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Abstract: Hydroelectric dams are a major threat to rivers in the Amazon. They are known to decrease
river connectivity, alter aquatic habitats, and emit greenhouse gases such as carbon dioxide and
methane. Multiscale remotely sensed data can be used to assess and monitor hydroelectric dams over
time. We analyzed the Sinop dam on the Teles Pires river from high spatial resolution satellite imagery
to determine the extent of land cover inundated by its reservoir, and subsequent methane emissions
from TROPOMI S-5P data. For two case study areas, we generated 3D reconstructions of important
endemic fish habitats from unmanned aerial vehicle photographs. We found the reservoir flooded
189 km2 (low water) to 215 km2 (high water) beyond the extent of the Teles Pires river, with 13–30 m
tall forest (131.4 Mg/ha average AGB) the predominant flooded class. We further found the reservoir
to be a source of methane enhancement in the region. The 3D model showed the shallow habitat had
high complexity important for ichthyofauna diversity. The distinctive habitats of rheophile fishes,
and of the unique species assemblage found in the tributaries have been permanently modified
following inundation. Lastly, we illustrate immersive visualization options for both the satellite
imagery and 3D products.

Keywords: conservation; Cubesat; satellite; UAV; PlanetScope; LiDAR; SfM photogrammetry; fish;
freshwater; TROPOMI; GLAS; virtual reality; VR

1. Introduction

Remote sensing has become a fundamental source of information for conservation
and environmental science [1] supporting long term monitoring and mapping of natural
and anthropogenic changes, such as expansion of the agricultural frontier (e.g., [2,3]), defor-
estation (e.g., [4–6]), mining (e.g., [7–9]), and hydroelectric dam construction (e.g., [10,11]).
Early moderate resolution (30–60 m) imagery revealed the preponderance of forest degrada-
tion in proximity to clearcutting throughout the Brazilian Amazon [12], an alarming trend
that continues today [13–15]. Due to the availability of long-term archives (e.g., ~50 years
from Landsat satellites), many studies rely on moderate (i.e., 30 m) or coarse (i.e., MODIS,
250–500 m) resolution imagery. The spatial resolution of these images does not allow for
precise delineation of the forest/non forest boundary nor the shoreline of water bodies with
narrow channels (e.g., narrower than the satellite image spatial resolution) [5,16] (Figure 1).
Also, frequent cloud cover in the tropics [17] and the long revisit period of many optical
satellites can preclude the acquisition of imagery at critical moments for dynamic phenom-
ena (e.g., filling of hydropower reservoirs). The recent increased availability of high revisit
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frequency and high spatial resolution satellite imagery (e.g., 3–5 m) from multi-satellite
constellations such as RapidEye and PlanetScope have allowed for monitoring events in
near real-time [18] and dense multi-temporal assessments (e.g., [19,20]).

Rapid advances in the development of Unmanned Aerial Systems (UAS) allow for
highly flexible methods to monitor and analyze ecosystems at much finer spatial and
temporal resolutions than is feasible from satellites or manned aircraft [21–23] (Figure 1).
The different platforms, from consumer to professional grades (e.g., [24]), and a variety of
payloads, from digital cameras to specialized sensors (e.g., [23,25,26]), allow for customized
configurations. In particular, reconstruction of the landscape through Structure-from-
Motion (SfM) with multi-view stereo (MVS) photogrammetry has become popular in many
fields [25,26]. In addition to numerous terrestrial applications, the 3D point clouds and
orthomosaics generated from SfM-MVS with high level of detail (e.g., <1 cm) have also been
shown to effectively assess aquatic ecosystem characteristics such as freshwater habitat
complexity, ichthyological habitat classes, bathymetry, fluvial and aquatic topography,
hydraulics, and geomorphology [27–29].

Figure 1. Illustration of the different levels of spatial detail that can be resolved by satellite and UAS
platforms. The moderate resolution systems include common satellite-based sensors such as the
CBERS (China–Brazil Earth Resources Satellite), Landsat and Sentinel-2 group of systems. The high
spatial resolution systems include common satellite-based sensors such as RapidEye, Worldview
and Planet Dove constellations and systems. The UAS represented refers to low-altitude systems
(<100 m AGL).

Worldwide, rivers are experiencing an increase in hydroelectric dam development,
with thousands of major dams and small hydropower plants already in operation, under
construction, or planned for the coming decades [30–32]. In many cases, pre-construction
estimates of land cover to be flooded are inaccurate [33]. Their impact on the aquatic
fauna through river connectivity fragmentation, interruption of migrations, and habitat
modification is also not well studied prior to construction [34]. The combined effects of
the dams constructed in the Amazon represent a major threat to fish biodiversity [35,36].
The modification of the annual flood pulse due to hydropower impoundment also has a
local effect on endemic species [36], and the permanently flooded areas in the reservoir
become colonized by native opportunistic and invasive fish species, bringing considerable
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change to the local fish assemblage [37,38]. Furthermore, fish species limited to small creeks
(with dense riparian vegetation) which drain into the main river channel are especially
vulnerable to environmental changes caused by dams, deforestation, agricultural runoff,
and modifications due to road construction [39–41]. Some hydroelectric dams have also
been shown to be less “green” than purported to be. Shallow tropical reservoirs are high
emitters of CO2 and methane [42], in some cases surpassing fossil fuel emission in carbon
intensity (CO2 equivalent per MWh) [43]. While carbon dioxide is a well-established
contributor to climate change, methane emissions are also of concern because of its greater
global warming potential [42].

The Amazon basin is home to 2406 freshwater fish species (as of April 2021), 1402 of
them endemic, representing ~15% of global freshwater fish diversity [44]. With 66 endemic
species, the Tapajós is the fourth most speciose tributary of the Amazon [45,46]. After
large controversial hydroelectric projects on the Madeira (Jirau dam) [38] and Xingu (Belo
Monte dam) [47,48] rivers, the Tapajós River basin has become the latest target for many
hydroelectric projects [49]. A number of run-of-the-river dams along its tributaries have
been made possible by agricultural expansion and the associated road construction [50].
On the Teles Pires river, one of the main tributaries of the Tapajós, a series of run-of-
the-river dams were constructed. The Teles Pires Complex comprises four Hydroelectric
Power Plants (HPP): HPP São Manoel (700 MW), HPP Teles Pires (1820 MW), HPP Colíder
(300 MW) and HPP Sinop (401 MW).

Herein, we have carried out a multiscale remote sensing analysis to determine the
lentic zone of the HPP Sinop reservoir. From high spatial resolution satellite imagery (i.e.,
Dove PS and RapidEye) we determined the extent of the flooded area of the reservoir and
quantify the land cover types that were inundated. The tree canopy height and above
ground biomass of the inundated forest were estimated from spaceborne LiDAR data. At-
mospheric methane concentration was also assessed post flooding from the S5P/TROPOMI
satellite instrument. At a finer scale, we illustrate the utility of UAS based SfM-MVS pho-
togrammetry for fluvial landscape reconstruction at two study sites (pre-inundation). We
introduce the utility of virtual reality (VR) visualization of these UAS datasets for scientific
investigation and collaboration. While the focus of this study is on one hydroelectric dam
project, the methodologies used are widely applicable to other regions and can serve as a
guideline for incorporating multi-temporal and multi-scale remotely sensed data into envi-
ronmental impact assessments, infrastructure monitoring, and ecological and ichthyologic
studies.

2. Materials and Methods
2.1. Study Area

The Teles Pires river forms the major eastern branch of the Tapajós river basin and
is also the administrative border between the states of Mato Grosso and Pará. The most
recent hydropower plant in the Teles Pires river complex, HPP Sinop (HPPS), is in the
state of Mato Grosso, 70 km north of Sinop, serving the municipalities of Cláudia, Itaúba,
Ipiranga do Norte, Sinop, and Sorriso. The HPPS is in the middle-upper portion of the
Teles Pires river drainage within the Arc of Deforestation [51] where the landscape consists
of large patches of deforestation mainly due to large scale commercial agricultural activities
and was formerly referred to as the epicenter of deforestation in Brazil [52] (Figure 2). The
HPPS began operations in September 2019. Its reservoir had a planned impoundment of
342 km2 with an installed capacity of 401.88 MW. The actual area flooded by the Teles Pires
following operationalization of the HPPS was considered as the study area for the satellite
imagery analysis.
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tion of the UAS study areas: A) Corredeira do Suplício, photograph facing South and B) Ilha do 
Lair, photograph facing North. 

At a smaller scale, for UAS SfM-MVS photogrammetry, two sites on the Teles Pires 
were chosen: the fast-flowing rapids of the Corredeira do Suplício and the shallow, high 
flow, sand, and rubble zone on the upstream (north) side of Ilha do Lair (Figure 2). At the 
Corredeira do Suplício prior to inundation, white water rapids dropped in elevation by ~ 
1 m and the Teles Pires is also narrower (~ 15 m wide) than elsewhere along the main 
channel. The substrate is composed of sand, stone, and large boulders. Due to the intense 
flow, only macrophytes of the Podostemaceae family that adhere directly on the rocks 
were present. In contrast, at Ilha do Lair, prior to the inundation there was a rapid current, 
but not as strong as at Corredeira do Suplício. This sector of the river is both wider (~ 150 
m wide) and shallower than elsewhere in the main channel. Several species of macro-
phytes were present in a substrate composed of sand, stone, and small boulders. These 
two sites are part of the largest continuous stretch of rapids in the sector flooded by the 
HPPS reservoir. Prior to inundation the main channel had a pH ranging from 5.1 – 7.7, 
and average temperature of 24.5 – 29.3 °C. 

Figure 2. Sector of the Teles Pires river (Mato Grosso, Brazil) impacted by the HPPS reservoir. The river’s course is shown
in blue prior to the construction of the dam. The red dot indicates the location of the UAS study areas: (A) Corredeira do
Suplício, photograph facing South and (B) Ilha do Lair, photograph facing North.

At a smaller scale, for UAS SfM-MVS photogrammetry, two sites on the Teles Pires
were chosen: the fast-flowing rapids of the Corredeira do Suplício and the shallow, high
flow, sand, and rubble zone on the upstream (north) side of Ilha do Lair (Figure 2). At
the Corredeira do Suplício prior to inundation, white water rapids dropped in elevation
by ~1 m and the Teles Pires is also narrower (~15 m wide) than elsewhere along the main
channel. The substrate is composed of sand, stone, and large boulders. Due to the intense
flow, only macrophytes of the Podostemaceae family that adhere directly on the rocks were
present. In contrast, at Ilha do Lair, prior to the inundation there was a rapid current, but
not as strong as at Corredeira do Suplício. This sector of the river is both wider (~150 m
wide) and shallower than elsewhere in the main channel. Several species of macrophytes
were present in a substrate composed of sand, stone, and small boulders. These two sites
are part of the largest continuous stretch of rapids in the sector flooded by the HPPS
reservoir. Prior to inundation the main channel had a pH ranging from 5.1–7.7, and average
temperature of 24.5–29.3 ◦C.

In addition to the overall impact of the lentic zone on the landscape, changes to the
biodiverse small creek tributaries during and after inundation were also examined from



Earth 2021, 2 307

satellite imagery. These small tributaries, often only 1–3 m wide, flow into the Teles Pires
river from the surrounding valleys and are especially vulnerable to change. They are found
within riparian zones where the riverbanks retain a thin band of trees and palms. Water in
these creeks was usually clear and fast-flowing (Figure 3). The streams in the region have
acidic waters, with an average pH of 4–5.4, average temperature of 22.8–24.6 ◦C and mean
conductivity of 7.52 ± 2.8 µS/cm (5.36–15.44 µS/cm).

Figure 3. Photographs of one of the small creek tributaries prior to inundation from the HPPS
reservoir. (A) unmodified creek on the eastern side of the Teles Pires river; (B) photograph taken a
few hours after (A) at the same location illustrating sedimentation due to construction upstream; (C)
Curculonichthys luteofrenatus feed on algae in the current; (D) Corydoras apiaka are restricted to sandy
areas of low flow in these small creeks. Both species are endemic to the small clear water tributaries
of the Teles Pires, Preto and Arinos rivers [53].

2.2. Aquatic Biodiversity

The annual migrations of the keystone species of the Amazon consist of millions of
large fishes swimming up the various tributaries such as the Teles Pires [54]. The migrating
fishes include well known giant catfishes such as Brachyplatystoma spp., Pseudoplatytstoma
spp. and Phractocephalus hemioliopterus as well as many other fishes such as Hydro-lycus
spp., Prochilodus spp., and Leporinus spp. Within the impact zone of the HPPS, Prochilodus
nigricans (curimba), Brycon falcatus (matrinxã), Zungaro zungaro (jaú) and Pseudoplatystoma
punctifer (pintado) also have reproductive migrations and are of interest as commercial
species for fishermen in the region.

The upper middle Teles Pires river where the HPPS was constructed is one of the most
biodiverse sectors of the river for fish. Rapids in the main channel are home to distinct
rheophilic fauna and flora with adaptations for the extreme environment [55]. Species
of Loricariidae (e.g., Peckoltia aff. cavatica, Scobinancistrus pariolispos), Anostomidae (e.g.,
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Leporinus vanzoi, Sartor cf. elongatus), Serrasalmidae (e.g., Tometes sp. “Teles Pires”), Gymno-
tiformes (e.g., Sternacorhynchus aff. mormyrus, Archolaemus luciae), and Characiformes (e.g.,
Brycon falcatus, Bryconexodon trombetasi) were known to occur in the rapids at Corredeira
do Suplício prior to inundation. Fishes highly adapted to the sectors with the strongest
current and dense masses of Podostomaceae occur in the whitewater zone of the rapids.
Highly specialized macroinvertebrate predators such as the Teleocichla sp. (Figure 4) and
the rheophile catfish Pseudoancistrus kayabi (Figure 4) were commonly found at Ilha do Lair
prior to inundation.

Figure 4. Underwater photographs of rheophile fishes endemic to the middle Teles Pires which were
found at the UAS study sites prior to inundation: Leporinus vanzoi (A), Bryconexodon trombetasi (B),
Pseudancistrus kayabi (C) and Teleocichla sp. (D).

The fish communities in the streams are vastly different from the main river, with the
predominantly smaller species that require both highly oxygenated fast flowing water and
the three-dimensionally complex, silt free substrate for cover and feeding. Small characins
such as Moenkhausia phaenota, Hyphessobrycon heliacus, and others were found in the creeks
alongside small catfishes such as Corydoras apiaka, Curculonichthys luteofrenatus (Figure 3),
Hisonotus chromodontus, and Centromochlus meridionalis. Prior to inundation, during the
rainy season the flooding of the lower course of the creeks allowed species such as Brycon
falcatus (a commercially important migratory species whose population is declining in
this region) to travel upstream to the headwaters to breed [56]. Among the frugivorous
fishes in the region, B. falcatus consumes the greatest abundance of fruits, and even young
individuals can act as seed dispersers [57].
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2.3. Overview of Data and Analysis

We present an overview of the datasets and analyses in Figure 5. Spaceborne (i.e., satel-
lite) imagery and UAS-based photographs are employed at different scales to investigate
the ecosystems impacted by the HPPS reservoir. Publicly available products describing
vegetation characteristics (e.g., canopy height and biomass) as well as observations of
atmospheric methane are used as ancillary data products to complement our analyses.

Figure 5. Flowchart summarizing the datasets and analyses used in the study. The section numbers
are provided as reference for each input dataset, process and result.

2.4. Satellite Imagery

RapidEye and PlanetScope (PS) satellite imagery were used for the classifications
from both the low (dry season) and high water (end of the rainy season) periods (Table 1).
The RapidEye constellation is comprised of five multispectral satellites which acquire five
bands from blue to near infrared wavelengths [58]. The orthorectified, atmospherically
corrected imagery used here has a pixel size of 5 m. The PlanetScope constellation consists
of more than 130 triple-CubeSats (i.e., miniature satellites) with new satellites launched
into orbit every 3–4 months [59]. The Dove PS satellites within that constellation acquire
four-band multispectral imagery from blue to near infrared wavelengths. Analytic surface
reflectance Dove PS images orthorectified to a 3 m pixel size were used [60]. All imagery
was downloaded from Planet Explorer (https://www.planet.com/explorer, accessed on
29 May 2021) and mosaicked in ENVI 5.5 (L3Harris Geospatial, Melbourne, FL) prior to
analysis (Figure 6).

Table 1. Satellite imagery used in the classifications.

Season Dates Constellation No. Scenes

Low water, Pre-dam May 31 and July 11, 2014 RapidEye 13
High water, Pre-dam February 9, 2018 Dove PS 8
Low water, Post-dam July 5, 7 and 8, 2020 Dove PS 24
High water, Post-dam January 11, 15, 31, February 13, 14, 17, 2020 Dove PS 25

https://www.planet.com/explorer
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In addition, monthly cloud free basemap mosaics generated from the PlanetScope
constellation for the period of December 2018 to February 2020 were downloaded for a
57.6 km2 tile centered on the confluence of the Teles Pires river and the Rio Roquete creek
to illustrate the construction phase and subsequent seasonal change in flooding extent of
one of the main small creek tributaries.

Figure 6. Satellite image mosaics from 2014 (RapidEye constellation) and 2020 (PlanetScope constellation) before and after
the operationalization of HPPS. Both sets of images are shown as false color composites (Near infrared/Red/Green) to
differentiate the river more clearly from the landscape and minimize the impact of the smoke from fires in the south-east
sector of the 2014 imagery. Both mosaics represent low water conditions in July.

2.5. UAS Photograph Acquisition

Aerial photographs were acquired for the case study sites (Figure 2) by UAS. For
Corredeira do Suplício, a DJI Inspire 2 quadcopter with an X5S camera (M4/3 sensor,
20.8 MP sensor resolution, 5280 × 3956 px image size, 3.3 µm pixel size) and a DJI MFT
15 mm f/1.7 ASPH lens was used to acquire 549 photographs in jpeg format on 4 September
2018 from an altitude of 60 m AGL. For the flight plan, a double grid pattern was used with
85% front and side overlaps. The flight path and camera triggering were controlled by the
DJI Ground Station Pro iOS software. For Ilha do Lair, a DJI Mavic 2 Pro quadcopter with an
integrated Hasselblad L1D-2C camera (1” sensor, 20 MP sensor resolution, 5472 × 3648 px
image size, 2.35 µm pixel size) was used on 5 September 2018 to acquire 348 photographs
in jpeg format (double grid pattern with 85% front and side overlaps) from 26 m AGL. The
flight path and camera triggering were also controlled by the DJI Ground Station Pro iOS
software. All photographs included the geolocation and altitude in the EXIF data.

Landscape models from UAS without real-time kinetic (RTK) or post processing
kinetic (PPK) geotags of the photographs result in larger absolute positional errors of the
models in real-world projected coordinates [24]. The within model accuracy of distances
and volumes nevertheless remains high. Similar to [29], ground control points were
not possible to acquire on site. The expected absolute positional accuracy in real-world
coordinates of SfM-MVS models generated without ground control points of ~1 m error for
the Inspire 2 and 2–3 m error for the Mavic 2 Pro [24] were considered adequate for the
goals of this study.
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2.6. Analysis
2.6.1. Satellite Image Classification

The satellite image mosaics from the four time periods (Table 1) were classified with
eCognition Developer 9.4 (Trimble Geospatial, Sunnyvale, CA, USA) using a Geographic
Object Based Image Analysis (GEOBIA) approach. GEOBIA classification is often more
effective and efficient for imagery with high spatial detail and low spectral resolution [61,62]
than pixel-based classification. It aims to replicate human interpretation of imagery by
exploiting patterns, texture, and recognition of objects [63,64]. The four mosaics were
first segmented with the multiresolution segmentation algorithm using the following
parameters: scale = 50, shape = 0.1 and compactness = 0.5. Training samples of objects
representing water, closed canopy forest, crops, soil, open canopy forest, inundated forest, and
other throughout the study area were manually selected (Figure 7). The “other” class
included, clouds, cloud shadows, and built-up areas. We included object level mean and
standard deviation values of brightness (i.e., average of the means of the bands), maximum
difference (i.e., maximum difference between bands), and the reflectance from each band
in the nearest neighbor feature space for training data for a nearest neighbor classification.

Figure 7. Examples of classes selected for the land cover classification. The left panel of each pair
(with the red dots) illustrates the land cover through a 33 × 33 pixel window (~1 ha) from a Dove PS
image (3 m pixel size). The right panels (with the blue dots) illustrate a subset of the corresponding
land cover as seen from a UAS photograph (not to scale).

The resulting individual classes were simplified to water (including open water and
inundated forest), soils and agriculture, and forest (including closed and open canopy
forest) in ArcMap 10.7 (ESRI, Redlands, CA, USA). The polygon layers were inspected
through an overlay with the corresponding mosaic and erroneous class labels were cor-
rected manually (e.g., dark shadows along the boundary between forest and soil classes).
For the few areas where small clouds obstructed the classification of the reservoir margins
of the high-water mosaic (Jan–Feb 2020), the polygon vertices were edited to trace the
shoreline of the reservoir without cloud cover. The final edited polygon layers from each
mosaic were dissolved to classifications representing water, forest, and soil/agriculture.
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Three hundred sixty-nine random points (distance ≥ 30 m) were generated within the
footprint of the high-water reservoir extent in ArcMap. The associated land cover class
was manually interpreted for each point from the low water, pre-inundation satellite image
mosaic (2014), and used to assess the accuracy of the classifications of the land cover within
the footprint of the reservoir.

2.6.2. Structure from Motion Multi-View Stereo Photogrammetry (SfM-MVS)

We used Pix4D Mapper v4.6.4 (Pix4D, Prilly, Switzerland) for the SfM-MVS workflow
(Figure 8). The inputs into the workflow were the jpg photographs acquired by UAS. The
final products, namely the dense 3D point cloud, the orthomosaic and the digital surface
models (DSM) are the result of a multi-step process. In the first step, Pix4D optimizes
both internal (e.g., focal length) and external (e.g., orientation) camera parameters and
carries out an automatic triangulation and bundle block adjustment [65]. Keypoints,
representing points in each photograph with a unique and identifiable texture, are located.
These keypoints are then matched between neighbor photographs. The sparse point cloud
(output of this first step) is generated through a modified scale-invariant feature transform
(SIFT) algorithm [66,67]. In step two, the point cloud is densified with a multi-view stereo
(MVS) photogrammetry algorithm [68]. The output of this step, the dense point cloud,
is one of final products used for further analysis. In step 3, the dense point cloud is
interpolated with an inverse distance weighting (IDW) algorithm to generate the DSM in
raster format. The input photographs and the DSM are used to generate an orthomosaic
without perspective distortion. The DSM and orthomosaics are the other two final products
used and discussed in this study.

Figure 8. Illustration of the SfM-MVS workflow carried out in Pix4D Mapper. The inputs to the
workflow (red) were the UAS photographs. The products of interest for this study (blue) were the
dense point cloud, DSM and orthomosaic.

2.6.3. SfM-MVS Products

Measures of benthic surface complexity computed from SfM-MVS models are robust
and repeatable metrics. Aquatic biodiversity has been shown to be strongly related to
habitat structural complexity (e.g., [69,70]). Among the various ways in which complexity
is defined, here we refer to it as the heterogeneity in the arrangement of substrate types [71].
As examples of complexity metrics that can be readily determined from SfM-MVS products,
we computed two spatial properties of the Ilha do Lair DSM, vector ruggedness and the
3D Mindowski–Bouligand fractal dimension.
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The vector ruggedness was calculated at window sizes of 20 and 80 cm for a subset
of the DSM with the Benthic Terrain Modeler toolbox in ArcMap [72]. This measure
quantifies ruggedness as the variation in the 3D orientation of the surface incorporating
both slope and aspect heterogeneity [73]. Unlike other measures that are correlated with
slope (e.g., terrain ruggedness index), this metric quantifies local variations in the terrain
independently.

For the same subset area of the Ilha do Lair data, the dense point cloud was converted
to a triangular mesh in CloudCompare Stereo v.2.11.3 (https://www.danielgm.net/cc/,
accessed on 29 May 2021) at the original GSD and scales of 20 and 80 cm. These meshes were
used to compute the 3D Mindowski–Bouligand fractal dimension of the substrate [74,75].
The value of the fractal dimension, D, varies from 0–3 where higher values indicate a more
complex surface.

With ecological knowledge of the fish fauna, products quantifying the three dimen-
sional characteristics of the substrate (e.g., elevation, slope, vector ruggedness, etc.), can
further be used to classify the habitat according to the preferences of different fish or plant
species. For example, rheophile cichlid and Loricaridae species require caves of varied sizes
for breeding, and slope and surface texture influence the biocover and microinvertebrate
fauna that many rheophile fishes feed on [29].

2.7. Spaceborne LiDAR, Terrestrial Carbon Biomass

From the Google Earth Engine repository, we downloaded global tree canopy height
data (circa 2005) produced from the Geoscience Laser Altimeter System (GLAS) spaceborne
LiDAR aboard ICESat (Ice, Cloud, and land Elevation Satellite) [76] for the lentic zone.
GLAS transmits laser pulses at 1024 nm with footprints of ~65 m diameter and records the
reflected waveform. The data were available at a spatial resolution of 30 arc seconds.

Harmonized above and below-ground terrestrial carbon (MgC/ha) estimates (circa
2010) [77,78] were downloaded from the Oak Ridge National Laboratory Distributed
Active Archive Center (ORNL DAAC). The aboveground C data represent a compilation
of pre-existing, publicly available ecosystem data. For below-ground C, land cover specific
root-to-shoot relationships had been used to generate maps for each of the input above-
ground C maps prior to harmonization (300 m resolution) (see [77] for details). Both
above and below ground biomass C stock densities are limited to living plant tissues. We
summarized the above and below ground C for the pre-inundated forest area within high
water reservoir boundaries.

2.8. Atmospheric Methane Concentration

Lastly, satellite-based measurements of the total column-averaged dry-air mole frac-
tion of methane (XCH4) for a 26,000 km2 region surrounding the HPPS lentic zone from
the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5
Precursor (S-5P) satellite were downloaded from the Google Earth Engine repository [79].
The data product represented the two-band retrieval utilizing the 2.3 µm methane absorp-
tion band and the 760 nm oxygen absorption band to determine methane abundance in
the atmosphere at 7 × 7 km resolution [79,80]. Cloud-free data were available for the
months of July and August, 2020. A 1,414km2 convex hull was fit around the high-water
season reservoir to which a 1 km buffer had been added. This area of interest was removed
from the larger 26,000 km2 region, the remainder considered as the regional background.
For comparison, methane abundance was also extracted over a 17,500 km2 area of intact
protected forest in the Xingu National Park located 200 km to the east. We determined the
source methane enhancement (∆XCH4) by subtracting the mean XCH4 difference between
the reservoir area of interest and the regional background. We estimated emission accord-
ing to the mass balance method from [81]. The monthly average values of wind speed and
surface pressure needed for the calculations were extracted from the ERA5-Land monthly
averaged ECMWF climate reanalysis data [82].

https://www.danielgm.net/cc/
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2.9. Visualization

Improvements in personal computing as well as internet access becoming a near-
ubiquitous aspect of daily life in many countries, also present the potential of scientific
data sharing, visualization and collaboration through digital means. We illustrate straight-
forward examples of temporal and immersive visualization options for both the satellite
imagery and SfM-MVS products. For dynamic visualization of land cover change around
the HPPS we examined the newly launched Google Earth Timelapse. This option only
requires access to a web browser and an internet connection. Cloud free satellite images can
be viewed as a time lapse animation, qualitatively illustrating the changes on the surface of
the Earth over a 36-year period (1984–2020).

We also explored the use of immersive virtual reality (VR) technology for visualization
of satellite imagery and SfM-MVS products. Virtual reality is the combination of hardware
and software to simulate an environment with the user experiencing a high ‘sense of being
present’ in the VR representation [83]. VR experiences are immersive and can be a cost
effective way to visualize scientific data. Gaining popularity in fields such as medicine [84],
and ecology [85], among others, it is also beneficial for geospatial sciences [86]. We tested
two readily available VR head mounted displays (HMD), the Oculus Quest 2 (Facebook
Technologies LLC, Menlo Park, CA. USA) and a second generation Google Official 87002823-
01 Cardboard viewer (Google, Mountain View, CA, USA).

The Oculus Quest 2 is a low-cost, consumer-grade standalone HMD with 6 GB RAM,
an Android based operating system and internal storage. The lenses have a resolution of
1832 × 1920 pixels per eye and are capable of a refresh rate of 72–90 Hz. By connecting
the HMD to a computer and initializing the Oculus Link software, the HMD can access
additional software and data that require more computational power to run than is possible
from the HMD alone. We accessed the satellite imagery archive on Google Earth VR for the
HPPS study through this manner. We also illustrate the immersive nature of the SfM-MVS
point clouds by interacting with them in the Oculus Quest 2 through the free VRifier
software (accessed through Oculus Link). As a lower cost alternative compatible with the
Google Cardboard viewer, we uploaded the SfM-MVS models to Sketchfab, a web based VR
viewer (https://sketchfab.com, accessed on 29 May 2021). The web based VR viewer allows
users to interact with content through their smartphone’s browser and a basic VR viewer.

3. Results
3.1. Land Cover Composition Prior to Flooding

The area of each land cover class flooded by the HPPS is shown in Table 2 for both high
water (i.e., end of rainy season, Jan-Feb) and low water (i.e., dry season, July) periods. The
class with the greatest area impacted is forest (163.04 km2 during low water and 177.07 km2

during high water), followed by the soil and agriculture classes (25.62 km2 and 38.10 km2

respectively). The spatial distribution of the flooded classes in the landscape can be seen in
Figure 9. Overall, for the year 2020, we found the flooded area in the low water season was
208.6 km2 and 235.08 km2 in the high water season. This represents 106.9–133.4 km2 less
than the 342 km2 stated in the HPPS planning documents [87]. In the planning documents,
the extent of the flooding was expected to extend south of the MT-220 highway, but in our
analysis of the high spatial resolution imagery, we found the flooding did not extend past
the bridge on the MT-220 crossing the Teles Pires (Figure 9).

Table 2. Land cover class areas within the lentic zone of the HPPS determined for low water (July)
and high water (Jan-Feb) seasons from Dove PS imagery acquired in 2020 (Table 1).

Land Cover Area (km2) Low Water Area (km2) High Water

Water 19.79 19.91
Soil/Agriculture 25.62 38.10

Forest 163.04 177.07
Total 208.45 235.08

https://sketchfab.com
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Figure 9. Minimum extent of the HPPS lentic zone during the low water (yellow) season and land cover classes within
the flooded area as determined from the 2014 RapidEye image classification. Both are shown overlain on the 2014 satellite
image mosaic.

As shown in Table 3, the accuracy of the land cover classes pre-flooding within the
lentic zone was high for each of the three classes (>90% user’s and producer’s accuracies)
with an overall accuracy of 95.7%.

Table 3. Confusion matrix for the 2014 low water RapidEye classification.

Forest
Reference

Water
Reference

Soil/Agriculture
Reference User’s Accuracy (%)

Forest classification 211 0 9 95.9
Water classification 1 54 0 98.2

Soil/Agriculture classification 6 0 88 93.6
Producer’s Accuracy (%) 96.8 100 90.7 OA = 95.7%

The canopy height estimates from GLAS indicate that within the lentic zone (high
water season), the forest canopy ranged from 13–30 m tall (Figure 10). The majority of
the tall trees were found along the banks of the small tributaries such as the Rio Roquete,
and along the western banks of the Teles Pires river. Estimated aboveground biomass C
(Figure 11), indicate an average of 91.0±31.0 Mg/ha for the forest within the lentic zone
during the high-water season. Below ground biomass C for the same forest area was
estimated at 22.3 ± 7.1 Mg/ha for a total of 113.3 ± 38.1 Mg/ha.

We found a small ∆XCH4 for both July (2.65 ppb) and August (4.4 ppb) comparing
the XCH4 of the HPPS lentic zone to the regional background (Table 4). A small difference
was expected because the background consists of a large proportion of agriculture/soil
(49.5% of the area [88]). It also includes six small municipalities and the city of Sinop. The
difference in average XCH4 is greater when comparing the HPPS lentic zone with the intact
forest of the Xingu National Park (∆XCH4 = 45 ppb for July and 46.4 ppb for August).
Gross estimates of CH4 emission for the HPPS lentic zone indicate 48.5 kt/yr based on the
∆XCH4 from July and 54.8 t/yr based on the ∆XCH4 from August. A longer time sequence
of cloud free TROPOMI observations would be needed to account for seasonal variation in
∆XCH4 and a more accurate annual estimate.
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Figure 10. Estimate of forest canopy height (circa 2005) from GLAS spaceborne LiDAR [76] within
the lentic zone of the HPPS during high water season. The Teles Pires river pre-inundation is shown
overlain.

Figure 11. Estimated aboveground biomass C (circa 2010) [77,78] pre-inundation for the lentic zone
of the HPPS during high water season. The range of biomass C for the forest class is indicated in the
legend. The Teles Pires river pre-inundation is shown overlain.
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Table 4. Monthly average XCH4 from TROPOMI.

Site Month XCH4 (ppb) (µ ± σ)

HPPS lentic zone July 1852.5 ± 6.8
HPPS lentic zone August 1856.3 ± 9.4

Background region July 1849.8 ± 14.2
Background region August 1851.9 ± 15.9

Xingu National Park July 1807.5 ± 10.0
Xingu National Park August 1809.9 ± 10.8

3.2. Flooding of Small Stream Tributaries

The daily revisit period of the Dove PS constellation allows for a dense time sequence
view of the filling of the reservoir and the impact the filling had on the small creek trib-
utaries. As an example, we illustrate the sequence for the confluence of the Rio Roquete
creek and the Teles Pires river over the December 2018–February 2020 period (Figure 12).
In December 2018, the original course of the narrow stream can be seen draining into the
Teles Pires river. The forest has been cut along the banks of the stream in the area planned
to be flooded by the HPPS reservoir. The same can be seen from the image acquired 16
January 2019, prior to the filling of the reservoir. From the image acquired 1 February 2019
one day after the filling began, the incursion of water from the silt laden Teles Pires (high
water) into the creek can be seen, along with the stream having overflowed its usual banks.
In March, not only has the flooded stream surface area increased considerably, covering
nearly the entire expected range, but the main branch of the Teles Pires can also be seen
flooding standing forest on the banks. In April 2019, the flooding of the Rio Roquete creek
is complete, and the main branch of the Teles Pires has also widened to include flooding
of forest and agricultural areas. There is a marked decrease in turbidity over the course
of the low water season (June–August). The turbidity of the Teles Pires increases again
in the high-water season (December 2019–February 2020). From February 2019 onwards,
silt from construction, modification of the riverbanks to prevent flooding, and permanent
inundation from the reservoir have permanently changed the habitats in the small stream
tributaries.

3.3. UAS Case Study Areas and SfM-MVS Products

In comparison to the conditions pre-flooding (Figure 2), both UAS case study areas
have been substantially modified post-flooding (Figure 13). Both areas are within the lentic
zone of the HPPS and now permanently covered by deeper and slow-moving water. Both
the UAS photographs and Dove PS imagery acquired in February 2021 show the areas
have been fully submerged in the slow-moving water. Only the tops of the trees on Ilha
do Lair can be seen out of the water, while at Corredeira do Suplício the rapids are no
longer present.
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Figure 12. Time sequence of satellite imagery acquired monthly over the confluence of the Rio
Roquete stream and Teles Pires river from prior to inundation (December 2018) to the high-water
season of February 2020. Each tile is part of the monthly minimal cloud basemap mosaics produced
from the PlanetScope constellation, with the exception of three single date images denoted by *.
For January 2019, a single multispectral image is shown to ensure pre-inundation conditions. The
1 February 2019 image illustrates the confluence of the rivers the day after inundation began. For
December 2019, a single image was chosen because it minimized cloud cover in this small area in
comparison to the global mosaic. Each tile is 57.6 km2 in area.
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Figure 13. Dove PS image acquired 2 February 2021 illustrating flooding of the two UAS case study areas during high water
season. The frames around the UAS photographs (also acquired in February 2021) correspond to the yellow (Ilha do Lair)
and red (Corredeira do Suplício) boxes on the map. Stands of dead trees in the flooded zone can be seen from both the
satellite image and in the UAS photographs.

For Corredeira do Suplício, the final ground sampling distance (GSD) of the SfM-MVS
products was 2 cm. Pix4D located a median of 49,773 keypoints per photograph and a
median of 7745.8 matches between neighbor photographs. The final 3D point cloud has an
average point density of 584.6 pts/m2. For Ilha do Lair, the GSD of the SfM-MVS products
was 0.9 cm. Pix4D located a median of 51,394 keypoints per photograph and a median of
15,788.2 matches between neighbor photographs. The density of the final 3D point cloud is
7885.6 pts/m2.

A closer look at the Corredeira do Suplício illustrates the difference in scales between
the high spatial resolution satellite imagery (3–5 m pixel sizes) (Figure 14a,b) and the UAS
orthomosaic (Figure 14c), one of final products from the SfM-MVS workflow (Figure 8).

At Ilha do Lair, the DSM shows the shallow water zone on the upstream side of the
island. This site with high flow was populated by juveniles of many species, as well as
smaller species foraging in the dense masses of plants. With the permanent inundation
these types of habitats are covered in sediment and no longer available for the rheophile
species. Figure 15 shows the Ilha do Lair 3D point cloud, DSM and vector ruggedness at
different sizes pre-inundation.

The fractal dimension of the Ilha do Lair triangular mesh at the original GSD of 0.9 cm
was 1.99. The value of D decreased considerably to 1.09 at a resampled resolution of 20 cm
and to 1.08 at a resampled resolution of 80 cm. This indicates that the greatest complexity
in this habitat was found at smaller spatial scales, however, once the fine scale complexity
is removed there is minimal difference between the complexities at the coarser scales. For
fish such as the Teleocichla sp. (Figure 4) which have a small body size (~12 cm TL), the
fine scale complexity is important because they rely on caves dug under these rocks for
breeding, complex bottom structure for cover, and on microinvertebrates living in the
dense mass of biocover (e.g., algae) growing on the rocks.
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Figure 14. (A) 5 m pixel size RapidEye imagery from July 2014 from the Corredeira do Suplício UAS
study area; (B) 3 m pixel size PlanetScope imagery from September 2018 coincident with the UAS
image acquisition; (C) orthomosaic the SfM-MVS workflow (2 cm pixel size) of the Corredeira do
Suplício (4 September 2018). The outline of the UAS orthomosaic is shown in white in panels (A,B).



Earth 2021, 2 321

Figure 15. (A) 3D dense point cloud of the Ilha do Lair UAS case study area; (B) DSM from the
subset within the red box in A. Elevation transect along the black line is also shown; (C) Vector
Ruggedness calculated at a window size of 20 cm and 80 cm from the DSM. The interactive point
cloud is available from: https://skfb.ly/onEEp, accessed on 29 May 2021 (VR compatible) and
https://bit.ly/ilhadolair, accessed on 29 May 2021 (web based). (in Supplementary Materials).

3.4. Data Visualization

The most accessible and straightforward visualization of the satellite imagery was
through the Google Earth Timelapse (Figure 16a). Through the animation it is possible
to see the extensive land cover change from forest to agricultural activities beginning in
earnest around 2000. The lentic zone is also visible as of 2019. A static 3D representation of
recent (post flooding) satellite imagery of the HPPS lentic zone can also be accessed through
Google Earth VR via the Oculus Quest 2 headset (Figure 16b). In this VR environment, for
the area encompassing the HPPS lentic zone, recent (post flooding) high resolution satellite

https://skfb.ly/onEEp
https://bit.ly/ilhadolair
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imagery has been draped over a global DEM to provide a 3D view of the topography.
Similar to the ubiquitous personal computer version of Google Earth, in this VR version,
the user can navigate through the landscape. The flooded forest and extensive agriculture
surrounding the reservoir is readily apparent in this viewing experience. Because it requires
an HMD connected to a computer, the set-up is more complicated, and while there is no
temporal change in the imagery, there is a greater sense of immersion into the data than
from conventional viewing on a monitor.

Figure 16. (A) Screen recording illustrating the land cover change animation over the HPPS lentic
zone from 1984–2020 from Google Earth Timelapse. The live link can be viewed at: https://bit.ly/
3gyn5sw, accessed on 29 May 2021. (B) screen recording of the lentic zone from Google Earth VR as
seen through the Oculus Quest 2.

Virtual reality HMD and Google Cardboard compatible versions of the SfM-MVS 3D
point clouds can be viewed at https://skfb.ly/onFFS, accessed on 29 May 2021 (Corredeira
do Suplício) and https://skfb.ly/onEEp, accessed on 29 May 2021 (Ilha do Lair). The
Google Cardboard viewers are specific to the screen size of the smartphone, the version
used here was compatible with phones with screens up to 6” in size. When viewed on
and iPhone 11 Pro, the stereoscopic effect was clear with both models. Basic teleportation
within the model was also possible. The most immersive VR experience with the datasets
was when they were accessed locally with the Oculus Quest 2 through VRifier (Figure 17).
While it is not yet possible to carry out quantitative analyses within the VR platform, new
developments in the software capabilities are expected to provide such features.

Figure 17. Video of the Ilha do Lair dataset being viewed in VR with the Oculus Quest 2 HMD
in VRifier.

https://bit.ly/3gyn5sw
https://bit.ly/3gyn5sw
https://skfb.ly/onFFS
https://skfb.ly/onEEp
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4. Discussion

The Amazon Basin, roughly two-thirds of which is in Brazil, is the focus of a massive
surge in hydroelectric dam construction, with plans that would eventually convert almost
all Amazon tributaries into chains of reservoirs [49]. Greenhouse gas emissions from
the lentic zones of hydropower dams have been intensively studied, with a focus on
the high CH4 emissions [42,89–91]. Due to the increased global warming effect of CH4
in the atmosphere, the proclaimed “green” energy generation from hydroelectricity has
further been questioned [92]. For the HPPS, the estimate of yearly CH4 emission from
TROPOMI data (48–54 kt/yr) is within the range of reservoir emissions measured in
eutrophic systems [90]. As more observations become available, the seasonal variability
should be considered for a more accurate yearly estimate. For comparison, the CH4
emission from biomass burning in the legal Amazon (1992–1993) ranged from <100 kt/yr
(Amazonas, Roraima) to 1300 kt/yr (Mato Grosso) [93]. The greatest contributing factor to
the amount of CH4 emission from a reservoir is the amount of flooded vegetation that was
not cleared prior to inundation, rather than reservoir age or location [90]. In the case of
the HPPS lentic zone, flooded forest was the largest land cover class within the reservoir
boundaries accounting for 75–78% (high and low water seasons, respectively). Canopy
height data from GLAS indicated that the forest in the lentic zone was of reasonably tall
stature (up to 30 m) (Figure 10) and biomass estimates indicated a combined AGB and BGB
of 113.3 ± 38.1 Mg/ha (Figure 11).

Almeida et al. [43] estimate the 20- and 100-year C intensities of HPPS as 1052.6 and
358.3 kg CO2 eq MWh−1, respectively. The C intensity is the CO2-equivalent emissions
produced per unit electricity generated [43]. The estimate for HPPS is considerably higher
than the 20- and 100-year C intensities of the Belo Monte dam complex on the Xingu
River, one of the largest run-of-the-river dams in the world [94] (62.2 and 37.9 kg CO2
eq MWh−1) [43], but less than those of Balbina dam on the Uatumã River (12,004.5 and
3901.3 kg CO2 eq MWh−1 [43]. Under different global warming scenarios, [95] estimate
that HPPS’s 100 year C intensity could exceed 2000 kg CO2 eq MWh−1. For comparison,
the C intensity of bituminous coal thermal plants is 792 kg CO2 eq MWh−1 and 348 kg CO2
eq MWh−1 for combined cycle gas thermal plants [92]. One hundred years after inundation,
HPPS is estimated to approximate the C intensity of a natural gas thermal plant.

While other studies have used pre-existing land cover datasets (e.g., [96]), to infer the
impact of hydroelectric reservoirs on the landscape, there is substantial variability in the
amount of forest and non-forest classes in both national and global datasets [5]. Hence,
relying on such global datasets to assess the impact of hydroelectric reservoirs may not
be adequate. In our study we generated a high spatial resolution classification of the land
cover within the HPPS lentic zone leading to more precise estimates of inundated classes.
This is of particular importance for the Riparian vegetation along the small creek tributaries
of the Teles Pires. As shown by [41], fishes from small streams with Riparian forest depend
on the aquatic-terrestrial linkage for survival. The assemblages of stream fish (taxonomic
composition and trophic structure) in the small tributaries of the Teles Pires river vary
according to the structural characteristics of the water bodies, including the depth, width,
and speed of the current [97]. Changes that occur due to reservoir flooding can alter the
assemblages of fish in these environments as species from the reservoir replace the stream
fishes, now displaced to the very headwaters of the streams outside the lentic zone.

Hydroelectric projects have major impacts on fish communities [38]. Through river
connectivity fragmentation, the construction of dams on the tributaries of the large rivers
prevents annual migrations of fishes, and keystone species, now no longer able to reach
their spawning grounds in the headwaters, have suffered a decline in their populations
over time, and may eventually become extinct in the dammed rivers [37,98]. The resulting
lentic zones also leave few stretches of rapids between the dams, with serious consequences
for vulnerable rheophilic species, especially sensitive to the loss of connectivity of the river.
Our results (Figures 13 and 14) reveal the lentic zone of the HPPS encompasses important
areas with previously fast flowing current and white-water rapids inhabited by rheophile
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species. The effects of permanent change of the water level, as well as the reduced flow are
further enhanced by the absence of the seasonal flood pulse vital for the breeding cycle
for many of the migratory species in the river. The dams on the Teles Pires river eliminate
some natural barriers, such as the Sete Quedas waterfall (Teles Pires dam) [99] and species
previously restricted to the downstream sector, such as Pterodoras granulosus, have been
able to establish themselves above the waterfall in the former rapids sector of the river due
to the permanent high-water levels. Similar changes in the fish communities are expected
within the HPPS lentic zone. The riverweed plants of the family Podostomaceae also have
a life cycle closely tied to the flood pulse and the high current of the rapids. While their
vegetative state is submersed, both pollination and fruit formation occur when the plants
are entirely out of the water during the dry season. Without the flood pulse and dynamic
changes in water levels over the seasons, the plants, vital to many rheophile species, will
no longer grow in the lentic zone [100].

Most UAS can be used in a basic photogrammetry workflow (Figure 8) to acquire
the photographs needed to generate an orthomosaic or 3D model (Figures 14c, 15 and 17).
Studies such as [29,101] showed that accurate, fine spatial detail scale SfM products can be
achieved at relatively low cost. Mapping aquatic habitat complexity using this technology,
especially in the highly variable tropical environments, can help to assess habitat suitability
for many species. To do so, several studies (e.g., [22,25,27,28,102–107]) document the best
practices for acquiring UAS based data and processing options for achieving accurate
results in a range of conditions and environments. Some of the common main points for
considerations elaborated upon by those studies include:

• planning for an appropriate GSD (e.g., 1–3 cm is generally sufficient for most fine scale
applications),

• understanding the relationship between focal length, sensor size and flight altitude on
the expected GSD,

• understanding the importance of photograph quality and target type on the outcome
of the SfM workflow (e.g., the white water rapids at Corredeira do Suplício cannot be
reconstructed),

• utilizing a flight planning application and flight controller software to ensure proper
front and side overlap between photographs

• understanding the impact of file type and compression of the photographs on the
SfM products

Across the various commercial and open source software available for the SfM pro-
cessing, a plethora of studies (e.g., [108–115]) have compared the impact of software choice,
software settings, photograph pre-processing, etc., for both above and below water appli-
cations. The SfM products and datasets derived from them may become the only digital
reference data to sites that are permanently modified, in this case, the rheophile habitats
that no longer exist after inundation (Figures 14c and 15).

Data visualization is a strength of remotely sensed data and the derived analytical
products. Publicly accessible repositories and tools such as Google Earth Timelapse and
Google Earth VR provide access to archives of satellite imagery for qualitative assessment
and visualization without the need for storage or local analytical capabilities. In this
study, both platforms highlight the intensive land cover change around the HPPS reservoir
(Figure 16), and in the case of the VR visualization, the high resolution satellite imagery
also illustrates the remnants of flooded forest and permanently modified tributary creeks.
The point cloud generated from the SfM can be readily adapted for a more interactive
user experience (e.g., Figure 17). While conventional online hosting allows the user to
manipulate the model change view angle, zoom level or perspective through a basic inter-
active experience, the use of VR enhances the interactivity and sense of presence. While
modern consumer grade systems are broadly accessible and relatively low cost, there are
however, more cost-efficient alternatives such as Google Cardboard compatible viewers
which incorporate most smartphones to project the data. For remote or difficult to access
locations, examination of field sites under restrictions as faced by the global pandemic, or
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examination of digitally preserved sites that no longer exist, VR has increased value. VR
not only increases the understanding of place, but can also help develop fieldwork obser-
vational techniques, while developing data interpretation skills of increasing importance
in the future [116]. Virtual reality allows users to interact with the models and not only
gain a more real sense of the study site, but also raise broader interest in the project [117].

5. Conclusions

The licensing process in Brazil requires an environmental impact study (EIA) [118].
However, environmental impact studies are generally not standardized and none of the
studies carried out on the dams of the Teles Pires assessed the structural complexity of the
river substrate and the potential loss of micro-habitats. We advocate that standardized
freshwater habitat classifications generated from remotely sensed data should be included
in every hydroelectric EIA. The studies should not rely on pre-existing classifications which
are too coarse and often inaccurate in quantifying the aquatic-terrestrial boundaries and
precise land covers in the planned lentic zones [5,16]. Frequent revisit period, high spatial
resolution satellite imagery provides a better choice of data from which to derive landscape
classifications for use in dam construction planning and EIAs.

While the negative effects of the ongoing expansion of hydroelectric dams in Brazil
and elsewhere in the Amazon on migratory fishes has been well documented, dams have
other equally devastating effects on biodiversity such as the loss of specialized habitat for
rheophile species, or those restricted to the unique conditions of the small creek tributaries.
Their contributions to long-term GHG emissions have also become increasingly popular
areas of study for installations around the world. Multi-scale remote sensing from satellite
imagery to UAS platforms can provide data products to facilitate long-term monitoring
and assessment of hydropower dams and their impacts on the regional landscape, as well
as unique micro-habitats important for many species.
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