modelling techniques to assess the potential DL risk
of invasion (current and future) and vegetation damage in Kenya using Turkana County as
a case study.

The NDVI derived from the S2 remotely sensed data was used to assess the vegetation
dynamics in the study area, and it was assumed that during the study months, there was
no drastic vegetation damage from confounding factors, such as drought, which could
have also led to vegetation loss. The study area often experiences dry conditions, which
make it challenging to clearly distinguish and separate other vegetation loss drivers from
the losses incurred by DL attacks. However, the selected period (May–July 2020) in this
study demonstrated good rainfall patterns that persisted from the short rains received in
October–December 2019 up to July 2020 (Figure 2). These observed patterns resulted in
enhanced vegetation greenness that made it possible to estimate vegetation cover losses
and establish relationships between vegetation and the locust attack in 2020.

The study demonstrated that the S2-generated NDVI can provide an estimate of
vegetation dynamics due to DL infestation at both local and regional scales. The NDVI
has been used in many studies as a key proxy to measure overall vegetation greenness
performance [67]. However, satellite imagery is subject to atmospheric noise and cloud
cover, which makes it challenging to perform an accurate vegetation analysis. This caused
data gaps in certain periods, such as in our case, where the target months (May, June,
and July) had missing information at some locations in the study area. The problem was
overcome through the performance of the median image composite and cloud masking in
GEE, which improved the reliability and usage of our imagery. This is a relatively recent
common procedure for reducing cloud effects and outliers in satellite imagery data [68].

Furthermore, the NDVI analysis showed variation in vegetation greenness across
the years with 2018 demonstrating low levels of vegetation greenness compared with
2019 and 2020. This progressive increment in vegetation greenness is attributed to an
improved amount of precipitation across the study years 2019–2020 [69]. A good vegetation
greenness performance was observed in the period 2019–2020, which was an indication
of vegetation recovery from 2018 due to a fair amount of rainfall in the long rainy season
(March–May) in the study area. In 2020, the vegetation greenness was high compared
to the previous years, an indication of good and unusual rains received from the short
rainy season in October–December 2019 extending to the long rainy season in March–May
2020 [70–72]. Precipitation is positively correlated with vegetation performance over space
and time [68,69]. This could have been what triggered the mass invasion by the DLs in
Kenya.

Despite the good rains received in the off-season (i.e., the short rainy season), NDVI
monthly change analysis indicated a decreasing trend in vegetation performance from May
to July 2020. As expected, this period coincided with the vegetative stages of crops and
pasture, which are translatable to high NDVI values. Therefore, the damage in vegetation
observed in June compared to May and July 2020 could be highly attributed to the huge
swarms of locusts witnessed in Turkana County in 2020 [69]. Moreover, June recorded
the highest decrease in vegetation greenness compared to the subsequent month of July,
which showed a slight decrease in comparison to June. This change implies damage
caused in croplands and pasturelands that are sources of livelihood to both pastoral and
agro-pastoral communities. A DL swarm of approximately 150 million locusts per square
kilometer can cause daily food hunger for about 2500 people with substantial pasture
productivity losses [70]. Additionally, the decrease in vegetation greenness in June–July
2020 concurred with the observation of [69] who noted that the region was highly infested
with DL hoppers. These hoppers caused damage to various vegetation types that included
shrublands, grasslands, and dwarf grasslands with Acacia reficiens dominating the landscape
and providing forage for most of the livestock [73]. We anticipated that the migration
pattern and nature of feeding, together with the developmental stages of these hopper
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bands caused the varying trend in NDVI levels as indicated in Figures 5–7. As a result, the
loss in vegetation biomass and productivity as a function of NDVI could have reduced
food production and severely impacted access to food and nutrition for agro-pastoral
and pastoral livelihood-dependent zones that consistently indicated high DL observation
densities across the three months. Hence, there is a need to develop early warning and
decision support systems that can effectively monitor future DL invasions in order to
protect the livelihoods of these already food-depressed regions.

4.2. Predicted Desert Locust Invasion Risk Areas

The current and future geographical distribution for DLs was predicted using SSP2-4.5
(middle of the road) and SSP5-8.5 (maximum) climate projection narratives by apply-
ing the MaxEnt model principles that are widely accepted and used by several stud-
ies [20,22,24,25,61,74,75]. The relatively large DL presence records used in this study
allowed the use of the LQPH feature class combination to predict the current and future
suitable habitats for DL invasion. The results obtained in this study indicated a wider DL
distribution range under current conditions compared to the future distribution that was
predicted to be slightly reduced with climate change. Additionally, the results demon-
strated that a very high suitability for DL invasion (0.6–1.0 probability) matched with
the locations of invasion that were observed in the 2020 upsurge. However, the northern
parts of the county remained relatively unsuitable for both current and future climate
scenarios [14]. The 2030 climate projections predict a decrease in habitat suitability range,
yet an environment that supports breeding and spread of the pest in the region [11].

The findings from other studies that have investigated the influence of climate change
on global agricultural pests distribution concurred with our findings that rainfall and
temperature have a significant influence on economically important pests [74–77]. Rainfall
is one of the central climatic variables for DL invasion. Rainfall triggers vegetation onset
and growth, which provides food and an attractive foraging habitat for the DLs. This
is very important for DLs to develop and reproduce, particularly in their commonly dry
habitats. In addition, rainfall improves soil moisture content, which is an important edaphic
variable for the pest to lay its eggs [11]. Moreover, temperature determines the movement
and migration rates of DLs over long distances and their feeding patterns and rate of
egg development [2,76–78]. Moreover, temperature and rainfall cumulatively generate
suitable conditions for DL reproduction and development. For instance, high rainfall and
warmer temperatures are conducive conditions for DL breeding [78]. Our results indicated
that the DL temperature tolerance range was within 20 ◦C–29.5 ◦C, and the geographical
distribution suitability decreased sharply beyond 30 ◦C. Further, annual precipitation at
an optimum range of approximately 175 mm–600 mm across the study area favored the
propagation and successful breeding of the DLs [2]. The anticipated extreme weather
events as a result of climate shifts would continue to influence the occurrence of this
pest at varied scales in breeding and invasive sites across the affected regions. Therefore,
our predictions in this study suggest that DL geographical coverage will decrease in the
future with the SSP5–8.5 climate scenario indicating a decrease of about 6.80% in habitat
coverage, which implies a significant spatial decrease of the suitable DL area in the future.
Although this may seem a positive result, conditions that limit the DL propagation also
limit the potential performance of crops, hence jeopardizing food and nutrition security.
On the other hand, the future high to very-high suitability regions for DL occurrence will
mostly be in areas of above-average rainfall that support significant vegetation growth,
providing suitable conditions for DL breeding and propagation [79–81]. Consequently,
these areas must be protected from both invasions as well as other adverse climatic food
production constraints if they are to be sustainably food and nutrition secure. Moreover,
in our vegetation dynamics analysis, most of the region showed considerable vegetation
greenness reduction with high densities of DL observations. This points to an indicator of
livelihood depression.



Earth 2023, 4 204

Furthermore, the predicted suitable DL habitats indicate a larger distribution range
compared to the known DL occurrence and attack localities within the region. This implies
that the coverage extends to remote areas that have not been surveyed to determine the
presence of the pest due to the inaccessibility and remoteness of the sites, which is why
this study utilized the robustness of Earth observation tools. This study thus provides an
in-depth understanding of the status of vegetation during similar DL attacks and how such
damage could affect livelihoods, especially in the marginalized regions across the entire
DL occurrence and invasion range [14,76].

Overall, this study used multi-date S2 NDVI data to assess vegetation change as a
function of DL damage. This approach is similar to what other earlier studies have used to
investigate vegetation health [55,67,82,83]. Although in this study our modelling approach
relied on climatic factors to inform the DL habitat distribution, future studies could also
benefit from integrating other variables under current climatic conditions, such as wind
speed and vegetation, for instance, NDVI and other vegetation dynamics. Despite the
immense strengths provided by the S2, such as repetitive data coverage every five days and
spatial resolution of 10 m, the use of higher resolution imagery such as WorldView-3 and
RapidEye data could make it possible to discern finer and more subtle vegetation changes
with less atmospheric contamination. Our findings can guide the establishment of priority
zones for DL management, hence site-specific deployment of control options. Similarly, our
study provides an assessment of vegetation productivity reduction due to DL invasion in
the study area, which can be upscaled to other areas of potential DL invasion and upsurge
in the central, western, and eastern regions in Africa. Furthermore, our study shows that
DL invasion remains disastrous, and it can contribute to food insecurity and malnutrition
in the invasion countries. Moreover, this study demonstrated the potential applicability of
machine learning geospatial modelling techniques for assessing DL invasion and vegetation
damage to a broader extent. This could cover both DL frontline and invasion countries
in northern, central, western, and eastern Africa and beyond under current and projected
climate shifts to contribute to the understanding of the global food and nutrition insecurity
drivers. Notwithstanding, one of the limitations of our geospatial modelling approach is
that we did not consider the inclusion of some relevant ecological variables to DL invasion,
such as wind speed and direction and vegetation dynamics, in our models. In addition,
invasion of DLs could depend on other geopolitical variables that might be difficult to
simulate and predict.

5. Conclusions

This study demonstrated that the DL invasion has the potential to damage vegetation
at the spatiotemporal scale. This severely impacts croplands and pasturelands, which in
turn limits access to food in marginalized regions vulnerable to DL attack and invasion.
Furthermore, future climate change will influence the geographical distribution of DLs,
posing immense threats to new areas that are currently unsuitable for the development
and survival of the DL species. The results demonstrated that the predicted distribution of
suitable habitat for DLs is larger, with high suitability concentrating in areas of relatively
higher rainfall. Therefore, continuous DL outbreak monitoring should be enhanced to
provide timely and reliable information to help control operations and restrict their distur-
bance on marginalized communities’ livelihoods in affected areas. So, this study provides
potential DL invasion risk and vegetation damage in one of the key upsurge areas. Our
approach could be extended to other locations within the migratory path of DLs. The study
outputs could be integrated into the control and management plans that are currently used
to inform surveillance and control operations of the pest for both current and potential
future incidences. Concerned international institutions, local governments, and decision
makers could use the information generated by this study as a baseline to inform early
warning of the pest outbreak and estimate the impacts on food and nutrition security and
access in various livelihood zones in the county.
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