
Citation: Plocoste, T.; Sankaran, A.

Multiscale Correlation Analysis

between Wind Direction and

Meteorological Parameters in

Guadeloupe Archipelago. Earth 2023,

4, 151–167. https://doi.org/

10.3390/earth4010008

Academic Editor: Charles Jones

Received: 30 January 2023

Revised: 23 February 2023

Accepted: 27 February 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Multiscale Correlation Analysis between Wind Direction and
Meteorological Parameters in Guadeloupe Archipelago
Thomas Plocoste 1,2,* and Adarsh Sankaran 3

1 Department of Research in Geoscience, KaruSphère SASU, Guadeloupe (F.W.I.), 97139 Abymes, France
2 LaRGE Laboratoire de Recherche en Géosciences et Energies (EA 4935), University of the Antilles,

97100 Pointe-à-Pitre, France
3 TKM College of Engineering Kollam, Kerala 691005, India
* Correspondence: thomas.plocoste@karusphere.com

Abstract: In this paper, the wind direction (WD) behaviour with respect to the variability of other
meteorological parameters (i.e., rainfall (R), temperature (T), relative humidity (Rh), solar radiation
(SR) and wind speed (U)) was studied in a multi-scale way. To carry out this study, the Hilbert–
Huang transform (HHT) framework was applied to a Guadeloupe archipelago dataset from 2016 to
2021. Thus, the time-dependent intrinsic correlation (TDIC) analysis based on multivariate empirical
mode decomposition (MEMD) was performed. For time scales between ∼3 days and ∼7 months,
the localized positive and negative correlations between WD and the meteorological parameters
have been identified. The alternation between these correlations was more significant for T and Rh.
With regard to SR and U, there was a dominance of a negative correlation with WD. We assumed
that the micro-climate previously identified in the literature for the study area plays a key role in
these behaviours. A strong positive correlation between WD and R was found from ∼7 months to
∼2.5 years. At the annual scale, the relationships between WD and all meteorological parameters
were long range and no significant transition in correlation was observed showing the impact of the
Earth’s annual cycle on climatic variables. All these results clearly show the influence of R-T-Rh-SR-U
on WD over different time scales.
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1. Introduction

Nowadays, waste management is a worldwide societal issue [1–4]. In insular contexts,
waste management is a main problem due to the lack of space. Open landfills are often
located in the heart of agglomerations [5,6]. Apart from the nauseating odours emitted by
these storage centres, the atmospheric pollutants emitted by this municipal solid waste may
have a significant health impact on the neighbouring populations [7–9]. In a place where
there are many micro-climates, it is crucial to better understand the fate of these pollutants.

In the literature, it is well known that meteorological parameters play an important
role in pollutant dilution, diffusion, advection and transformation [10–12]. The wind is
a preponderant climatic variable in these processes. Studies on wind speed behaviour
are highly significant, because strong winds allow the dispersion of air pollutants in the
atmospheric boundary layer, while calm winds promote its stagnation [13–18]. Neverthe-
less, wind direction is also a key feature as it determines the path of pollutants. In the air
pollution field, the behaviour of wind direction is usually studied using statistical meth-
ods [19–24]. Although these studies provide information on the statistical behaviour of this
parameter, its dynamics are not taken into account. Indeed, the results of these works are
based only on a single time scale and might not necessarily reflect the features of wind direc-
tion time series over several scales [25,26]. To our knowledge, no study has yet investigated
the relationship between wind direction and other meteorological parameters using the
Hilbert–Huang transform (HHT) framework. For the first time, the coupled multivariate
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empirical mode decomposition (MEMD) [27] and time-dependent intrinsic correlation
(TDIC) framework [28] are used to analyse the teleconnection between wind direction
and rainfall, temperature, relative humidity, solar radiation and wind speed. The aim
of this study was to analyse wind direction behaviour according to the aforementioned
meteorological parameters over several time scales.

2. Materials and Methods
2.1. Study Area and Data Description

The Guadeloupe archipelago (16.25◦ N−61.58◦ W) is a French West Indies island
located in the middle of the Lesser Antilles in the Caribbean basin. With an area of
∼1800 km2 and a population of 390,250 inhabitants [29], this island experiences a tropical
rainforest climate (“Af”) according to the Köppen–Geiger classification [30]. The study area
is in the centre of Guadeloupe (Figure 1) where the topography is nearly flat and concrete
buildings do not exceed four floors. The main open landfill of the island (LF in Figure 1)
is in the same location [31]. Embedded in a mangrove area that surrounds it, the LF is
sandwiched between the mangrove and a densely urbanized area [5,6]. This area is the
most populated area of Guadeloupe [15].

Figure 1. Map of the Guadeloupe archipelago with the locations of Météo France (MF) indicated by
a black triangle and the biggest open landfill (LF) site indicated by a red circle. The arrows highlight
the trade wind direction.

The meteorological measurements (i.e., rainfall (R), temperature (T), relative humidity
(Rh), solar radiation (SR), wind speed (U) and wind direction (WD)) were carried out by
Météo France (https://meteofrance.gp/fr, 30 January 2023, MF in Figure 1) in the study
area on the international airport of Les Abymes (16.2630◦ N −61.61.5147◦ W). In order
to study the relationship between WD and the other meteorological parameters, a daily
database was available from 2016 to 2021, i.e., 1827 points per time series. To guarantee the
validity of the data, the latter were previously pre-processed by MF. In Figure 1, we can
observe that LF and MF are close. Classically, the prevailing wind in the Caribbean basin
comes from the east (∼90◦), i.e., the trade wind. As WD exhibits huge fluctuations over
time due to many factors such as topography [32], the predominant WD of each day was
used in our analysis for a better understanding of its multi-scale behaviour.

https://meteofrance.gp/fr
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2.2. Multi-Scale Multidimensional Correlation Analysis
2.2.1. MEMD

Within 25 years of its introduction, HHT has gained wide popularity for the spectral
analysis of non-linear and non-stationary time series data [33]. It is a purely data adaptive
method, which can produce physically meaningful representations of time series data. This
method does not require a priori selection of functions, but instead it decomposes the signal
into intrinsic oscillation modes derived from the succession of extrema. The HHT involves
two major steps (i), the use of the empirical mode decomposition (EMD) method or its
variants, such as the ensemble EMD (EEMD), or the complete EEMD with adaptive noise
(CEEMDAN) [34,35], to decompose a time series into a collection of orthogonal time series,
namely, intrinsic mode functions (IMFs), and a final residue; (ii) the use of Hilbert spectral
analysis (HSA) to obtain the instantaneous frequency which may be helpful to identify
embedded structures of the time series data.

The EMD method decomposes a time series into a set of zero mean components and
a final residue, each with specific periodicity. The decomposition is carried out based on
the physical time scales that characterize the oscillations of the phenomena [36]. Different
non-stationary oscillation processes controlling the variables are governed by the IMFs
of the EMD [37]. In a broad sense, comparing the periodicity of the modes with that of
the driving factors governs the basis of teleconnection studies [38,39]. For such studies on
geophysical time series, the meteorological factors or large-scale climatic oscillations are
often considered as predictors. The residue shows the long-term inherent trend of the time
series and a comparison between the residue components of the variables and governing
factors are likely to be well correlated [40]. The trend is an intrinsically fitted monotonic
function or a function in which there can be at most one extremum within a given data
span [41]. In this study, the trend represents the changes or alternations in the most likely
magnitude of the wind direction throughout time.

The EMD or its variants work well for single time series data at a time and it may
result in a different number of data modes adaptively, based on data complexity. This may
impose difficulties in developing hybrid decomposition models [42,43] and a decomposition
method, which can result in an equal number of modes being a viable option in multi-
scale correlation studies, especially when multiple time series are involved. Multivariate
EMD, proposed by Rehman and Mandic [27], is an extension of the traditional EMD,
which decomposes multiple time series simultaneously after identifying the common
scales inherent in different time series of concern. In this method, multiple envelopes
are produced by taking projections of multiple inputs along different directions in an
m-dimensional space.

Assuming V(t) = {v1(t), v2(t) . . . vm(t)} being the m vectors as a function of time t,
and Xφk = {xk

1, xk
2, . . . , xk

m} denoting the direction vector along different directions given
by angles φk = {φk

1, φk
2, . . . , φk

m−1} in a direction set X (k = 1, 2, 3, . . . K, where K is the total
number of directions). It can be noted that the rotational modes appear as the counterparts
of the oscillatory modes in EMD or its variants. The IMFs of m temporal datasets can be
obtained by the following steps:

1. A suitable set of direction vectors are generated by sampling on a (m − 1) unit
hyper-sphere;

2. The projection of the dataset Pφk (t) are calculated along the direction vector Xφk for
all k;

3. Temporal instants tφk
i are identified corresponding to the maxima of projection for all k;

4. [tφk
i , V(tφk

i )] is interpolated to obtain multivariate envelope curves eφk(t) for all k;
5. The mean of envelope curves (M(t)) is calculated by M(t) = 1

k ∑k
k=1 eφk (t);

6. The “detail” D(t) is extracted using D(t) = V(t)−M(t). If D(t) fulfils the stoppage
criterion for a multivariate IMF, the above procedure from step (1) onwards is applied
upon the residue series (i.e., V(t)− D(t)). Otherwise, steps from (2) onwards are
repeated upon the series D(t).
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The Hammersley sampling sequence can be used for the generation of direction
vectors [44] and the stoppage criteria proposed for the EMD (i.e., the sum squared difference
between the deviations of the mode from the mean signal in two consecutive iterations
should be less than a specified tolerance) can be used in the implementation of the MEMD.

2.2.2. HSA

In the HSA, firstly the IMF(t) is convoluted with the function g(t) = 1
πt to obtain

HT. As the function is a non-integrable one, the Cauchy principal value (PV) is considered
instead of finding HT, in the following form [45]:

H[IMF(t)] = PV
∫ +∞

−∞
IMF(τ)g(t− τ)dτ (1)

=
1
π

PV
∫ +∞

−∞

IMF(τ)
t− τ

dτ (2)

= − 1
π

lim
τ→0

∫ +∞

−∞

IMF(t + τ)− IMF(t− τ)

τ
dτ (3)

Hence, any signal (X(t)) can be represented by combining IMF(t) and its HT as
follows:

X(t) = IMF(t) + iZ(t) = A(t)eiθ(t) (4)

where i =
√
−1, A(t) is the amplitude, and θ(t) is the phase angle, which are defined as:

A(t) =
√

IMF2(t) + Z2(t) (5)

θ(t) =
Z(t)

IMF(t)
(6)

In HSA, the amplitude and phase angle are both functions of time. Therefore in
HSA, the plot between instantaneous frequency (IFs) and time depicting the variation of
instantaneous amplitude (IAs) provide the Hilbert spectrum. IF can be computed as:

ω(t) =
dθ(t)

dt
(7)

The Hilbert spectrum can be developed for individual IMFs in the form:

H(ω, t) = H[ω(t), t] = {Ai(t) on the curve [ω(t), t] : t ∈ R} (8)

where i = 1, 2, . . . , N is the index of IMFs.

2.2.3. TDIC

In the MEMD–TDIC framework, multiple variables are decomposed into different
time scales in a single step operation. It is noteworthy to mention that in TDIC, the data
adaptive selection of optimal window size is followed, keeping the stationarity of the data
within the window. To ensure this, the size of the sliding window is fixed based on the
instantaneous period (IT) (computed by HT of IMFs). The different steps involved in the
MEMD-TDIC analysis are:

1. All time series data are decomposed using MEMD;
2. The periodicities of the IMFs of the two time series of concern are compared and the

IMFs with nearly same mean periodicity are selected;
3. The ITs of both IMFs (of similar scale) are identified by HT;
4. The minimum sliding window size (td) is identified as the maximum of ITs between

the two signals at the current position tk, i.e., td = max(T1,i(tk), T2,i(tk));
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5. The sliding window is then fixed as tn
w = [tk − ntd

2 : tk +
ntd
2 ] where n is any positive

number (a multiplication factor for minimum sliding window size). In general, n is
selected as 1 [46];

6. IMF1 and IMF2 are given as two IMFs of nearly the same mean period pertaining
to two different time series. The TDIC of the pair of IMFs can be found out as
Ri(tn

k ) = Corr(IMF1,i(tn
w), IMF2,i(tn

w)) at any tk, where Corr is the correlation coeffi-
cient of two time series;

7. Student’s t-tests are performed to investigate whether the difference between the
correlation coefficient Ri(tn

k ) and zero is statistically significant or not;
8. Steps 4 to 7 are repeated iteratively till the boundary of the sliding window exceeds

the end points of the time series.

The end result of the TDIC analysis will be in a matrix form, based on which the TDIC
plot is developed. A triangular shaped plot depicting the correlations at different time
instants and under different time scales is obtained from the analysis. The bottom contour
of the triangular plots depicts IFs and hence a shift of the plots to larger time scales can be
noticed in higher order IMFs (i.e., of low-frequency modes). The TDIC method has gained
popularity in performing multi-scale correlation analysis between teleconnected time series
from different fields [32,46–49]. In this research, the HHT and TDIC methods are employed
to understand the teleconnection between the hydroclimatic time series. Figure 2 shows
a flowchart summarizing the complete framework of the multi-scale multidimensional
correlation analysis.

Figure 2. Framework of the multi-scale multidimensional correlation analysis.

3. Results and Discussion
3.1. MEMD Analysis

Before performing the TDIC analysis, first we applied the multi-scale decomposition
using the MEMD frameworl. In Figures 3 and 4, all time series data were decomposed
into 11 IMFs and one residue. The first IMF mode represents the fast fluctuations, while
the last mode represents the slowest fluctuations, i.e., an increase in the time scale with
the mode index [50,51]. At first glance, we can notice that some residues, i.e., the overall
trend of the time series, seem to exhibit the same behaviour over time: a decrease for R-Rh,
an increase for T-SR-WD and a mixture of both for U. The amplitude of these residues
vary on small ranges showing that the changes in climatic regimes from one year to the
next are not significant [52].
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Figure 3. Results of the decomposition of different variables using the MEMD analysis for (a) rainfall
(R); (b) temperature (T) and (c) relative humidity (Rh).

Figure 4. Results of the decomposition of different variables using the MEMD analysis for (a) solar
radiation (SR); (b) wind speed (U) and (c) wind direction (WD).

3.2. Instantaneous Frequency of Meteorological Parameters (IMFs)

To quantitatively determine the physical meaning behind the MEMD method and
compare the IMFs, the mean periodicity of each IMF and their variability are presented in
Table 1 for all parameters. The mean period is computed by the zero crossing method [34].
The ratio of variance of a mode (IMF or residue) to the variance of the data series (expressed
in %) is computed as variability (V). Overall, the variability seems to decrease with
increasing time scales. At IMF9, we notice a sudden increase in the variability. This may
due to the impact of the Earth’s annual cycle [53] on different meteorological parameters.

Then, HHT is applied for each IMF of all the variables and IFs and IAs are computed.
The instantaneous frequency trajectories associated with the IMFs of different variables
are presented in different panels of time-frequency-amplitude (TFA) spectra shown in
Figures 5–10. In the TFA spectra, the colour scale indicates the distribution of amplitude (in
respective units). In general, the high amplitudes are noticed at very localized time instants
in high-frequency IMFs (up to weekly scale) to seasonal time scales of ∼4 months (IMF7).
The components of intra-seasonal to inter-annual periodicity are affected significantly by
high amplitude. The high amplitudes are present for a longer time in the TF spectra of the
IMFs of larger time scales of intra-seasonal periodicity. However, such spells pertaining
to different variables do not need to be at the same time instants, indicating that the
dominant contributor to the WD variability at different time spells may be different. Strong
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singularities in the form of abrupt changes in the IFs are noted in the TFA spectra of different
variables in the monthly to seasonal time scales (IMF5 to IMF7). However, the period of
occurrence of such abrupt shifts is also noted at different time instants, even though one of
such a shift around the year of 2018 is evident, in line with the peaks in the time series of
variables such as rainfall, relative humidity, wind speed and wind direction.

Table 1. Periodicity (T̄) and variability (V) obtained by the MEMD analysis for all parameters. LT is
for long term.

Rainfall Temperature Relative Humidity

Modes T̄ (Days) V (%) T̄ (Days) V (%) T̄ (Days) V (%)

IMF1 2.905 38.974 2.671 5.536 2.687 19.992
IMF2 4.885 20.720 4.872 5.000 4.978 16.638
IMF3 8.742 17.364 8.659 5.550 8.659 13.764
IMF4 16.459 8.236 15.887 2.911 16.917 9.980
IMF5 31.500 5.265 31.500 3.656 33.218 8.820
IMF6 60.900 2.547 57.094 1.584 60.900 3.796
IMF7 101.500 2.202 114.188 1.259 114.188 4.085
IMF8 203.000 0.776 203.000 12.268 203.000 5.074
IMF9 304.500 3.633 365.400 60.834 304.500 16.740
IMF10 609.000 0.130 913.500 1.260 609.000 1.039
IMF11 1827.000 0.004 913.500 0.005 1827.000 0.031

Residue LT 0.150 LT 0.139 LT 0.041

Solar radiation Wind speed Wind direction

Modes T̄ (Days) V (%) T̄ (Days) V (%) T̄ (Days) V (%)

IMF1 2.687 31.998 2.659 13.060 2.699 29.116
IMF2 4.885 15.998 4.911 14.761 4.885 18.601
IMF3 8.869 12.871 8.659 17.381 8.659 17.494
IMF4 17.075 9.077 16.761 15.065 16.917 10.567
IMF5 34.472 7.192 32.053 13.015 32.625 8.337
IMF6 60.900 2.249 63.000 5.008 60.900 3.432
IMF7 107.471 0.941 107.471 2.962 101.500 3.068
IMF8 228.375 4.901 203.000 3.214 182.700 2.666
IMF9 365.400 13.829 365.400 14.635 365.400 3.752
IMF10 913.500 0.547 913.500 0.685 913.500 1.121
IMF11 1827.000 0.011 1827.000 0.014 913.500 0.003

Residue LT 0.388 1827.000 0.200 LT 1.842

Figure 5. The time-Frequency -frequency-amplitude spectra of IMFs of rainfall.
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Figure 6. The time-frequency-amplitude spectra of the IMFs of temperature.

Figure 7. The time-frequency-amplitude spectra of the IMFs of relative humidity.

Figure 8. The time-frequency-amplitude spectra of the IMFs of solar radiation.

Figure 9. The time-frequency-amplitude spectra of the IMFs of wind speed.
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Figure 10. The time-frequency-amplitude spectra of the IMFs of wind direction.

In the study, three types of correlation analysis were performed (i), Pearson’s corre-
lation between the raw time series of meteorological variables with WD (ii), Pearson’s
correlation between the modes of variables and modes of WD series (iii), running correla-
tion between the modes of variables and modes of WD series at different scales. The overall
correlation between WD and the parameters are presented in Table 2. One can notice that
the correlations are not significant in any of the cases.

Table 2. Pearson’s correlation coefficients of the raw time series between wind direction (WD) and
rainfall (R), temperature (T), relative humidity (Rh), solar radiation (SR) and wind speed (U).

Parameters Pearson Correlation

WD vs. R 0.11
WD vs. T −0.04

WD vs. Rh 0.32
WD vs. SR −0.08
WD vs. U −0.29

To gain better insights into the association between meteorological variables and WD
at different time scales, Pearson’s correlations between the modes of variables and that of
WD are computed and presented in Table 3. In Table 3, the significant correlations between
WD and the other meteorological parameters (R-T-Rh-SR-U) are from IMF7 to IMF11,
i.e., for large time scales. Unlike the other parameters, there is no significant correlation
for the residual between U and WD. This seems to show that WD is less dependent on
U for the overall trend. The micro-climate of this area will therefore have a major impact
on WD behaviour. Indeed, since the study area is in the continental island regime of the
island, the trade winds speed (U) will be highly dependent on thermal convection during
the day and ground cooling during the night. Consequently, WD behaviour will be also
strongly impacted [54].
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Table 3. Correlation between the modes of wind direction and the modes of rainfall, temperature,
relative humidity, solar radiation and wind speed. Significant correlations at the 5% level are marked
in bold.

Rainfall

Wind Direction IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 Residue

IMF1 0.085 −0.003 −0.009 0.003 −0.009 −0.008 −0.015 −0.003 −0.006 −0.005 −0.004 0.006
IMF2 −0.004 0.166 0.023 −0.004 −0.006 0.006 −0.001 0.011 −0.003 −0.003 −0.001 0.002
IMF3 −0.008 0.004 0.101 0.021 0.000 −0.015 −0.006 −0.001 −0.007 −0.004 −0.005 0.010
IMF4 0.003 0.000 −0.016 −0.050 0.040 0.003 0.004 −0.003 −0.016 −0.017 −0.011 −0.019
IMF5 0.012 −0.015 0.016 −0.007 −0.050 0.047 0.010 0.022 0.002 0.017 0.000 0.006
IMF6 −0.009 −0.020 0.021 0.015 −0.045 0.023 0.038 0.045 −0.002 −0.020 −0.019 0.007
IMF7 −0.010 −0.007 −0.019 −0.008 −0.016 0.009 0.288 0.054 −0.066 0.031 0.044 −0.008
IMF8 −0.004 −0.006 −0.007 0.007 0.028 0.056 0.178 0.690 −0.104 0.036 0.041 0.144
IMF9 −0.038 0.004 0.000 0.009 0.016 0.031 −0.071 −0.006 0.744 0.115 0.038 0.056
IMF10 −0.018 −0.002 0.009 0.003 0.007 0.026 −0.024 0.014 0.233 0.816 0.664 −0.014
IMF11 −0.018 −0.001 0.012 −0.002 0.001 −0.002 −0.051 −0.004 0.184 0.765 0.880 −0.318
Residue 0.004 −0.005 −0.015 0.015 0.007 −0.004 0.048 −0.047 −0.097 −0.007 0.228 −0.993

Wind direction Temperature

IMF1 −0.153 0.012 0.020 −0.027 0.008 0.011 0.023 0.011 −0.002 0.012 0.009 0.008
IMF2 0.003 −0.204 −0.057 0.000 0.005 −0.008 0.012 −0.013 0.005 −0.007 −0.009 0.012
IMF3 0.020 −0.039 −0.228 −0.045 −0.009 −0.005 0.017 −0.001 −0.002 0.000 −0.001 0.003
IMF4 0.002 0.011 −0.006 −0.186 −0.008 0.030 0.015 −0.004 −0.001 0.015 0.019 0.015
IMF5 0.013 0.015 −0.001 −0.074 −0.188 0.007 0.018 −0.002 0.004 −0.018 −0.005 −0.027
IMF6 0.006 −0.005 0.004 0.002 0.059 −0.245 −0.078 0.046 −0.027 0.023 0.016 −0.005
IMF7 0.003 −0.004 0.003 0.003 0.019 −0.022 0.505 0.088 0.003 −0.019 −0.002 −0.007
IMF8 0.020 −0.002 0.002 0.013 0.018 −0.004 0.171 −0.059 −0.225 0.038 0.134 0.044
IMF9 −0.019 0.001 0.003 −0.008 0.022 0.080 −0.039 −0.023 0.117 −0.004 0.028 0.001
IMF10 −0.012 −0.005 −0.002 −0.016 0.009 0.036 −0.018 0.001 0.134 0.776 0.780 −0.162
IMF11 −0.005 −0.007 −0.007 −0.016 0.010 0.048 −0.003 −0.026 0.028 0.630 0.721 −0.147
Residue −0.003 0.002 0.010 −0.013 −0.004 0.015 −0.054 0.031 0.076 0.002 −0.197 0.941

Wind direction Relative humidity

IMF1 0.199 −0.004 −0.008 0.014 −0.007 0.005 −0.021 0.004 0.005 −0.012 −0.011 0.002
IMF2 0.014 0.386 0.057 −0.004 −0.001 0.002 −0.004 0.012 −0.004 0.002 0.000 0.003
IMF3 −0.016 0.041 0.304 0.063 −0.009 −0.004 0.007 0.018 −0.007 0.002 0.002 0.012
IMF4 0.000 −0.006 0.029 0.345 0.081 −0.007 −0.016 0.014 0.002 −0.021 −0.013 −0.029
IMF5 0.007 −0.013 0.012 0.045 0.200 0.088 0.004 0.016 0.009 0.017 0.004 0.019
IMF6 0.007 −0.004 0.005 0.009 −0.012 0.151 0.155 0.017 0.010 0.017 0.015 −0.003
IMF7 −0.013 −0.004 −0.012 −0.008 0.001 0.011 0.454 0.084 −0.063 −0.001 0.016 −0.017
IMF8 −0.004 −0.003 −0.013 0.007 0.003 0.007 0.055 0.398 0.123 0.003 −0.061 0.119
IMF9 −0.033 0.001 0.001 0.011 0.015 0.039 −0.068 0.030 0.760 0.111 0.015 0.093
IMF10 −0.004 −0.010 0.001 0.017 0.007 0.075 −0.011 −0.014 0.042 0.107 0.022 0.010
IMF11 −0.017 −0.003 0.009 −0.002 0.002 0.003 −0.051 −0.016 0.165 0.753 0.889 −0.309
Residue 0.003 −0.010 −0.025 0.015 0.012 0.023 0.020 −0.073 −0.119 0.001 0.271 −0.894
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Table 3. Cont.

Rainfall

Wind Direction IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 Residue

Wind direction Solar radiation

IMF1 −0.056 −0.002 0.014 −0.012 0.006 0.008 0.007 0.001 0.007 0.006 0.008 −0.010
IMF2 0.007 −0.128 −0.026 0.003 0.001 −0.006 −0.009 −0.008 0.001 −0.004 −0.002 −0.007
IMF3 0.003 −0.008 −0.093 0.002 −0.006 0.000 0.004 −0.004 0.002 0.013 0.013 −0.002
IMF4 0.002 0.007 0.004 −0.015 −0.005 0.005 −0.003 −0.008 0.013 0.009 0.003 0.006
IMF5 −0.002 −0.001 −0.022 0.051 0.152 0.008 0.004 0.017 −0.023 −0.006 0.006 −0.018
IMF6 0.006 0.010 −0.009 −0.016 0.059 0.202 −0.071 0.026 −0.043 −0.001 0.009 0.000
IMF7 0.007 −0.002 0.005 0.018 −0.001 −0.031 −0.349 −0.144 0.023 −0.010 −0.018 0.007
IMF8 0.013 0.005 0.005 −0.010 0.010 −0.049 0.048 −0.270 −0.261 0.000 0.089 −0.047
IMF9 0.005 −0.001 −0.002 −0.005 0.015 0.066 −0.004 −0.030 −0.533 −0.047 −0.008 −0.063
IMF10 0.000 −0.008 −0.020 −0.002 0.014 0.051 0.007 −0.014 −0.015 0.215 0.171 −0.203
IMF11 0.017 −0.002 −0.017 −0.002 0.003 0.026 0.048 −0.003 −0.183 −0.612 −0.707 0.254
Residue −0.004 0.004 0.013 −0.014 −0.006 0.008 −0.050 0.040 0.087 −0.003 −0.224 0.977

Wind direction Wind speed

IMF1 −0.085 0.012 0.007 −0.025 0.001 0.012 0.002 0.011 −0.010 0.008 0.013 0.004
IMF2 0.000 −0.096 −0.066 −0.002 0.002 −0.009 0.000 −0.006 0.005 0.009 0.010 −0.006
IMF3 0.021 −0.035 −0.294 −0.058 −0.030 −0.014 0.000 −0.014 −0.010 −0.015 −0.014 −0.004
IMF4 −0.006 0.011 −0.012 −0.465 −0.014 0.039 0.024 −0.009 −0.018 0.013 0.011 0.011
IMF5 0.005 0.000 0.010 −0.098 −0.489 −0.065 −0.002 0.002 0.009 −0.018 −0.018 −0.019
IMF6 −0.003 −0.009 0.016 0.019 −0.061 −0.480 −0.093 −0.066 −0.011 −0.001 −0.009 0.002
IMF7 0.003 0.001 −0.006 0.018 −0.026 −0.097 −0.265 −0.076 −0.022 0.031 0.015 0.020
IMF8 0.001 −0.002 0.001 −0.008 −0.035 −0.006 −0.039 −0.383 −0.111 0.026 0.084 −0.080
IMF9 0.022 0.000 −0.006 −0.011 −0.004 0.042 0.041 −0.003 −0.749 −0.104 −0.029 −0.060
IMF10 −0.003 0.014 0.018 −0.008 −0.013 −0.086 0.012 0.049 0.083 0.065 0.023 0.059
IMF11 0.007 0.009 0.010 0.008 −0.010 −0.044 0.027 0.048 −0.025 −0.532 −0.675 0.157
Residue −0.001 0.008 0.018 −0.001 −0.009 −0.047 0.046 0.042 0.055 0.089 0.056 −0.256

3.3. TDIC Analysis

The Pearson’s correlations between the modes of meteorological variables and WD
showed that high correlations are noted only at low-frequency modes. However, it is
worth mentioning that in the computation of the overall correlation between the modes,
the complete data length is considered. The reasons behind low correlation between
the modes in the high-frequency scale must be investigated in detail. However, in the
process of the complex behaviour of WD controlled by many local meteorological variables,
one cannot conclude that the same low-magnitude correlation will be preserved over the
complete period of observation. On the other hand, the correlation may be very strong
(positive or negative) at some of the localized time spells and very weak in some other
spells in some of the time scales. The effect of positive correlation in some time spells
might be nullified because of the negative correlation with other spells. Moreover, it is
found that the overall correlation of the different variables with WD is very small (Table 2).
Furthermore, even if the overall correlation in some scales is strongly positive (or negative),
its influence will be cancelled due to strong negative (or positive) correlations at other
scales, leading to an overall low correlation between the raw time series. Therefore, it is very
important to find the localized correlations, for which a running correlation method should
be used. Therefore, to analyse the localized correlations between WD and SR-T-Rh-R-U
over time, a TDIC analysis was performed. The TDIC analysis creates a graphic triangle,
where the vertical axis is the sliding window size and the horizontal axis represents the
centre position of the sliding window. The minimum size of the sliding window is the
maximum instantaneous period between WD and the other meteorological parameters,
whereas the maximum window size is the entire time range [55]. The colour bar indicates
the correlation intensity between the studied variables, i.e., red and blue highlight the
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positive and negative correlations, respectively. White regions in the triangle indicate
statistical insignificance when the correlations do not pass the Student’s t-test. Hence,
the correlation is not statistically significant [28].

Overall, fom Figures 11–15, one can notice there were localized positive and negative
correlations between WD and the meteorological parameters from IMF1 (∼3 days) to
IMF8 (∼7 months). The transitions in the correlation are more frequent with T and Rh
(Figures 12 and 13), implying that the local meteorology may have a strong interaction with
these variables to determine WD behaviour. This can be explained by the impact of the
urban heat island (UHI) previously identified in the study area by Plocoste et al. [54] which
generates an urban breeze in the evening allowing the transportation of volatile organic
compounds (VOCs) emitted by LF to the urban areas opposite to the flow of the trade
winds, i.e., to the west [31,54]. This urban breeze may explain the dominance of negative
associations between WD and U in Figure 15. During this event, the UHI can reach 6 ◦C
and generate a breeze of 1 m/s [54]. The cold and moist air coming from the mangrove will
be loaded with air pollutants while passing over the LF and then cool T of the contiguous
urban areas. The authors assume that this will also increase the humidity of these areas.

In Figure 11, there is also a dominance of negative correlation between WD and SR.
This may be due to the impact of the diurnal cycle on the atmospheric boundary layer
behaviour [56]. During the day, the mixed layer is at its maximum height, allowing the trade
wind to establish itself in the study area. In the evening, the radiative cooling of the ground
pushes the trade wind above the nocturnal boundary layer allowing the establishment of
the urban breeze in the surface layer, thus changing WD behaviour.

From Figures 11–15, the relationships are long range, consistent and no transition in
the correlation was noticed at IMF9, i.e., annual scale. These results dynamically show the
impact of the Earth’s annual cycle [53] which tends to homogenize the interactions between
the meteorological parameters. IMF8 (∼7 months) to IMF10 (∼2.5 years) in Figure 14, R
display a strong positive correlation with the IMFs of WD. R is the only variable that shows
a strong positive correlation with WD on three consecutive time scales. As heavy rains
and cyclones can cause micro-bursts that modify WD behaviour [57], we assume that these
three large scales may correspond to periods without extreme rainy events.

The multi-scale correlation analysis can be considered as one of the potential pre-
requisites for developing hybrid decomposition machine learning models for the prediction
of complex time series. In such a framework, the dominant predictors in different time
scales can be identified using TDIC-based multi-scale correlation analysis. Thereafter
predictions can be carried out for individual scales separately and final integration will
provide the prediction of wind direction. The framework is well-described and applied
for the prediction of geophysical series [43,50,58]. Thus, the study has great potential
for improving the predictability of wind direction, hence modelling the transportation of
air pollutants.

Figure 11. TDIC plots between solar radiation (SR) and wind direction (WD). The white spaces
imply that correlation is not significant at the 5% level.
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Figure 12. TDIC plots between temperature (T) and wind direction (WD). The white spaces imply
that correlation is not significant at the 5% level.

Figure 13. TDIC plots between relative humidity (Rh) and wind direction (WD). The white spaces
imply that correlation is not significant at the 5% level.

Figure 14. TDIC plots between rainfall (R) and wind direction (WD). The white spaces imply that
correlation is not significant at the 5% level.
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Figure 15. TDIC plots between wind speed (U) and wind direction (WD). The white spaces imply
that correlation is not significant at the 5% level.

4. Conclusions

Wind direction is a key parameter during pollutant transportation. In insular contexts,
there is a wide variety of meteorological contexts due to micro-climates. For the first
time in the literature, the coupled MEMD–TDIC has been used to study the dynamical
relationship between wind direction (WD) and other meteorological parameters (rainfall
(R), temperature (T), relative humidity (Rh), solar radiation (SR) and wind speed (U)) in a
multi-scale way.

Overall, localized positive and negative correlations between WD and the meteorolog-
ical parameters were identified from ∼3 days to ∼7 months. The alternation between these
correlations were more significant for T and Rh. For SR and U, there is a dominance of a
negative correlation with WD. We believe that the local micro-climate specific to the study
area may explain all these behaviours. From ∼7 months to ∼2.5 years, there is a strong
positive correlation between WD and R. We assume that these time scales correspond to a
period without extreme rainy events. It is important to underline that at the annual scale,
the relationships are of long range, consistent and no significant transition in correlation
was found between WD and all the meteorological parameters. This time scale shows the
influence of the Earth’s annual cycle on the behaviour of meteorological parameters.

The results obtained in this study clearly show the impact of R-T-Rh-SR-U on WD
over different time scales. Due to the small size of the Caribbean islands, these results are
crucial because they provide information on the impact of micro-climates on WD behaviour.
In order to develop predictive models for WD, the lagged influence of correlations also
needs to be studied. This will be the subject of our next study using the time-dependent
intrinsic cross correlation (TDICC) framework.
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