Development of Global Snow Cover—Trends from 23 Years of Global SnowPack
Abstract
:1. Introduction
- Are 23 years sufficient to detect significant trends in snow cover development?
- Is the comparatively small FAO data set with the aggregated major basin areas suitable to allow statements for hydrologically defined areas?
- In which areas (pixel and basin based) are trends identified?
2. Materials and Methods
2.1. Snow Cover Extent
- Daily combination: Merging the daily snow cover maps of Terra and Aqua (if both are available). Terra data are given preferential treatment, since channel 6, which is required for the NDSI calculation, does not work with Aqua and band 7 is used here instead.
- Three-day interpolation: Gaps in the current day are filled with data from the following day, then with data from the previous day.
- Topographic interpolation: If the cloud cover of the land pixels in each tile is below 30%, the absolute upper snow line (altitude level above which only snow occurs) and the absolute lower snow line (altitude level below which only snow-free pixels occur) are determined with a digital elevation model. Pixels with altitudes above the absolute upper snow line are classified as snow, and pixels with altitudes below the absolute lower snow line as snow-free.
- Seasonal interpolation: In the last step, the remaining gaps are filled by a temporal interpolation over the previous days. The number of days to fill is stored in a separate array and is used for accuracy estimation.
2.2. Snow Cover Duration
2.3. Selection of Major Basins
2.4. Trend Analysis
3. Results
3.1. Pixel-Based Analysis
3.1.1. Pixel-Based SCD Trend for March (03)
3.1.2. Pixel-Based SCD Trend for April (04)
3.1.3. Pixel-Based SCD Trend for November (11)
3.1.4. Pixel-Based SCD Trend for Boreal Spring (MAM)
3.1.5. Pixel-Based SCD Trend for Late Snow Season
3.2. Basin-Based Analysis
3.2.1. Basin-Based SCD Trend for March
3.2.2. Basin-Based SCD Trend for November
3.2.3. Basin-Based SCD Trend for Late Snow Season
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Period | CI 80% [Days/Year] (%) | CI 90% [Days/Year] (%) | CI 95% [Days/Year] (%) |
---|---|---|---|
01 | −0.12 (13%) | −0.18 (6%) | −0.23 (3%) |
02 | −0.09 (11%) | −0.12 (5%) | −0.14 (2%) |
03 | −0.16 (12%) | −0.22 (6%) | −0.27 (3%) |
04 | −0.10 (11%) | −0.17 (5%) | −0.22 (2%) |
05 | −0.05 (13%) | −0.07 (6%) | −0.07 (3%) |
06 | −0.09 (11%) | −0.16 (5%) | −0.24 (3%) |
07 | −0.01 (12%) | −0.01 (4%) | −0.01 (2%) |
08 | 0.00 (11%) | 0.00 (4%) | −0.00 (2%) |
09 | −0.02 (13%) | −0.04 (5%) | −0.05 (2%) |
10 | −0.07 (14%) | −0.11 (6%) | −0.14 (3%) |
11 | 0.03 (14%) | 0.04 (6%) | 0.03 (3%) |
12 | −0.12 (13%) | −0.17 (6%) | −0.22 (3%) |
SON | −0.04 (17%) | −0.07 (8%) | −0.11 (4%) |
DJF | −0.29 (15%) | −0.40 (7%) | −0.48 (4%) |
MAM | −0.20 (18%) | −0.28 (9%) | −0.35 (4%) |
JJA | −0.07 (16%) | −0.12 (7%) | −0.17 (4%) |
early | −0.14 (19%) | −0.18 (9%) | −0.22 (4%) |
late | −0.33 (21%) | −0.43 (11%) | −0.52 (6%) |
full | −0.44 (24%) | −0.57 (13%) | −0.69 (7%) |
Period | CI 80% [Days/Year] (N) | CI 90% [Days/Year] (N) | CI 95% [Days/Year] (N) |
---|---|---|---|
01 | −0.15 (15) | −0.13 (6) | −0.03 (2) |
02 | −0.03 (19) | −0.04 (6) | −0.01 (4) |
03 | −0.16 (28) | −0.20 (16) | −0.20 (10) |
04 | −0.10 (8) | −0.12 (6) | −0.19 (3) |
05 | 0.03 (15) | 0.04 (4) | 0.08 (2) |
06 | −0.03 (16) | −0.06 (7) | −0.11 (4) |
07 | 0.00 (18) | 0.01 (10) | 0.00 (9) |
08 | 0.00 (9) | 0.01 (4) | 0.01 (3) |
09 | 0.00 (14) | 0.02 (7) | 0.01 (6) |
10 | −0.03 (3) | −0.04 (2) | −0.04 (2) |
11 | −0.03 (23) | −0.08 (11) | 0.01 (5) |
12 | −0.17 (10) | −0.26 (6) | −0.22 (3) |
SON | −0.13 (14) | −0.23 (6) | −0.06 (2) |
DJF | −0.03 (11) | −0.09 (6) | −0.10 (5) |
MAM | −0.33 (14) | −0.33 (8) | −0.42 (5) |
JJA | 0.02 (8) | −0.10 (4) | 0.13 (1) |
early | −0.42 (9) | −0.51 (4) | −0.55 (1) |
late | −0.42 (15) | −0.42 (5) | −0.48 (4) |
full | −0.72 (12) | −1.02 (6) | −0.77 (3) |
References
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Pepe, M.; Brivio, P.A.; Rampini, A.; Nodari, F.R.; Boschetti, M. Snow cover monitoring in alpine regions using ENVISAT optical data. Int. J. Remote Sens. 2005, 26, 4661–4667. [Google Scholar] [CrossRef]
- Goodrich, L.E. The influence of snow cover on the ground thermal regime. Can. Geotech. J. 1982, 19, 421–432. [Google Scholar] [CrossRef][Green Version]
- GCOS, WMO. Systematic Observation Requirements for Satellite-Based Data Products for Climate—2011 Update; GCOS, WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Mankin, J.S.; Viviroli, D.; Singh, D.; Hoekstra, A.Y.; Diffenbaugh, N.S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 2015, 10, 114016. [Google Scholar] [CrossRef]
- Winkler, D.E.; Butz, R.J.; Germino, M.J.; Reinhardt, K.; Kueppers, L.M. Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Front. Plant Sci. 2018, 9, 1140. [Google Scholar] [CrossRef][Green Version]
- Elder, K.; Dozier, J.; Michaelsen, J. Snow accumulation and distribution in an alpine watershed. Water Resour. Res. 1991, 27, 1541–1552. [Google Scholar] [CrossRef][Green Version]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Painter, T.H.; Berisford, D.F.; Boardman, J.W.; Bormann, K.J.; Deems, J.S.; Gehrke, F.; Hedrick, A.; Joyce, M.; Laidlaw, R.; Marks, D.; et al. The airborne snow observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 2016, 184, 139–152. [Google Scholar] [CrossRef][Green Version]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K.; Robinson, D.A.; Peiji, L.; Meisheng, C. The use of microwave radiometer data for characterizing snow storage in Western China. Ann. Glaciol. 1992, 16, 215–219. [Google Scholar] [CrossRef][Green Version]
- Kelly, R.E.; Chang, A.T.; Tsang, L.; Foster, J.L. A prototype AMSR-e global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [Google Scholar] [CrossRef]
- Tsai, Y.L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Wet and dry snow detection using Sentinel-1 SAR data for mountainous areas with a machine learning technique. Remote Sens. 2019, 11, 895. [Google Scholar] [CrossRef][Green Version]
- Koehler, J.; Bauer, A.; Dietz, A.J.; Kuenzer, C. Towards forecasting future snow cover dynamics in the European Alps—The potential of long optical remote-sensing time series. Remote Sens. 2022, 14, 4461. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef][Green Version]
- Ackroyd, C.; Skiles, S.M.; Rittger, K.; Meyer, J. Trends in snow cover duration across river basins in high mountain asia from daily Gap-Filled MODIS fractional snow covered area. Front. Earth Sci. 2021, 9, 713145. [Google Scholar] [CrossRef]
- Malmros, J.K.; Mernild, S.H.; Wilson, R.; Tagesson, T.; Fensholt, R. Snow cover and snow Albedo changes in the central andes of Chile and Argentina from Daily MODIS Observations (2000–2016). Remote Sens. Environ. 2018, 209, 240–252. [Google Scholar] [CrossRef][Green Version]
- Saavedra, F.A.; Kampf, S.K.; Fassnacht, S.R.; Sibold, J.S. Changes in andes snow cover from MODIS data, 2000–2016. Cryosphere 2018, 12, 1027–1046. [Google Scholar] [CrossRef][Green Version]
- Xiao, L.; Che, T.; Chen, L.; Xie, H.; Dai, L. Quantifying snow albedo radiative forcing and its feedback during 2003–2016. Remote Sens. 2017, 9, 883. [Google Scholar] [CrossRef][Green Version]
- Zhou, H.; Aizen, E.; Aizen, V. Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sens. Environ. 2013, 136, 146–162. [Google Scholar] [CrossRef]
- Premier, V.; Marin, C.; Steger, S.; Notarnicola, C.; Bruzzone, L. A novel approach based on a hierarchical multiresolution analysis of optical time series to reconstruct the daily high-resolution snow cover area. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9223–9240. [Google Scholar] [CrossRef]
- Revuelto, J.; Alonso-González, E.; Gascoin, S.; Rodríguez-López, G.; López-Moreno, J.I. Spatial downscaling of MODIS snow cover observations using Sentinel-2 snow products. Remote Sens. 2021, 13, 4513. [Google Scholar] [CrossRef]
- Notarnicola, C. Overall negative trends for snow cover extent and duration in global mountain regions over 1982–2020. Sci Rep 2022, 12, 13731. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef][Green Version]
- Dietz, A.J.; Kuenzer, C.; Dech, S. Global SnowPack: A new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sens. Lett. 2015, 6, 844–853. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Aldred, F.; Gobron, N.; Miller, J.B.; Willett, K.M.; Ades, M.; Adler, R.; Allan, R.P.; Allan, R. Global climate. Bull. Am. Meteorol. Soc. 2021, 102, S11–S142. [Google Scholar] [CrossRef]
- Rößler, S.; Witt, M.S.; Ikonen, J.; Brown, I.A.; Dietz, A.J. Remote sensing of snow cover variability and its influence on the Runoff of Sápmi’s Rivers. Geosciences 2021, 11, 130. [Google Scholar] [CrossRef]
- Brown, R.D.; Smith, C.; Derksen, C.; Mudryk, L. Canadian in situ snow cover trends for 1955–2017 including an assessment of the impact of automation. Atmos. Ocean 2021, 59, 77–92. [Google Scholar] [CrossRef]
- Atif, I.; Iqbal, J.; Mahboob, M. Investigating snow cover and hydrometeorological trends in contrasting hydrological regimes of the Upper Indus Basin. Atmosphere 2018, 9, 162. [Google Scholar] [CrossRef][Green Version]
- Blahušiaková, A.; Matoušková, M.; Jenicek, M.; Ledvinka, O.; Kliment, Z.; Podolinská, J.; Snopková, Z. Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe. Hydrol. Sci. J. 2020, 65, 2083–2096. [Google Scholar] [CrossRef]
- Desinayak, N.; Prasad, A.K.; El-Askary, H.; Kafatos, M.; Asrar, G.R. Snow cover variability and trend over the Hindu Kush Himalayan Region using MODIS and SRTM data. Ann. Geophys. 2022, 40, 67–82. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L. An observation-based formulation of snow cover fraction and its evaluation over large north american river basins. J. Geophys. Res. 2007, 112, D21101. [Google Scholar] [CrossRef]
- Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N. GlobWat—A Global Water Balance Model to Assess Water Use in Irrigated Agriculture. Hydrol. Earth Syst. Sci. 2015, 19, 3829–3844. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Lv, A. Identification and diagnosis of transboundary river basin water management in china and neighboring countries. Sustainability 2022, 14, 12360. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Normalized-Difference Snow Index (NDSI). In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 779–780. ISBN 978-90-481-2641-5. [Google Scholar]
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover 5-Min L2 Swath 500m, Version 61; National Snow and Ice Data Center: Boulder, CO, USA, 2021; Digital media.
- Hall, D.K.; Riggs, G.A. MODIS/Aqua Snow Cover 5-Min L2 Swath 500m, Version 61; National Snow and Ice Data Center: Boulder, CO, USA, 2021; Digital media.
- Snyder, J.P. Map Projections–a Working Manual. Washington, DC: United States Government Printing Office. US Geol. Surv. Prof. Pap. 1987, 1395, 96. [Google Scholar]
- Riggs, G.A.; Hall, D.K.; Salomonson, V.V. A snow index for the landsat thematic mapper and moderate resolution imaging spectroradiometer. In Proceedings of the IGARSS ’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; IEEE: Pasadena, CA, USA, 1994; Volume 4, pp. 1942–1944. [Google Scholar]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- Li, X.; Jing, Y.; Shen, H.; Zhang, L. The recent developments in cloud removal approaches of MODIS snow cover product. Hydrol. Earth Syst. Sci. 2019, 23, 2401–2416. [Google Scholar] [CrossRef][Green Version]
- Fugazza, D.; Manara, V.; Senese, A.; Diolaiuti, G.; Maugeri, M. Snow cover variability in the greater alpine region in the MODIS era (2000–2019). Remote Sens. 2021, 13, 2945. [Google Scholar] [CrossRef]
- Dietz, A.J.; Wohner, C.; Kuenzer, C. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sens. 2012, 4, 2432–2454. [Google Scholar] [CrossRef][Green Version]
- Wang, X.; Xie, H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS terra and aqua. J. Hydrol. 2009, 371, 192–200. [Google Scholar] [CrossRef]
- Dietz, A.; Conrad, C.; Kuenzer, C.; Gesell, G.; Dech, S. Identifying changing snow cover characteristics in Central Asia between 1986 and 2014 from remote sensing data. Remote Sens. 2014, 6, 12752–12775. [Google Scholar] [CrossRef][Green Version]
- Food and Agriculture Organization of the United Nations, FAO Land and Water Division. Major Hydrological Basins of the World. Available online: https://data.apps.fao.org/catalog//iso/7707086d-af3c-41cc-8aa5-323d8609b2d1 (accessed on 17 August 2022).
- Riggs, G.; Hall, D. Continuity of MODIS and VIIRS snow cover extent data products for development of an earth science data record. Remote Sens. 2020, 12, 3781. [Google Scholar] [CrossRef]
- Zou, Y.; Sun, P.; Ma, Z.; Lv, Y.; Zhang, Q. Snow cover in the three stable snow cover areas of china and spatio-temporal patterns of the future. Remote Sens. 2022, 14, 3098. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin Book Series; Oxford University Press: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hussain, M.; Mahmud, I. PyMannKendall: A python package for non parametric Mann Kendall family of trend tests. JOSS 2019, 4, 1556. [Google Scholar] [CrossRef]
- Arguez, A.; Durre, I.; Applequist, S.; Vose, R.S.; Squires, M.F.; Yin, X.; Heim, R.R.; Owen, T.W. NOAA’s 1981–2010 U.S. Climate normals: An overview. Bull. Am. Meteorol. Soc. 2012, 93, 1687–1697. [Google Scholar] [CrossRef]
- Jylhä, K.; Fronzek, S.; Tuomenvirta, H.; Carter, T.R.; Ruosteenoja, K. Changes in frost, snow and baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Clim. Chang. 2008, 86, 441–462. [Google Scholar] [CrossRef]
- Guo, L.; Xia, Z. Temperature and precipitation long-term trends and variations in the Ili-Balkhash Basin. Theor. Appl Clim. 2014, 115, 219–229. [Google Scholar] [CrossRef]
- Wang, H.; He, S. The increase of snowfall in Northeast China after the Mid-1980s. Chin. Sci. Bull. 2013, 58, 1350–1354. [Google Scholar] [CrossRef][Green Version]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Conrad, C. Snow-cover variability in Central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. Int. J. Remote Sens. 2013, 34, 3879–3902. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Liu, T. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products. J. Arid Land 2017, 9, 763–777. [Google Scholar] [CrossRef]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; DiGirolamo, N.E.; Román, M.O. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an earth science data record. Hydrol. Earth Syst. Sci. 2019, 23, 5227–5241. [Google Scholar] [CrossRef][Green Version]
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef][Green Version]
- Mattar, C.; Fuster, R.; Perez, T. Application of a cloud removal algorithm for snow-covered areas from daily MODIS imagery over Andes Mountains. Atmosphere 2022, 13, 392. [Google Scholar] [CrossRef]
- Choudhury, A.; Yadav, A.C.; Bonafoni, S. A Response of snow cover to the climate in the Northwest Himalaya (NWH) using satellite products. Remote Sens. 2021, 13, 655. [Google Scholar] [CrossRef]
- Thapa, A.; Muhammad, S. Contemporary snow changes in the Karakoram Region attributed to improved MODIS data between 2003 and 2018. Water 2020, 12, 2681. [Google Scholar] [CrossRef]
- Helbig, N.; van Herwijnen, A.; Magnusson, J.; Jonas, T. Fractional snow-covered area parameterization over complex topography. Hydrol. Earth Syst. Sci. 2015, 19, 1339–1351. [Google Scholar] [CrossRef][Green Version]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in snow, ice and frozen ground. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Swanson, D. Trends in greenness and snow cover in Alaska’s Arctic national parks, 2000–2016. Remote Sens. 2017, 9, 514. [Google Scholar] [CrossRef]
Period of Time | Start | End | Days | |
---|---|---|---|---|
01 | 1 January | 31 January | 31 | |
02 | 1 February | 28/29 February 1 | 28/29 1 | |
03 | 1 March | 31 March | 31 | |
04 | 1 April | 30 April | 30 | |
05 | 1 May | 31 May | 31 | |
06 | 1 June | 30 June | 30 | |
07 | 1 July | 31 July | 31 | |
08 | 1 August | 31 August | 31 | |
09 | 1 September | 30 September | 30 | |
10 | 1 October | 31 October | 31 | |
11 | 1 November | 30 November | 30 | |
12 | 1 December | 31 December | 31 | |
SON | 1 September | 30 November | 91 | |
DJF | 1 December | 28/29 February 1 | 90/91 1 | |
MAM | 1 March | 31 May | 92 | |
JJA | 1 June | 31 August | 92 | |
Early snow season | NH | 1 September | 14 January | 136 |
SH | 1 March | 14 July | ||
Late snow season | NH | 15 January | 31 August | 229/230 1 |
SH | 15 July | 28/29 February 1 | ||
Full snow season | NH | 1 September | 31 August | 365/366 1 |
SH | 1 March | 28/29 February 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roessler, S.; Dietz, A.J. Development of Global Snow Cover—Trends from 23 Years of Global SnowPack. Earth 2023, 4, 1-22. https://doi.org/10.3390/earth4010001
Roessler S, Dietz AJ. Development of Global Snow Cover—Trends from 23 Years of Global SnowPack. Earth. 2023; 4(1):1-22. https://doi.org/10.3390/earth4010001
Chicago/Turabian StyleRoessler, Sebastian, and Andreas Jürgen Dietz. 2023. "Development of Global Snow Cover—Trends from 23 Years of Global SnowPack" Earth 4, no. 1: 1-22. https://doi.org/10.3390/earth4010001