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Abstract: We have developed a conventional benchmark model for the prediction of two days of
electricity consumption for industrial and institutional customers of an electricity provider. This task
of predicting 96 values of 15 min of electricity consumption per day in one shot is successfully dealt
with by a dynamic regression model that uses the Seasonal and Trend decomposition method (STL)
for the estimation of the trend and the seasonal components based on (approximately) three years
of real data. With the help of suitable R packages, our concept can also be applied to comparable
problems in electricity consumption prediction.
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1. Introduction

Energy demand forecasting is an important factor for the effective management and
planning of power systems. The population growth, rising living standards, urbanization,
technological developments and industrialization have steadily raised the energy demand
across many countries [1]. For electricity providers and regulators, the accuracy of their
forecasts is crucial, as an overestimation of the respective demands might cause an excessive
production in energy, which generally is difficult and costly to store, or even a substantially
wasted investment in the construction of abundant power facilities. On the other hand, an
underestimation may result in a risky operation strategy and unmet demand, as well as an
insufficient preparation of their spinning reserves, potentially causing the system to fail in
a vulnerable region [2].

Nowadays, electricity demand is subject to a wide variety of exogenous variables,
including prevailing weather conditions, calendar effects, demographic and economic
variables, as well as the general randomness inherent in individual needs. The effective
integration of said factors into the forecasting methods in order to accurately meet the
demand load has always been a challenge for modern power industries [2]. However,
sometimes the only available information for the prediction are past consumption data
from individual customers. This prediction challenge can then only be overcome with
sophisticated prediction methods.

Since the forecasting of electricity demand is a classical problem, many forecasting
models have been developed. Traditional forecasting models are frequently used for such
problems, for example linear regression models, stochastic processes models, exponen-
tial smoothing and ARIMA (AutoRegressive Integrated Moving Average) models [3–5].
Recently, artificial neural network-based models (ANN) have been used as alternative
approaches for forecasting purposes as well, as they can potentially learn non-linear de-
pendencies in the electricity demand time series and have performed fairly well [6–8].
Furthermore, other Machine Learnings (ML) techniques such as Deep Convolution Neural
Network (CNN), Support Vector Machine (SVM), Random forest algorithm were used to
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predict SARS-CoV-2 (COVID-19) based on symptoms and for discovering new candidate
drugs and vaccines in silico diagnoses [9,10]. Among all forecasting algorithms that are
being utilized for the prediction of future wind speeds, Support Vector Regression (SVR)
and ANN are the most commonly used models [11].

There are rather few studies regarding forecasting methods for electricity consumption,
where dynamic regression models are utilized in conjunction with the STL (Seasonal and
Trend decomposition using Loess) decomposition method or where the Fourier series is
applied in order to estimate seasonalities. Tarsitano and Amerise [12] have developed a
new forecasting system for hourly electricity load in six Italian macro-regions. A seasonal
autoregressive integrate moving average process (SARIMAX) with external variables as
lagged hourly loads and calender effects together with a backward stepwise regression
for parameter estimation was performed. Badri et al. [13] make a comparison between a
variety of time series techniques, such as exponential smoothing, Box-Jenkins, and dynamic
regression. Wang, Galjanic and Johnson [14] used a dynamic regression method and a two
stage regression with ARMA (AutoRegressive Moving Average) model for predicting two
day-ahead load electricity. Both models take into account temperature values, calendar
effects, trend, seasonality and holiday components in the form of predictor variables.
They have concluded that the dynamic regression model has the best performance overall
compared to the alternative vendor developed models. Misha and Shaik [15] investigate
the performance of a Prophet method with the Seasonality and Trend analysis with Loess
(STL-ETS) method for electricity demand in regions of Texas. Tian et al. [16] combines the
STL decomposition with GRU networks, where, firstly, a decomposition of the original
data is performed via the STL method and the subsequent decomposed data are then
imported into the main prediction module, which uses two GRU (Gated recurrent unit)
networks with different structures to obtain the local and global dependencies of the data.
Qiuyu et al. [17] decomposes the load using STL into two components, a base one which
includes the trend and seasonality as well as a weather sensitive component. While the
trend and seasonality is forecasted using the Holt-Winter method, a SVR model is trained by
historical load data and meteorological data in forecasting the weather-sensitive component.
Permata et al. [18] compare dynamic harmonic regression forecasting and its hybrid version
involving calendar variation effects with double seasonal ARIMA (DSARIMA) for the
electricity load.

The purpose of this study is to develop a benchmark model that captures the overall
complexity of the electricity demand that a local electricity supplier faces on a daily basis.
Here, we particularly focus on commercial customers that consume up to 100 MWh per year
(the available data are provided by a local German electricity provider). We propose two
dynamic regression approaches that differ mainly in their method for estimating the trend
and seasonal components. Compared to other popular traditional time series models, these
approaches are rarely investigated variants. The dynamic regression model makes use of
the standard regression method to represent the relevant information from the independent
variables (such as calendar variables or past consumption values) and an ARIMA model
for the dynamic evolution of the error term to include the time series dynamics. In our
first suggestion, we use Fourier series to model the seasonal periodicities, while the second
technique uses the Seasonal and Trend decomposition using Loess method for estimating
trend and seasonal effects.

Data sets of eight individual customers, which record the respective electricity con-
sumption every fifteen minutes over the course of three years, have been provided by an
electricity provider and will serve as the foundation for our research. Based on that, both of
our proposed models will provide out-of sample forecasts for each data set. Specifically, we
choose two-days ahead, seven-days ahead, and a month ahead as our forecasting horizons.
Furthermore, the forecasting results of the electricity provider, that uses a variation of the
average method, will serve as a benchmark for our studies. We consider the root mean
square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error
(MAE) as performance measures for the quality of the forecasts delivered by the different
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methods. The results of our analysis demonstrate a clearly superior performance of the
STL-based variant of the dynamic regression approach.

The rest of our work is organized as follows. In the next section, we survey and review
the methods for modelling time series with trend and seasonality using decomposition
methods and dynamic regression models. The third section covers the conceptual issues
with respect to the data and research design. The presentation of the numerical results is the
subject of the fourth chapter. Finally, we discuss our findings and provide the conclusion in
the last section.

2. Modelling Time Series with Trend and Seasonality

A time series denotes a list of numbers, where each value is tagged with a time stamp
recording the exact time when the value was registered. The main features of many time
series are trend and seasonal variations. A trend exists when there is a long-term increase
or decrease in the data, while a seasonal pattern occurs if the time series is affected by
seasonal factors such as the time of the year or the day of the week. We will survey some
classical prediction models for such time series below.

2.1. Time Series Regression Models

As a predictive modelling technique, regression is meant to find the relationship
between a dependent (target) variable y and independent variable(s) (predictor) x. A
seasonal model containing s seasons and a trend µt is given by:

yt = µt + st + εt (1)

where st = αi when t falls in the ith season (i.e., if we have t = i + j · s for i = 1, ..., s; j =
0, 1, 2, ...) and εt is the residual error series, which may be autocorrelated. For example,
with a time series Yt observed for each calender month beginning with t = 1 at January, a
seasonal indicator model with a linear trend is given by:

yt = β1t + st + εt =

{ β1t + α1 + εt t = 1, 13, ...
β1t + α2 + εt t = 2, 14, ...

...
β1t + α12 + εt t = 12, 24, ...

(2)

The parameters for the model in Equation (2) can be estimated by the linear least
squares method via treating the seasonal term st as a ’factor’. When we have the choice
between many possible predictors, criteria for selecting the best predictors should be
used in a regression model. Popular criteria are the adjusted R2, Akaike’s Information
Criterion (AIC), Corrected Akaike’s Information Criterion (AICc) and Schwarz’s Bayesian
Information Criterion (BIC). After selecting the regression variables and fitting a regression
model, the residuals are analyzed to check the assumptions of the model. Usually, the
residuals are assumed to be identically and independently distributed and have zero
mean. Moreover, it is often useful for the residual analysis to assume that the residuals are
normally distributed with a constant variance [19].

2.1.1. Fourier Series

A popular alternative to using seasonal dummy variables as above, especially for long
seasonal periods, is to use a Fourier series approach. If m is the seasonal period, then the
Fourier terms are given by

x2k−1,t = sin
(

2kπt
m

)
, x2k,t = cos(

2kπt
m

) (3)

with k ∈ N, of course, multiplied by the corresponding Fourier coefficients.
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2.1.2. Loess Smoother

While the use of Fourier series is a global approximation method, Loess smoothers are
local approximators that are similar to the nearest neighborhood regression (see [20] for
details). The acronym Loess stands for locally estimated scatter-plot smoothing. We will
describe its principle form:

Suppose xi and yi for i = 1, ..., n are measurements of an independent and a dependent
variable, respectively. The loess regression curve f̂ (x), is a smoothing of y given x and is
computed in the following way:

1. For each i, define the weights wk(xi) depending on the distance of xk to xi, and
fit a polynomial of low degree d (often d ∈ {0, 1}) by solving the weighted least-
squares problem

n

∑
k=1

wk(xi)(yk − β0 − β1xk − ...− βdxd
k )

2

2. With the just obtained weights β̂ j(xi) define the estimator

ŷi =
d

∑
j=0

β̂ j(xi)xj
i

3. Check the residuals ei = yi − ŷi, define a robustness weight δk that relates ek to the
median of the |ei| and compute new estimates ŷi via the steps 1 and 2, but with the
weights δkwk(xi)

This procedure is repeated a few times. For exact details on the form of the distance
and the robustness weights, we refer to [21]. Note that this procedure is computationally
quite intensive, as it requires the solution of n weighted least-squares problems per iteration,
but it can explain non-linear relations by its very nature. It can also be observed as an
alternative to the nonlinear regression of the neural network form.

2.2. Time Series Decomposition

Time series can exhibit a variety of patterns, and it is often helpful to split said time
series into several components, each representing an underlying pattern category. There
are two forms of classical decompositions, additive and multiplicative decompositions.
The first method is used when the magnitude of the seasonal fluctuations, or the variation
around the trend-cycle, does not depend on the level of the time series, while the latter
is applied if the seasonal effect tends to increase as the trend increases. We say that the
data are seasonally adjusted, if all underlying seasonal components have been removed
from the original data. In the case of an additive model, the seasonal time series Yt can
be decomposed into a seasonal component St and non-seasonal components such as a
trend-cycle Tt and irregular components Rt. It is given by:

Yt = St + Tt + Rt (4)

Decomposing a time series into different components has been a main research area
for a long time. It started with Persons [22], in the early 1920s, by decomposing the time
series into its most important components. Since then many different decomposition
methods along with seasonal adjustment were suggested. The most important one is the
X-11 method developed by the Bureau of the Census in 1950s and 1960s [23]. It has been
expanded recently into the X-13ARIMA-SEATS program [24].

The STL method is a versatile and robust way of decomposing time series and was
developed by [21]. STL is an acronym for “Seasonal and Trend decomposition using Loess”.
The STL procedure is carried out in an iterated cycle of detrending and then updating
the seasonal component from the resulting sub-series. At every iteration, the robustness
weights are formed based on the estimated irregular component; the former are then used
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to down-weight outlying observations in subsequent calculations. The iterated cycle is
therefore composed of two recursive procedures, the inner and outer loops [25].

Assume our data are represented by Equation (4); the basic steps involved in STL to
produce seasonally adjusted data and trend estimation are given in the original paper of
Cleveland [21]. Suppose that the number of each seasonal periods is given by n(p). In the
inner loop, each pass n(i) applies seasonal smoothing that updates the seasonal component,

followed by trend smoothing that updates the trend component. Let S(k)
t and T(k)

t be the
seasonal and trend components at the end of the kth pass, then updating those components
into the pass k + 1 is usually conducted using the following steps:

1. A detrended series Yt − Tt is computed;
2. In the second step, the cycle-subseries are formed and smoothed on the detrended

series using Loess with h = n(s) and d = 1. For example, for a monthly series with
a yearly seasonality n(p) = 12, the first subseries consists of the January values, the
second is the February values, and so on. The collection of smoothed values for the
entire cycle-subseries is a temporary seasonal series, C(k+1)

t ;

3. A low-pass filter is applied into the smoothed cycle-subseries C(k+1)
t and consists of

the three moving averages followed one by one, where the two first moving averages
have a length of n(p), while the last has a length of 3. In the end, a Loess smoothing

with d = 1 and h = n(l) is applied, and the output is defined as L(k+1)
t ;

4. The seasonal component from the (k + 1)st loop is S(k+1)
t = C(k+1)

t − L(k+1)
t ;

5. A deseasonalized series Yt − S(k+1)
t is computed;

6. In the last step, the trend component is estimated using the deseasonalized series and

smoothing them with h = n(t) and d = 1 and is given by T(k+1)
t .

Each pass of the outer loop n(o) consists of the inner loop followed by a computation
of robustness weights and starts first by removing both the estimated seasonal and trend
components received from the inner loop. Then, the remainder is:

Rt = Yt − St − Tt

For each time point Yt, a weight is defined. These robustness weights reflect how
extreme Rt is. For example, an outlier in the data that results in a very large |Rt| will have a
small or zero weight. Therefore, introduce:

v = 6 median(|Rt|)

Then, the robustness weight at time point t is:

rt = B
(
|Rt|

v

)
where B is the bisquare weight function:

B(α) =

{
(1− α2)2 for 0 ≤ α < 1

0 for α > 1

The inner loop now is repeated, but in the smoothness of steps 2 and 6, the neighbor-
hood weight for a value at time t is multiplied by the robustness weight rt. Hence, the STL
method has 6 parameters n(p), n(i), n(o), n(l), n(t), n(s) that in practice are mostly chosen in
an automated way.

We have chosen the STL decomposition procedure as opposed to other decomposition
methods in the literature for the following reasons:

• Unlike SEATS and X11, STL can handle any type of seasonality, not only monthly and
quarterly data;
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• The seasonal component is allowed to change over time, and the rate of change can be
controlled by the user;

• The smoothness of the trend-cycle can also be controlled by the user;
• It can be robust to outliers (i.e., the user can specify a robust decomposition), so that

occasional unusual observations will not affect the estimates of the trend-cycle and
seasonal components. They will, however, affect the remainder component;

• The implementation of the STL procedure is based purely on numerical methods and
does not require any mathematical modelling.

On the other hand, the STL method also carries some disadvantages. In particular,
it does not handle the working day or calendar variation automatically, and it only pro-
vides facilities for additive decompositions [26]. However, it is also possible to handle
a multiplicative decomposition by first taking the logarithm of the data, which would
obviously emulate an additive decomposition. Following this, the transformation of the
acquired components would then need to be reversed. Decompositions that lie somewhere
in-between the additive and multiplicative can be obtained via a Box-Cox transformation
(Yλ

t − 1)/λ of the respective data with 0 < λ < 1.

2.3. Seasonal ARIMA Models

Seasonal ARIMA models (SARIMA(p, d, q)(P, D, Q)s) are linear time series of past
observations and random errors and can be defined as:

ΦP(Bs)φp(B)(1− Bs)D(1− B)dyt = ΘQ(Bs)θq(B)εt (5)

where s is the seasonal length, (1− B)d and (1− Bs)D are the nonseasonal and seasonal
differencing operators, while ΦP, φp, ΘQ, and θq are polynomials of orders P, p, Q, and q,
respectively. B is the back shift operator expressed by Byt = yt−1 and εt is a sequence of
white noises with zero mean and constant variance.

A multi-step model-building strategy for seasonal ARIMA models was introduced
in [27]. It consists of model specification, model fitting, and model diagnostics. In model
specification, the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the sample data are used to identify the orders of the ARIMA model. At
this stage, data transformation such as a Box-Cox transformation can be used to make a
time series stationary. A stationary series is one whose properties do not depend on the
time at which the series is observed. Model fitting consists of finding the best estimate of
the parameters within a given model. Methods such as maximum likelihood estimation
(MLE) and information criteria such as AICc are mainly used to determine the unknown
parameters of the model. Model diagnostics analyze the quality of the model chosen. This
phase consists of different diagnostic statistics and plots of the residuals that are used to
defined the most parsimonious model that is chosen for forecasting.

2.4. Dynamic Regression Models

Standard regression models cannot represent the delicate interdependencies of time
series dynamics that can be handled by seasonal ARIMA models. In this section, the error
term of the regression model will therefore contain auto-correlation. Suppose that we have
the observations {y1, ..., yn} which are given as a linear function of the k predictor variables
{x1,t, ...., xk,t} and the error series ηt, which follows an ARIMA model. Then, the dynamic
regression model with ARIMA(p, d, q) errors is defined as:

yt = β0 + β1x1,t + ... + βkxk,t + ηt

φp(B)(1− B)dηt = θq(B)εt
(6)

where εt is a white noise series. To estimate the parameters of the model, we minimize the
sum of squared εt values. This avoids problems with the AICc values in this setting [26].



Electricity 2023, 4 191

2.5. Average Method

An average method is a simple forecasting method, where the forecasts of all future
values are given as the average (or “mean”) of the observed values of corresponding past
observations (“historical data”) [26]. As a simple example, suppose that we are at time
t and consider the last three observations as the corresponding history, then the average
method predicts yt+1 as:

Ŷt+1 = Y =
Yt + Yt−1 + Yt−2

3

3. Predicting Electricity Consumption: Conceptual Issues

Our research aims to provide a conventional benchmark prediction model for elec-
tricity consumption. By conventional, we mean a non-neural network based approach,
specifically. Furthermore, we would like to come up with a prediction method that at least
beats the average-based method used by the electricity provider we collaborated with. The
major research questions we investigate are:

• Are dynamic regression models capable of modelling electricity consumption data
and generating acceptable forecasts?

• When is it hard to beat the average-method-variant?
• When does at least the best method perform well?
• When does no method perform well?

We will use the eight real data sets to answer these and other related questions.
On top of it, our task was to come up with a “conventional” benchmark prediction

model (no neural networks were allowed) that beats the averaging method. The exact
prediction should be all 15 min consumption amounts of the individual customer for the
next day. Even more, we were not allowed to use the data of today, as in the practical
application, they are not known before tomorrow. Thus, we had to predict 96 values ahead
in one shot which—in our minds—is quite an ambitious task.

Below, we will describe the data, the methods that we compare for predicting electricity
consumption, their actual use and the type of error measures for judging the forecasting
performance of the different methods.

3.1. Data Exploration and Analysis

As mentioned before, the energy demand data are provided by a local electricity
supplier, and, for the sake of simplicity and confidentiality, we will use an anonymous way
of abbreviation for the eight data sets displayed in Figures 1 and A1 (see Appendix A for
further time series data of electricity consumption), e.g., “D1”, “D2”, “D3”, “D4”, “D5”,
“D6”, “D7”, and “D8”. These represent high frequency data sets (96 data points per day
represented in kWh) with potentially multiple seasonalities and a weak trend component
that usually contain three years worth of observations starting from 2016. In general, the
customers’ consumption behaviors are quite heterogeneous. For example, the top diagram
in Figure 1 shows the demand for data “D2” which significantly decreases at the beginning
of every quarter. In the last diagram of Figure 1, the consumption of “D7” displays sharp
decreases during the given years. The electricity demand for data “D6” decreases smoothly
in the middle of the years, which means that the consumption is high in January and
decreases until approximately the ninth month with an increase thereafter.
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Figure 1. Electricity demand data “D2”, “D6”, “D7”—15 min values.

Moreover, the figures below provide some context regarding the general structure
as well as the characteric behavior of energy consumption. Specifically, Figure 2 displays
a very typical behavior of electricity consumption at a workplace over the course of a
workday. It is fairly intuitive that the consumption is at its lowest at the beginning of the
day and does not significantly increase until work has started early in the morning. The
peak is usually reached in the early afternoon and then starts steadily decreasing until
the workday is over. On the other hand, Figure 3 contains a boxplot that highlights some
differences between workdays and weekend days. It is evident that the consumption level
is significantly lower during the weekend, as the workload in that time period is usually
far lower as well.
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Figure 2. Electricity demand over the course of a common workday from the data set “D2”.

Figure 3. Boxplots for each weekday from the data set “D2”.

Remark 1 (Predictable anomalies). Some data points appear to be anomalies, as they represent
a very notable downward spike. Some of those instances are actually predictable in the sense that
the customer has announced a maintenance action on that time leading to a reduced electricity
consumption. Since this is not a regular event, it is hard to learn such a pattern. Even more, it will
have an impact on learning the regular variations. It would therefore be suitable to eliminate these
data points. However, since we did not have the full information on these anomalies, we could not
simply exclude them.

3.2. Research Design

In order to forecast the electricity demand, we consider two dynamic regression approaches.

3.2.1. Dynamic Harmonic Regression

Here, we use the Fourier series approach to model the seasonal periodicities. Fur-
thermore, temperature values taken from the provider Deutscher Wetterdienst [28] and
working days occurring in the same region of the local electricity supplier will be used as
predictor variables.

This model is represented by the following formula:

yt = β0 + β1t + β2x2,t + β3x3,t + ∑M
i=1 ∑Ki

k=1(β4,k cos 2πtk
pi

+ β5,k sin 2πtk
pi

) + ηt

φp(B)(1− B)dηt = θq(B)εt

(7)
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where x2,t, x3,t are predictor variables as working days and temperature values. ‘M’ cor-
responds to the number of seasonal periods. In our case, for 15 min data sets, we have
considered four seasonal periods: daily, weekly, monthly and yearly seasonality. For each
of the periods ‘pi’, the number of Fourier terms (Ki) are chosen to find the best statistical
model for a given set of data. In order to determine the adequate number of Fourier terms
corresponding to each of the periods, the AIC values of the ARIMA model with varying
Fourier terms were calculated. In order to keep a reasonable computation time, we have
restricted each Ki to be within {1, ..., 10}. As a result, for all data sets, K = (10, 8, 8, 8) were
found to be the best choice.

3.2.2. Dynamic Regression Model with STL Decomposition

The trend and seasonalities are estimated first using the STL method and then those
are included as independent variables in the regression model, as follows:

log(yt) = β0 + β1STLt + β2STLp1 + β3STLp2 + β4STLp3

+β5STLp4 + ηt

φp(B)(1− B)dηt = θq(B)εt

(8)

STLt specifies the estimated trend values from the STL method, while STLp1 , STLp2 ,
STLp3 , STLp4 are the predictor variables for the seasonal periodicities taken from the
method STL with periods p1 = 96, p2 = 672, p3 = 2922, p4 = 35,063, for the daily, weekly,
monthly and yearly seasonality, respectively. The estimated trend and seasonal periods
were obtained using R as a programming language (the hyperparameters for the ARIMA
method were found by using the auto.arima function in R. To obtain the STL parameters,
the seasonal package in R was used). For instance, Figure 4 shows an example of the
multiple STL method applied to the data D1 and gives an estimation of these components,
and, moreover, the trend and the remainder component. To properly interpret this graph, it
is important to notice the vertical scales. In this case, the trend and the monthly seasonality
have relatively narrow ranges compared to the other components: the trend decreases
until the middle of 2017 and then stays the same level for the remaining part. The monthly
seasonality is weak. Moreover, a log transformation is performed on all data sets. Estima-
tion of the Box-Cox lambda leads to a value larger than zero which suggests one to use
log-transformed data for the STL-method. However, the STL method expects an additive
decomposition, which is why it is reasonable to apply the logarithm first.

Figure 4. Multiple STL for Electricity demand data “D1”.
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To choose the appropriate model, we separate the available data into training and test
data. Three forecasting horizons, two-days, seven-days, and a month ahead, are performed
on the 15 min electricity demand data using the two approaches mentioned above. For the
dynamic regression model with the STL decomposition method, the trend and seasonal
values necessary for the test set were obtained using two techniques. Firstly, the trend
values were forecasted using a linear regression, while the seasonal values were simply
taken from the last year of the estimated component, and secondly, the trend and seasonal
values were forecasted using the STL method. Among the two techniques, we choose the
best one to report its testing results.

4. Numerical Results
4.1. Dynamic Harmonic Regression

Figures 5–8 (see Appendix A, Figures A2–A4 for other data sets) show the actual
consumption compared to the forecasted one obtained from the Dynamic Harmonic Re-
gression model, as well as the average method applied from the local electricity supplier
for all the data sets, for one month, seven days, and two days ahead of the forecasting
horizon, respectively. For example, the best time series forecasting model fitting from the
dynamic harmonic regression with temperature, working days, and the chosen Fourier
terms as independent variables and an ARIMA(2, 1, 1) model for the error term for the
data “D′′1 is given by:

yt = 1525− 0.0015trend− 4.598temp + 426.3working+

∑M
i=1 ∑Ki

k=1(β4,k cos 2πtk
pi

+ β5,k sin 2πtk
pi

) + ηt

φ2(B)(1− B)ηt = θ1(B)εt

with p1 = 96, p2 = 672, p3 = 2922, p4 = 35063, and K = (10, 8, 8, 8) and:

φ2(B) = 1− 0.7273B + 0.1427B2

θ1(B) = 1 + 0.6125B

The forecast results obtained from the Dynamic Harmonic Regression are different
depending on the forecasting horizon, as the input sets slightly differ (note that the method
gets more information for the shorter time period predictions), while the currently em-
ployed average approach remains the same over the different periods. For example, the
predictions from the two models for the three forecasting horizons of data set “D2” (see
e.g., Figure 5) do not capture the stark drop in demand, which is a result of the holidays
at the end of the year. However, a different performance of the forecasts is obtained for
the data “D6”. All three monthly, weekly, and the two daily forecasts are predicted very
well from the dynamic harmonic regression model and the average method with small
differences to the actually observed values (see, e.g., Figure 6).

Whereas the average forecasts of the data “D4” in Figure 7 yield a higher accuracy than
the dynamic harmonic regression, especially capturing the lower values on the last days of the
month, we observe a different performance for the data “D3” in Figure 8. Here, the dynamic
harmonic regression model outperforms the average approach for each of the forecast horizons,
especially for the very short forecasting period. In the Appendix A (Figures A2–A4) you will
find the forecasting results for the other data sets with analogue results.
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Figure 5. Forecastings of monthly, weekly and 2 days ahead of Dynamic Harmonic Regression and
the local electricity supplier for the data set “D2”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Harmonic Regression. First plot: monthly forecasts. Second plot: weekly
forecasts. Third plot: daily forecasts.
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Figure 6. Forecastings of monthly, weekly and 2 days ahead of Dynamic Harmonic Regression and
the local electricity supplier for the data set “D6”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Harmonic Regression. First plot: monthly forecasts. Second plot: weekly
forecasts. Third plot: daily forecasts.
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Figure 7. Forecastings of monthly, weekly and 2 days ahead of Dynamic Harmonic Regression and
the local electricity supplier for the data set “D4”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Harmonic Regression. First plot: monthly forecasts. Second plot: weekly
forecasts. Third plot: daily forecasts.

Figure 8. Cont.
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Figure 8. Forecastings of monthly, weekly and 2 days ahead of Dynamic Harmonic Regression and
the local electricity supplier for the data set “D3”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Harmonic Regression. First plot: monthly forecasts. Second plot: weekly
forecasts. Third plot: daily forecasts.

4.2. Dynamic Regression with STL

The fitted version of the Dynamic Regression with STL for data “D4” is given by:

log(yt) = −1.297 + 1.008STLt + 1.077STLp1 + 1.028STLp2 + 1.124STLp3 + 1.01STLp4 + ηt

φ1(B)ηt = θ3(B)εt

with p1 = 96, p2 = 672, p3 = 2922, p4 = 35, 063, and

φ1(B) = 1− 0.9839B

θ3(B) = 1 + 0.2253B + 0.2700B2 + 0.2399B3

Test on Individual Regression Coefficients (t Test)
Performing the t-test for the individual coefficients on the regression part, we found

that the temperature and working days did not prove to be significant for the model and
therefore they were removed. The statistics for the model corresponding to the remaining
variables are given below. We have obtained similar results when performing the analysis
for the remaining data sets.
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Residuals : Min 1Q Median 3Q Max
−2649.28 −341.56 3 . 9 1 347 .19 2328 .30
C o e f f i c i e n t s :
Est imate Std . Error t value Pr(>| t |)
( I n t e r c e p t ) −1.297428 7 .999×10 −5.071 3 . 9 6×10−07

* * *
STL_t 1 .088×10 1 .747×10−02 62 .286 < 2×10−16

* * *
STL_p1 1 .07 7×10 5 .120×10−03 210 .315 < 2×10−16

* * *
STL_p2 1 .02 8×10 2 .901×10−03 354 .392 < 2×10−16

* * *
STL_p3 1 .12 4×10 6 .259×10−03 179 .633 < 2×10−16

* * *
STL_p4 1 .01 0×10 2 .268×10−03 445 .197 < 2×10−16

* * *
−−−
S i g n i f . codes : 0 * * * 0 .001 * * 0 . 0 1 * 0 . 0 5 . 0 . 1 1
Residual standard e r r o r : 516 .5 on 102233 degrees of freedom
Mult iple R−squared : 0 . 8 0 4 1 , Adjusted R−squared : 0 .8041
F− s t a t i s t i c : 8 . 393×104 on 5 and 102233 DF, p−value : < 2 . 2×10−16

The forecasted values of the STL method outperform the average method on all the
data sets. For example, for the data “D3” (see Figure 9), the dynamic regression with STL
has captured the trend and seasonal components in the data quite well without the need
for further independent variables, as included in the first proposed model. Even though
the forecasts for the monthly, weekly, and daily values obtained from the STL method are
better than those of the average method, there is some unusual behavior that the dynamic
regression with STL did not manage to capture. This can be observed for the monthly and
weekly forecasting results for the data “D2” (see Figure 10).

Figure 9. Cont.
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Figure 9. Forecastings of monthly, weekly and 2 days ahead of Dynamic Regression with STL and the
local electricity supplier for the data set “D3”. Red: Actual Demand. Black: local electricity supplier.
Blue: Dynamic Regression with STL. First plot: monthly forecasts. Second plot: weekly forecasts.
Third plot: daily forecasts.

Figure 10. Forecastings of monthly, weekly and 2 days ahead of Dynamic Regression with STL and
the local electricity supplier for the data set “D2”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Regression with STL. First plot: monthly forecasts. Second plot: weekly
forecasts. Third plot: daily forecasts.
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Furthermore, for regular data sets such as the values of “D6” (see Figure 11), both
models achieved good results capturing the dynamics in the series with some small differ-
ences in favour of the STL method. In general, good forecasting results of the STL method
can be observed as well for the other data sets in the Appendix A (Figures A5–A7).

Figure 11. Forecastings of monthly, weekly and 2 days ahead of Dynamic Regression with STL and
the local electricity supplier for the data set “D6”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Regression with STL. First plot: monthly forecasts. Second plot: weekly
forecasts. Third plot: daily forecasts.

4.3. Comparison of the Model Performances

The purpose of our research was to find a conventional benchmark prediction method
for electricity consumption. To this end, we have developed two dynamic regression
forecasting models and compared them with the average method used by the electricity
provider. As stated in the introduction, we have considered the RMSE, MAPE and MAE in
order to measure and compare the forecasting results across the one-month, seven-day, and
two-day forecasting horizons.

With regard to the research questions posed in Section 3, the results shown in Tables 1–3
below demonstrate that dynamic regression models are capable of capturing the complexity
of the electricity demand, especially combined with the seasonal and trend adjustment
approach using the STL method. However, it was hard to beat the average method when
the data contained outliers caused by planned maintenance by the customer, information
that has been provided to the electricity provider in advance (see also Remark 1). Notably,
this was the case with data set “D4” (see Figure 7). In fact, this is the only instance where
the forecasting of the electrity provider outperformed the dynamic regression with STL.

On the other hand, the dynamic regression method with STL outperforms the other
methods in terms of RMSE, MAPE and MAE for every single data set. The estimation
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of the seasonality and the trend by the STL method was proved to capture the relevant
information in the data, especially for shorter periods as well as holiday periods. This is
evident even from just taking a look at the Figures A5–A7. The results computed from
the dynamic harmonic regression, where the Fourier series approach is used to estimate
the seasonal periodicities in our data, mainly provide good performance measures when
the seasonality patterns do not change over time. As they are assumed to be fixed in the
Fourier series approach, the estimates become worse when the dynamic regression with
STL proves to be quite accurate in its forecasting.

The dynamic regression models fail to predict in some periods when there are some
unusual jumps such as reductions of workloads occurring in the data and where usually
the average method of the electricity provider works well. Of course, the latter is modified
by using this additional information provided by the customer in advance, information
that the dynamic regression methods did not have. Thus, one should not consider this as
a better performance of the average method. Further, this simple average method does
not always capture the trend in the data, especially when there are sudden changes in the
consumption (that have not been announced to the provider) that do not occur regularly
over time. Hence, the forecasts provided from this method do not really approximate the
real consumption.

In general, for the time series demonstrating a close to regular behaviour in time, the
forecasting performances of the three methods are quite close. Examples of data sets where
this is the case are: “D1”, “D6”, or “D8”. A completely different situation can be observed
in the case of the data set “D7”, where the dynamic regression with STL proves superior to
the dynamic harmonic regression across all three forecasting horizons, which clearly beats
the average method on its own.

Interestingly enough, the proposed methods perform differently depending on the
forecasting horizon. The dynamic regression with STL intuitively improves for shorter
forecasting horizons. Contrary to that, the dynamic harmonic regression exhibits the exact
opposite behavior and improves for longer forecasting horizons.

For the sake of completion, we provide the forecasting results of the consumption for
two days ahead where the test set now is November 2018 (see Table A1 in the Appendix A).
Once again, the dynamic regression method with the STL adjustment approach demonstrates
the best performance when compared to the average method and is the best model overall.

Table 1. Comparison of the forecasting methods for a forecasting horizon of one month.

Data Model RMSE MAPE MAE

“D1” Average Method 526.37 52.99 395.51
Dynamic Harmonic Regression 658.13 50.65 536.50
Dynamic Regression with STL 502.12 40.52 365.18

“D2” Average Method 1301.08 89.18 811.46
Dynamic Harmonic Regression 1099.71 78.34 725.62
Dynamic Regression with STL 953.37 62.12 721.95

“D3” Average Method 1138.69 366.40 908.28
Dynamic Harmonic Regression 813.07 280.83 753.46
Dynamic Regression with STL 403.32 74.34 302.41

“D4” Average Method 891.80 35.19 675.77
Dynamic Harmonic Regression 1455.22 70.84 1263.73
Dynamic Regression with STL 1095.55 23.65 769.45

“D5” Average Method 1374.82 93.59 966.60
Dynamic Harmonic Regression 1290.3 98.48 1017.46
Dynamic Regression with STL 1250 48.33 865.28

“D6” Average Method 244.05 13.55 176.53
Dynamic Harmonic Regression 253.86 14.49 203.80
Dynamic Regression with STL 200.88 12.03 161.64
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Table 1. Cont.

Data Model RMSE MAPE MAE

“D7” Average Method 672.27 173.25 548.95
Dynamic Harmonic Regression 402.88 96.73 324.12
Dynamic Regression with STL 354.39 48.57 270.09

“D8” Average Method 746.45 Inf 561.90
Dynamic Harmonic Regression 838.06 Inf 705.59
Dynamic Regression with STL 723.57 Inf 580.34

Table 2. Comparison of the forecasting methods for a forecasting horizon of seven days.

Data Model RMSE MAPE MAE

“D1” Average Method 810.40 154.53 715.87
Dynamic Harmonic Regression 467.06 86.48 370.42
Dynamic Regression with STL 365.18 49.90 256.27

“D2” Average Method 2592.55 357.94 2512.66
Dynamic Harmonic Regression 2130.54 303.97 1914.59
Dynamic Regression with STL 2044.07 280.74 1913.46

“D3” Average Method 1396.29 694.94 1266.59
Dynamic Harmonic Regression 884.68 478.95 867.47
Dynamic Regression with STL 116.17 58.51 104.95

“D4” Average Method 527.80 53.55 450.46
Dynamic Harmonic Regression 1136.01 103.28 1000.73
Dynamic Regression with STL 225.77 13.86 163.78

“D5” Average Method 2179.19 310.30 1645.88
Dynamic Harmonic Regression 1742.89 283.96 1507.42
Dynamic Regression with STL 158.46 22.99 124.11

“D6” Average Method 379.64 28.96 323.32
Dynamic Harmonic Regression 277.45 21.48 228.75
Dynamic Regression with STL 171.56 13.97 152.21

“D7” Average Method 647.05 287.58 591.61
Dynamic Harmonic Regression 486.13 183.64 385.78
Dynamic Regression with STL 41.55 16.80 34.62

“D8” Average Method 869.15 201.53 713.78
Dynamic Harmonic Regression 828.33 340.48 731.67
Dynamic Regression with STL 700.69 76.51 452.43

Table 3. Comparison of the forecasting methods for a forecasting horizon of two days.

Data Model RMSE MAPE MAE

“D1” Average Method 475.24 132.80 448.74
Dynamic Harmonic Regression 686.95 141.99 510.26
Dynamic Regression with STL 149.91 36.69 126.49

“D2” Average Method 2678.93 478.91 2622.51
Dynamic Harmonic Regression 1475.34 253.16 1364.24
Dynamic Regression with STL 537.83 88.02 481.78

“D3” Average Method 1365.10 699.81 1241.89
Dynamic Harmonic Regression 104.87 50.17 89.20
Dynamic Regression with STL 91.96 46.28 81.54

“D4” Average Method 230.65 16.49 213.28
Dynamic Harmonic Regression 1149.15 80.77 1028.17
Dynamic Regression with STL 247.50 15.38 200.62
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Table 3. Cont.

Data Model RMSE MAPE MAE

“D5” Average Method 873.30 149.50 796.78
Dynamic Harmonic Regression 1339.25 177.18 938.68
Dynamic Regression with STL 114.59 17.67 93.82

“D6” Average Method 220.30 20.57 210.58
Dynamic Harmonic Regression 366.04 31.05 303.20
Dynamic Regression with STL 107.33 8.47 85.51

“D7” Average Method 395.63 168.81 339.67
Dynamic Harmonic Regression 428.61 173.86 349.50
Dynamic Regression with STL 49.28 23.71 47.93

“D8” Average Method 727.85 37.68 665.43
Dynamic Harmonic Regression 1780.46 91.34 1721.95
Dynamic Regression with STL 669.09 37.08 645.56

5. Conclusions

As a result of our research, we have developed and tested two dynamic regression
methods for predicting the electricity consumption of individual industry customers of
a local German electricity provider. While the method using a Fourier series approach
was not able to beat the average method used by the electricity provider in a convincing
way, the second dynamic regression model that used the STL approach for modelling the
trend and seasonal components proved to be the best method among the three methods
considered. It was able to capture the overall complexity of the electricity demand that a
local electricity supplier faces on a daily basis.

To demonstrate this, we considered the forecasting behaviour of the methods on
three forecasting horizons, two days, seven days, and a month ahead, for the 15 min
electricity demand data. The forecasting results were assessed on the basis of the error
measures RMSE, MAPE, and MAE. As a consequence of our statistical and conceptual
analysis, we clearly recommend the use of the dynamic regression approach in conjunction
with STL as a (non-neural network) benchmark model for the prediction of the electricity
demand/consumption of individual customers for the next day (where in our concrete
application we do not even know today’s consumption of the customer).

The lack of full information on the data sets (due to confidentiality) limited the success
of the dynamic regression models to an extent. If one has more information about each
customer, one can extend the model where such anomalies would be easily captured by the
models. Our work on Dynamic regression methods can be viewed as a starting point for
the industry partner application to forecast electricity consumption. Future work could
consider other seasonal and trend estimation methods, such as X13-ARIMA-SEATS, or
TBATS models, which use a combination of Fourier terms with an exponential smoothing
state space model and a Box-Cox transformation for seasonality estimation. An alterna-
tive to Dynamic regression methods are hybrid approaches with different architectures
from the supervised machine learning techniques, such as neural networks or recurrent
neural networks.
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Figure A1. Electricity demand data “D1”, “D3”, “D4”, “D5”, “D8”—15 min values.

Figure A2. Cont.
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Figure A2. Forecastings one-month ahead of Dynamic Harmonic Regression and the local electricity
supplier for the data set “D1”, “D5”, “D7”, “D8”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Harmonic Regression.

Figure A3. Cont.
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Figure A3. Forecastings 7 days ahead of the data sets “D1”, “D5”,“D7”, “D18”. Red: Actual Demand.
Black: local electricity supplier. Blue: Dynamic Harmonic Regression.

Figure A4. Cont.
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Figure A4. Forecastings 2 days ahead of the data sets “D1”, “D5”,“D7”, “D8”. Red: Actual Demand.
Black: local electricity supplier. Blue: Dynamic Harmonic Regression.

Figure A5. Cont.
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Figure A5. Forecastings one month ahead of Dynamic Regression with STL and the local electricity
supplier for the data sets “D1”, “D4”, “D5”, “D7”, “D8”. Red: Actual Demand. Black: local electricity
supplier. Blue: Dynamic Regression with STL.

Figure A6. Cont.
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Figure A6. Forecastings 7 days ahead of the data sets “D1”, “D4”, “D5”, “D7”, “D8”. Red: Actual
Demand. Black: local electricity supplier. Blue: Dynamic Regression with STL.
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Figure A7. Forecastings 2 days ahead of the data sets “D1”, “D4”, “D5”, “D7”, “D8”. Red: Actual
Demand. Black: local electricity supplier. Blue: Dynamic Regression with STL.
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Table A1. Comparison between dynamic regression with STL and the average method for a forecast-
ing horizon of two days in November.

Data Model RMSE MAPE MAE

“D1” Average Method 759.20 25.74 535.56
Dynamic Regression with STL 712.53 20.19 465.83

“D2” Average Method 394.81 8.52 314.64
Dynamic Regression with STL 296.42 6.33 236.57

“D3” Average Method 295.23 11.92 223.94
Dynamic Regression with STL 283.24 12.15 246.71

“D4” Average Method 869.86 13.53 724.98
Dynamic Regression with STL 803.29 12.23 649.67

“D5” Average Method 1312.93 27.15 1100.95
Dynamic Regression with STL 1276.12 26.48 1081.26

“D6” Average Method 145.23 5.93 105.05
Dynamic Regression with STL 131.7767 5.86 107.68

“D7” Average Method 215.02 9.63 171.34
Dynamic Regression with STL 191.2 9.02 156.37

“D8” Average Method 802.68 84.03 640.13
Dynamic Regression with STL 610.43 68.01 492.64
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