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Abstract: Wide-Area Power System Stabilizers (WAPSSs) are damping controllers used in power
systems that employ data from Phasor Measurement Units (PMUs). WAPSSs are capable of providing
high damping rates for the low-frequency oscillation modes, especially the inter-area modes. Oscilla-
tion modes can destabilize power systems if they are not correctly identified and adequately damped.
However, WAPSS communication channels may be subject to failures or cyber-attacks that affect
their proper operation and may even cause system instability. This research proposes a method based
on an optimization model for the design of a WAPSS robust to multiple permanent communication
failures. The results of applications of the proposed method in the IEEE 68-bus system show the
ability of the WAPSS design to be robust to a possible number of permanent communication failures.
Above this value, the combinations of failures and processing time are high and they make it difficult
to obtain high damping rates for the closed-loop control system. The application and comparison
of different optimization techniques are valid and showed a superior performance of the Grey Wolf
Optimizer in solving the optimization problem.

Keywords: power systems; power system stability; smart grids; small-signal stability; wide-area
power system stabilizer; Phasor Measurement Unit; cyber-attacks

1. Introduction

Power systems have become fundamental to the development of society and are
constantly expanding. Generating, transmitting and distributing electricity continuously,
without interruptions, with quality levels, without losses, without environmental damage
and at the lowest economic cost are the main objectives of operating power systems.
However, different types of contingencies and disturbances can occur and compromise the
proper and desired operation of power systems [1–4].

Small disturbances and contingencies can cause the emergence of low-frequency oscil-
lation modes associated with the electromechanical variables of the power system [5]. These
oscillation modes can be called local if they are in the frequency range from 0.8 to 2.0 Hz or
they can be called inter-area if they are in the frequency range from 0.1 to 0.8 Hz. If these
oscillation modes have low damping rates, oscillations may arise in the dynamic variables
of the system and, in the worst case, may cause a blackout in power systems [5].

Over the decades, different control strategies have been developed with the purpose of
improving the damping rates of low-frequency oscillation modes in the field of small-signal
stability studies [5]. The Power System Stabilizer (PSS) providing a control signal for
the Automatic Voltage Regulator (AVR) in the excitation loop of synchronous generators
proved to be effective in damping the oscillation modes, mainly the local modes [5]. Design
techniques for PSSs were proposed by the scientific community and they proved the
effectiveness of PSSs in guaranteeing stability and good dynamic performance of power
systems [6–8].

PSSs are effective in improving the damping rates of local modes, but have limited
effect in improving the damping rates of inter-area modes. The expansion of power
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systems in terms of increased generation and increased load causes the increase in inter-
area oscillation modes with low damping ratios that can also be harmful in the operation of
power systems. As PSSs are local and lack system-wide observability, they have difficulty
acting on inter-area modes [5].

The development of Wide-Area Measurement Systems (WAMSs) provided great ad-
vances in improving the observability of power systems. WAMSs are equipped with Phasor
Measurement Units (PMUs) installed in different buses of the system that measure three-
phase signals of voltage in the buses and currents in the branches with high sampling
rates and synchronization in time because they use Global Positioning System (GPS) [9].
Synchronized real-time data from power systems aroused the interest of the scientific com-
munity in developing different strategies to improve monitoring [10–14], control [15–18]
and protection [19–21] of power systems.

In the field of power system control, Wide-Area Damping Controllers (WADCs) have
been developed and consist of using data from remote system PMUs and providing addi-
tional control signals to improve the damping rates of the system’s oscillation modes. As
the use of remote data allows a greater observability of the system, the WADC is effective in
improving the inter-area modes of the system. The first control design proposals adopted
a two-level control structure where the first level is PSS design and the second level is
WADC design [22]. Thus, the operation of both PSSs and WADC improves both local and
inter-area modes of power systems.

In recent years, different WADC designs have been proposed using different tech-
niques such as linear matrix inequalities [23], linear quadratic regulators [24], metaheuris-
tics [25], deep neural networks [26] and different controllers such as WAPSSs and FACTS.
Unlike the traditional design of PSSs, the design of a WADC involves additional challenges:
(i) determining the appropriate choice of remote signals for the WADC from a strategy,
(ii) determining the choice of a model to represent and/or mitigate time delays in the
transmission of data from PMUs from remote locations, and (iii) assessing strategies to deal
with communication failures and cyber-attacks on communication channels or protocols.

With regard to the choice of remote signals, methods based on residuals, geometric
measures [27] and metaheuristic [28] were proposed and the results were effective in
the purpose of WADC to improve the dynamic performance of the system. The next
challenge in WADC design is the handling of time delays in data transmission. The authors
of [29] evaluated and concluded that time delays can worsen the dynamic performance
of the system if they are not correctly treated in the design. Different proposals have been
introduced over the years. The authors of [30] consider a fixed and maximum time delay
in data transmission represented by Padé approximations. The authors of [31] proposed
time delay compensators to act on the WADC in real time and mitigate possible problems.
The authors of [32] sought to determine allowable time delay ranges that do not affect the
control objective. The authors used artificial neural networks to estimate the time delay
and use this estimation in the control design. Research carried out so far has been effective
and contributes to the better performance of WADC in power systems.

Communication failures and cyber attacks are recent concerns in the scientific com-
munity in research dependent on PMU data. A recent cyber-attack in Ukraine caused a
blackout in the country’s power system [33]. In the field of control design research, the
authors of [34] showed that a denial-of-service attack can present a data sequence that inter-
feres with PMU data communication channels and causes the loss of this communication
channel. Thus, cyber-attacks or communication failures can affect the proper operation of a
WADC and even destabilize the entire system. Some recent works have tried to solve some
of these problems. The authors of [35–39] proposed methods to ensure that the designed
WADC is robust to one permanent loss of communication. The authors of [40] propose
a WADC design method that guarantees robustness to False Data Injection Attacks. The
authors deal with transient data loss from PMUs. The authors of [41] proposed an approach
to deal with Deceptions Attacks. The results are promising but challenges still persist and
the work is still recent.
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This article proposes a WADC design method capable of improving the damping rates
of the system’s low-frequency oscillation modes and tolerating multiple WADC channel
communication failures. The WADC will be of the WAPSS type where the representations
of the gain of each transfer function of the controller will be the key for the design of
WAPSSs which are robust to multiple communication losses. The closed-loop control
system is described in Figure 1. The proposed method consists of solving an optimization
model subject to constraints. Different metaheuristics such as Particle Swarm Optimization
(PSO), Crow Search Algorithm (CSA) and Grey Wolf Optimizer (GWO) are applied and
evaluated to solve the optimization problem. Case studies are performed and discussed
for IEEE 68-bus. Furthermore, modal analysis and dynamic simulations are applied and
evaluated. Thus, the contributions of this research can be summarized as follows:

• A new optimization model is proposed for the design of a damping controller of
the WAPSS type whose mathematical formulation is composed by a gain and a
time constant.

• A mathematical formulation is included in the optimization model through the evalu-
ation of the control structure gains to allow the WAPSS type controller to be robust to
multiple permanent communication losses.

• The WAPSS project involves solving an optimization model and thus different
metaheuristics are applied, evaluated and discussed in order to evaluate the fea-
sibility of finding a WAPSS controller capable of tolerating multiple permanent
communication losses.

The remainder of this article is organized as follows. Modeling of power systems,
time delays and control structure are described in Section 2. The proposed WAPSS design
method is presented in Section 3. Case studies are evaluated and discussed in Section 4.
The conclusions of this research are presented in Section 5.
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Figure 1. Two-level control structure composed of PSSs and the WAPSS.

2. Modeling
2.1. Power System Model

Power systems are dynamic systems composed of synchronous and asynchronous
generators, AVRs, PSSs, buses, transmission lines, transformers and other equipment whose
operating principles can be represented by non-linear differential-algebraic equations.
In control designs, these equations can be linearized around each operating point and
represented by state-space Equations (1) and (2), where x, y and u represent the vectors of
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state, output and input variables. Furthermore, matrices A, B and C are called state, input
and output matrices and n = 1, ..., Nop.

ẋ = Ax + Bu (1)

y = Cx (2)

In control projects whose objective is to improve damping rates, a modal analysis is
performed on the state matrix A to identify the eigenvalues with lower damping rates and
which the controllers need to improve.

2.2. Time Delay Model

As mentioned, time delays are inherent in PMU data dependent devices. In this
research, the second-order Padé approximation was applied [22] and can be modeled by
the transfer function (3), where T is the time delay. In this research, time delays must be
considered at the input and output of the WAPSS type controller.

H(s) =
6− 2Ts

6 + 4Ts + T2s2 (3)

The state-space equations of the transfer function are given by Equations (4) and (5).

ẋd = Adx + Bdud (4)

yd = Cdx (5)

As the power system and time delay models are known, it is possible to aggregate
them and obtain a single model in state-space given by Equations (6) and (7), where each
of the matrices Ā, B̄ and C̄ are obtained from Equations (8)–(10), respectively.

˙̄x = Āx̄ + B̄ū (6)

ȳ = C̄x̄ (7)

Ā =

 A BCdi 0
0 Adi 0

BdoC 0 Ado

 (8)

B̄ =

 0
Bdi
0

 (9)

C̄ =
[

0 0 Cdo
]

(10)

Thus, the modal analysis can be conducted on the state matrix Ā to evaluate eigenval-
ues and choose the signals that will compose the WAPSS.

2.3. Wide-Area Power System Stabilizer Model

The damping controller of this research will use data from velocity signals estimated
by data from PMUs. The objective is to improve the damping rates of the oscillation modes,
especially the inter-area oscillation modes that require a higher observability of the system.
The damping controller used in this research has multiple inputs and outputs and thus can
be represented by a matrix of transfer functions given by Equation (11), where each matrix
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element wk,m(s) is given by Equation (12), where Kk,m is the gain and T1k,m, T2k,m, T3k,m
and T4k,m are time constants.

WAPSS(s) =
[

wk,m(s)
]
=


w1,1(s) w1,2(s) · · · w1,p(s)
w2,1(s) w2,2(s) · · · w2,p(s)

...
...

. . .
...

wp,1(s) wp,2(s) · · · wp,p(s)

 (11)

wk,m(s) = Kk,m

(
T1k,ms + 1
T2k,ms + 1

)(
T3k,ms + 1
T4k,ms + 1

)
(12)

From the transfer function matrix and using Jordan’s observable canonical form, it is
possible to obtain the state-space equations defined by (13) and (14) that will be useful in
the formulation of the closed-loop control system.

ẋc = Acxc + Bcuc (13)

yc = Ccxc (14)

PMUs measure voltage and current in electrical systems and the WAPSS damping
controller applied in this research uses speed signals as input. There are methods in the
literature that estimate velocity signals from PMU data [42,43]. For these estimates to
be effective, it is necessary that PMUs be installed as close to the generators as possible,
so it was considered in this research that there is a PMU on each bus where a generator
is located.

2.4. Closed-Loop Control System Model

In control design, the design of the WAPSS is as important as its behavior in the
closed-loop control system. Different indices can be evaluated in the control system to
evaluate if the performance criteria are satisfactory and sufficient for an adequate operation
of the WAPSS.

The closed-loop control system comprises the WAPSS-type controller to be
designed (11) and the open-loop system (6) and (7). In control designs, it is usual to
assess whether the closed-loop control system meets the desired performance requirements
with the WAPSS candidate. In this research, the desired performance requirement is to
ensure that all eigenvalues of the closed-loop control system present damping rates greater
than 5%, a satisfactory index value in small-signal stability studies [44].

Thus, if we define the vector of the closed-loop system x̂ as (15), the system of equations
in state space is given by (16), where the closed-loop matrix Â is given by (17). From matrix
Â it is possible to evaluate the damping rates (ζ) of all eigenvalues (λ = σ + iω) of the
closed-loop control system through the Formula (18).

x̂ =

[
x̄
xc

]
(15)

˙̂x = Âx̂ (16)

Â =

[
Ā B̄Cc

BcB̄ Ac

]
(17)

ζ =
−σ√

σ2 + ω2
(18)

Index (18) will be essential for the WAPSS controller design and will be used in the
optimization model to achieve a desired performance criterion for the system.
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2.5. Multiple Permanent Communication Failure Problem

In control projects where there is no risk of communication failures between the
WAPSS communication channels, one can design the WAPSS and evaluate the closed-loop
control system defined by (16). However, when permanent communication failures occur,
the control system may not operate as desired. Consider the WAPSS control action defined
by (19), where ∆ωp are the measured speed signals for the p generators of the system and
that are the WAPSS inputs and VCCp are the control signals supplied by the WAPSS to the
p comparators of the automatic voltage regulators. When the i-th WAPSS input channel is
lost (∆ωi = 0), the i-th WAPSS column has no effect under the control action, and when
the j-th WAPSS output channel is lost (VCCj = 0), the j-th WAPSS row has no effect under
the control action. Thus, the permanent loss of a WAPSS channel involves zeroing a row
or column of the WAPSS transfer function matrix. As WAPSS is composed of Kk,m-gain
transfer functions (see (12)), the permanent loss of a WAPSS channel involves resetting a
Kk,m-gain row or column of the WAPSS transfer function matrix to zero.

VCC1
VCC2

...
VCCp

 =


w1,1(s) w1,2(s) · · · w1,p(s)
w2,1(s) w2,2(s) · · · w2,p(s)

...
...

. . .
...

wp,1(s) wp,2(s) · · · wp,p(s)




∆ω1
∆ω2

...
∆ωp

 (19)

WAPSS designs robust to multiple communication failures consist of considering a
combination of communication failures in the closed-loop control system evaluations. If
the control system does not present communication failures, the closed-loop control system
defined by (1) is evaluated. If the control system has p inputs and p outputs and one possible
communication failure occurs, then there are 2p possible failures of a communication
channel. If the control system has p inputs and p outputs and two possible communication
failures occur, then the total number of possible failures of a communication channel is
given by Equation (20), where Ncc is the number of communication channels and N f is the
number of faults that can occur simultaneously. If a control system has five input and five
output signals (Ncc = 0), then there are ten possible combinations of one communication
channel loss (N f = 1), 45 possible combinations of two communication channel losses
(N f = 2), and 120 possible combinations of three communication channel losses (N f = 3).
Thus, the greater the number of possible communication failures, the greater the number
of combinations that must be considered in the control design. Furthermore, the greater
the number of possible permanent failures, the greater the difficulty in finding a WAPSS-
type controller that provides high damping rates, as it must cover different combinations
of losses.

Np f cc =
Ncc!

N f !(Ncc − N f )!
(20)

3. Proposed Method

The objective is to design a WAPSS-type controller that guarantees damping rates
greater than 5% for the eigenvalues of the closed-loop control system considering multiple
permanent WAPSS communication failures. The number of possible failures (N f ) must be
defined by the designer and will be the objective of evaluation in this article. The WAPSS
design can be formulated as an optimization problem subject to constraints.

In the optimization problem, V is the vector of variables that define the WAPSS
type controller according to (21), Fobj(V, N f c) is the objective function whose inputs are
the vector V and the parameter N f c that defines the number of failure combinations to
be considered in the design and the output is the smallest damping rate ζmin among all
combinations of communication failures and the system without communication failures
(see (22)). The restrictions (23)–(25) correspond to the minimum and maximum values of
the V vector variables. In this research it was decided that the time constants T2k,m and
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T4k,m related to the WAPSS poles will be fixed during the search problem to facilitate the
convergence of the proposed method.

V =
[

K1,1 · · · Kp,p T11,1 · · · T1p,p T31,1 · · · T3p,p
]

(21)

Fobj(V, N f c) = ζmin = min


ζ0

min(Â) for N f = 0
ζ1

min(Â) for N f = 1
...

ζ
N f c
min(Â) for N f = N f c

(22)

Kmin ≤ Kk,m ≤ Kmax (23)

0 ≤ T1k,m ≤ 1 (24)

0 ≤ T3k,m ≤ 1 (25)

After defining the vector of variables V, the objective function Fobj(V, N f c) and the set
of constraints, the optimization problem for the design of a WAPSS is described in (26).

Find V
Maximize F(V, N f c)
Subject to Kmin ≤ Kk,m ≤ Kmax

0 ≤ T1k,m ≤ 1
0 ≤ T3k,m ≤ 1

(26)

The optimization problem can be solved by different types of metaheuristics available
in the scientific community. Particle Swarm Optimization (PSO) [45], Crow Search Algo-
rithm (CSA) [46] and Grey Wolf Optimizer (GWO) [47] were the chosen metaheuristics to
be evaluated and evaluate the difficulty of the optimization problem. These metaheuristics
were chosen because they perform well in engineering problems [48–53].

4. Results

The proposed method based on an optimization model described in Section 3 to design
a robust WAPSS was evaluated in a test system: the IEEE 68-bus system [54]. It is a system
composed of 16 generators, but only generators 1 to 12 have an AVR in the excitation loop.
Thus, in principle, the WAPSS could have 16 input signals coming from the measurement
of the speed signal of the 16 generators and 12 output signals that would be WAPSS control
signals sent to the 12 comparators of the 12 AVRs. Although there are this set of signals
available, it is desirable to work with few signals to avoid too many design variables of the
optimization problem.

Table 1 provides information about the oscillation modes with lower damping rates
than the case reported in [54]. One can observe the presence of two conjugated pairs of
eigenvalues with damping rates lower than 5%. A WAPSS design is recommended for
improving the damping rates of the eigenvalues of this test system.

Table 1. Eigenvalues with damping ratios less than 5%.

Case Eigenvalues Damping Ratio [%]

Base Case [54]
−0.17± 4.89i 3.39
−0.12± 3.27i 3.62

The choice of WAPSS input and output signals to be designed was performed using
the theory of geometric measures under the eigenvalues reported in Table 1. Using the
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geometric measures of observability, the speed signals of generators 12, 13, 14, 15 and
16 were chosen to be the WAPSS input signals. Applying the geometric measures of
controllability, the AVRs of generators 5, 9, 10, 11 and 12 were chosen to receive the WAPSS
control signals. Thus, the WAPSS to be designed has five input signals and five output
signals (Ncc = 10).

The WAPSS design must be robust to multiple communication failures, but there is
a limit to this number of failures as it is not possible to consider many combinations of
failures and still guarantee a damping rate greater than 5% for all eigenvalues of the control
system closed loop. Thus, the number of failures will be the objective of evaluation in
this section. From Equation (20), if we do not consider communication failures (N f = 0),
then WAPSS will have one working combination (Nwc = Np f cc(N f = 0) = 1). If we
consider one permanent communication failure, then the WAPSS will have 11 operating
combinations (Nwc = Np f cc(N f = 0) + Np f cc(N f = 1) = 1 + 10 = 11), as it must be
considered that WAPSS must operate without failures (N f = 0) and with one permanent
failure (N f = 1). If we consider two permanent communication failures, then the WAPSS
will have 56 working combinations (Nwc = Np f cc(N f = 0) + Np f cc(N f = 1) + Np f cc(N f =
2) = 1 + 10 + 45 = 56) since it must be considered that WAPSS must operate without
failures (N f = 0), with one permanent failure (N f = 1) and with two permanent failures
(N f = 2). If we consider three permanent communication failures, then the WAPSS will
have 176 working combinations (Nwc = Np f cc(N f = 0) + Np f cc(N f = 1) + Np f cc(N f =
2) + Np f cc(N f = 3) = 1 + 10 + 45 + 120 = 176) because it must be considered that WAPSS
must operate without failures (N f = 0), with one permanent failure (N f = 1), with two
permanent failures (N f = 2) and with three permanent failures (N f = 3).

After defining the signals that will compose the WAPSS, the WAPSS design can be
started. Three metaheuristics, Particle Swarm Optimization (PSO) [45], Crow Search Al-
gorithm (CSA) [46] and Grey Wolf Optimizer (GWO) [47], were applied separately on the
optimization model to assess design difficulties. The parameters of these three metaheuris-
tics are the same as those of the referenced articles. The maximum time delay allowed on
communication channels has been set to 100 ms (T = 0.1). The WAPSS poles were defined
at −25, that is, T2k,m = 0.04 and T4k,m = 0.04. The stopping criterion for the metaheuristics
was the number of epochs defined in 2000. One hundred simulations of the proposed
method were performed using each metaheuristic in four different scenarios: (S1) WAPSS
without communication failures, (S2) WAPSS with up to one communication failure, (S3)
with up to two communication failures and (S4) with up to three communication failures.
Table 2 provides the results of the hundred simulations in terms of minimum damping rate
(ζmin) (final result of the objective function) and average simulation time (tavg).

Table 2. Results of 100 simulations of the proposed method for different scenarios and metaheuristics.

Scenario Metaheuristic ζmin Minimum [%] ζmin Maximum [%] ζmin Average [%] tavg [s]

S1
PSO 9.19 12.34 10.78 351.61
CSA 10.09 12.88 11.62 359.32

GWO 11.45 13.73 13.01 361.13

S2
PSO 6.08 7.81 6.92 2810.45
CSA 6.75 8.29 7.62 2963.21

GWO 7.58 8.94 8.17 3000.94

S3
PSO 3.71 5.01 4.20 19,561.04
CSA 4.22 5.02 4.63 19,822.91

GWO 4.86 5.06 5.01 20,113.29

S4
PSO 2.02 3.31 2.78 62,339.12
CSA 2.07 3.46 2.91 62,587.38

GWO 2.31 3.62 3.03 62,806.75
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The results reported in Table 2 allow the following assessments to be made:

• As the number of miscommunication combinations increases, the damping rates
achieved for the closed-loop control system by the proposed method decrease. Thus,
there are limits to possible communication failures so as not to affect the desired
minimum rate of 5%. In this test system, it was possible to achieve damping rates
greater than 5% for scenarios S1 and S2 for the one hundred simulations of the three
metaheuristics. However, not all cases of scenario S3 provided damping rates greater
than 5%. For scenario S4, the proposed method was not able to design a WAPSS that
provides all eigenvalues with damping ratios greater than 5%. Thus, a successful
WAPSS project was possible in this test system only considering up to two possible
communication failures.

• The average time required for the proposed method to converge to the same stopping
condition increases with the number of WAPSS operation combinations. While sce-
nario S1 required an average time of 351.61 s for the PSO algorithm for one WAPSS
operation combination, scenario S4 required an average time of 62,339.12 s for the PSO
algorithm for 176 WAPSS operation combinations.

• The GWO metaheuristic provided the best minimum, maximum and average damping
rate results among all analyzed scenarios. This shows the ability of the metaheuristic
to solve the proposed method based on a constrained optimization model.

The method proposed in this research was evaluated by another existing method
in the literature described in [55]. In [55], the authors proposed a method composed of
two stages where the first stage is a method based on the theory of Linear Quadratic
Regulator (LQR) that designs a WADC robust to variations in the load level of the test
system and the second stage based on in the theory of Linear Matrix Inequality (LMI)
that designs a WADC robust to the loss of a communication channel using the WADC of
the first stage as an initial condition. This method was applied to the test system of this
research using the parameters suggested by the authors in [55] and the two poles defined
and fixed at −25. The main limitation of this method is that it does not consider multiple
communication losses. Furthermore, the method depends on good initial conditions for
good convergence in terms of high damping ratio values. Table 3 provides the oscillation
modes of the test system with the WADC type controller designed by method [55] and
Table 4 provides the damping controller parameters which in this case are the numerators
of the transfer functions. In the case of operation without failures (S1) and in the case where
at most one communication failure occurs (S2), the designed WADC controller provided
good damping rates but when two communication failures occur (S3), the damping rates
decrease a lot. This behavior was expected since the method [55] does not consider multiple
WADC communication failures in the operation of the control system.

Table 3. Oscillation modes with lower damping ratios for the WADC projected by method [55].

Scenario Eigenvalues Damping Ratio [%] Frequency [Hz]

S1 −0.1764± 3.8658i 4.5587 0.6153

S2 −0.1348± 3.3009i 4.0811 0.5254

S3 −0.0946± 3.2948i 2.8690 0.5244

Control design is based on a linearized model of power systems, but power systems
are non-linear in nature. Thus, it is recommended to evaluate the performance of the
closed-loop control system in the nonlinear system subject to contingencies. WAPSSs from
the S3 scenario were chosen from each of the metaheuristics that provided the highest
damping rates. Tables 5–7 provide the WAPSS parameters derived from the PSO, CSA and
GWO metaheuristics in solving the proposed method, respectively.
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Table 4. WADC parameters by method [55].

wk,m(s) num (s)

w5,12(s) 703.66s2 + 4088.6s + 5388.4
w5,13(s) 6.1445s2 + 45.684s + 67.693
w5,14(s) 0.67237s2 + 515.62s + 21,736
w5,15(s) 3826.9s2 + 17,998s + 20,968
w5,16(s) −4126.3s2 − 16,555s− 16,605
w9,12(s) −40.876s2 − 1041.9s− 4876.4
w9,13(s) 239.21s2 + 2538.4s + 5522.7
w9,14(s) −510.02s2 − 6599.9s− 11,198
w9,15(s) −4.6954s2 − 475.35s− 4031.5
w9,16(s) −572.04s2 − 4591.4s− 8157.8
w10,12(s) −458.34s2 − 1867.1s− 1901.5
w10,13(s) 123.45s2 + 3272.9s + 21,436
w10,14(s) 2092s2 + 13,161s + 20,664
w10,15(s) −176.72s2 − 1389.5s− 2708.9
w10,16(s) 3266.3s2 + 16,382s + 19,855
w11,12(s) −34.988s2 − 314.99s− 548.05
w11,13(s) 174.85s2 + 2501.9s + 7755.4
w11,14(s) 47.381s2 − 566s− 1473.8
w11,15(s) 28.066s2 + 4451.5s + 9223.6
w11,16(s) 76.726s2 + 370.55s + 446.71
w12,12(s) −0.19912s2 − 19.323s− 467.46
w12,13(s) 88.054s2 + 1327.9s + 2753.4
w12,14(s) 198.14s2 + 5626.7s + 18,129
w12,15(s) 857.84s2 + 5243.3s + 7200.3
w12,16(s) 803.19s2 + 5308.2s + 8436.7

Table 5. WAPSS parameters by PSO metaheuristic.

wk,m(s) Kk,m T1k,m T2k,m T3k,m T4k,m

w5,12(s) −16.5402 0.5592 0.04 0.0606 0.04
w5,13(s) 0.0004 0.9957 0.04 0.9972 0.04
w5,14(s) −6.4816 0.8639 0.04 0.6112 0.04
w5,15(s) −11.0612 0.0461 0.04 0.0034 0.04
w5,16(s) −27.4076 0.7575 0.04 0.8184 0.04
w9,12(s) 10.7709 0.1697 0.04 0.3468 0.04
w9,13(s) −12.2746 0.1851 0.04 0.0480 0.04
w9,14(s) −1.4142 0.0168 0.04 0.1490 0.04
w9,15(s) 29.8872 0.0111 0.04 0.6598 0.04
w9,16(s) −26.8707 0.2421 0.04 0.1684 0.04
w10,12(s) 18.4908 0.3625 0.04 0.0304 0.04
w10,13(s) 17.3451 0.2627 0.04 0.3628 0.04
w10,14(s) 29.9766 0.2836 0.04 0.9989 0.04
w10,15(s) −3.9717 0.9861 0.04 0.8284 0.04
w10,16(s) −4.3489 0.0004 0.04 0.0570 0.04
w11,12(s) 7.9913 0.0203 0.04 0.0822 0.04
w11,13(s) −9.4879 0.2250 0.04 0.0062 0.04
w11,14(s) 29.7505 0.1671 0.04 0.3267 0.04
w11,15(s) −4.6174 0.7932 0.04 0.9950 0.04
w11,16(s) 20.3007 0.3922 0.04 0.8807 0.04
w12,12(s) −11.9093 0.1350 0.04 0.9726 0.04
w12,13(s) 11.0332 0.0019 0.04 0.0032 0.04
w12,14(s) 29.0011 0.6899 0.04 0.0344 0.04
w12,15(s) −1.7081 0.0931 0.04 0.7725 0.04
w12,16(s) 29.9908 0.4123 0.04 0.0001 0.04
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Table 6. WAPSS parameters by CSA metaheuristic.

wk,m(s) Kk,m T1k,m T2k,m T3k,m T4k,m

w5,12(s) −3.7430 0.3420 0.04 0.5782 0.04
w5,13(s) 4.6778 0.0081 0.04 0.0035 0.04
w5,14(s) 28.5182 0.0015 0.04 0.2702 0.04
w5,15(s) −13.6251 0.0200 0.04 0.0082 0.04
w5,16(s) −29.6877 0.5851 0.04 0.6621 0.04
w9,12(s) 2.5268 0.7137 0.04 0.0578 0.04
w9,13(s) −14.6602 0.2212 0.04 0.1397 0.04
w9,14(s) −11.3322 0.9624 0.04 0.0302 0.04
w9,15(s) 29.8901 0.2761 0.04 0.2459 0.04
w9,16(s) −29.0743 0.7527 0.04 0.0402 0.04
w10,12(s) 26.6817 0.4927 0.04 0.0782 0.04
w10,13(s) 14.4967 0.2263 0.04 0.4232 0.04
w10,14(s) 29.9446 0.2982 0.04 0.9973 0.04
w10,15(s) −3.6143 0.9642 0.04 0.8272 0.04
w10,16(s) −28.6351 0.4490 0.04 0.0033 0.04
w11,12(s) 12.5779 0.3908 0.04 0.2540 0.04
w11,13(s) −4.7497 0.6370 0.04 0.0402 0.04
w11,14(s) 29.9974 0.5160 0.04 0.2353 0.04
w11,15(s) −9.5130 0.9693 0.04 0.9888 0.04
w11,16(s) 29.3620 0.8438 0.04 0.1195 0.04
w12,12(s) −19.2757 0.0986 0.04 0.8036 0.04
w12,13(s) 7.2320 0.0470 0.04 0.6114 0.04
w12,14(s) 29.2138 0.1264 0.04 0.5183 0.04
w12,15(s) −0.1861 0.0427 0.04 0.9416 0.04
w12,16(s) 20.6304 0.5813 0.04 0.0067 0.04

Table 7. WAPSS parameters by GWO metaheuristic.

wk,m(s) Kk,m T1k,m T2k,m T3k,m T4k,m

w5,12(s) 0.4276 0.0773 0.04 0.4625 0.04
w5,13(s) −3.4803 0.3052 0.04 0.3494 0.04
w5,14(s) 14.4092 0.0099 0.04 0.0202 0.04
w5,15(s) 23.5033 0.2995 0.04 0.9749 0.04
w5,16(s) 5.2672 0.0337 0.04 0.1393 0.04
w9,12(s) 5.1478 0.4183 0.04 0.3205 0.04
w9,13(s) −14.7420 0.0893 0.04 0.1538 0.04
w9,14(s) −17.8552 0.0863 0.04 0.1875 0.04
w9,15(s) 22.4971 0.4782 0.04 0.0796 0.04
w9,16(s) −29.9053 0.8810 0.04 0.0046 0.04
w10,12(s) 25.3897 0.0308 0.04 0.2533 0.04
w10,13(s) −14.2260 0.3320 0.04 0.8040 0.04
w10,14(s) 29.6497 0.7569 0.04 0.3428 0.04
w10,15(s) 2.0039 0.0176 0.04 0.7727 0.04
w10,16(s) 29.6912 0.9738 0.04 0.8466 0.04
w11,12(s) 17.6384 0.1109 0.04 0.5590 0.04
w11,13(s) 11.5153 0.3448 0.04 0.2044 0.04
w11,14(s) 15.2249 0.1957 0.04 0.2489 0.04
w11,15(s) 22.5253 0.4031 0.04 0.0524 0.04
w11,16(s) −14.1138 0.6124 0.04 0.0141 0.04
w12,12(s) −11.9294 0.9971 0.04 0.1015 0.04
w12,13(s) 9.2404 0.0584 0.04 0.0501 0.04
w12,14(s) 29.8876 0.0035 0.04 0.5081 0.04
w12,15(s) 0.0210 0.0085 0.04 0.0234 0.04
w12,16(s) −8.1757 0.9806 0.04 0.5101 0.04

A three-phase fault was applied to bus 40 of the test system during 100 milliseconds
with the designed WAPSS controllers. Figures 2–5 provide the angular responses of the
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generator 14 for the base case considering the WAPSS operating without failures, operating
with the permanent loss of the speed signal from the generator 14, operating with the
permanent loss of the control signal for the AVR 5, operating with the permanent losses of
the speed signal from the generator 14 and the control signal for the AVR 5, respectively.
Figures 6–9 provide the angular responses of the generator 14 for the base case with
disconnection of the transmission line 33–54 considering the WAPSS operating without
failures, operating with the permanent loss of the speed signal from the generator 14,
operating with the permanent loss of the control signal for the AVR 5, operating with
the permanent losses of the speed signal from the generator 14 and the control signal for
the AVR 5, respectively. It is observed that angular responses are well-damped with the
presence of WAPSS. The WAPSS designed by the GWO metaheuristic performs slightly
better than other WAPSSs in terms of angular response. The angular responses are well-
damped, even when one or two communication failures occur in the test system. However,
the WADC controller (WADC (Ref)) designed by the [55] method performed satisfactorily
only when the WADC controller operates with even one communication failure. When
two communication failures occurred, the angular responses were poorly damped for the
system with the WADC controller (WADC (Ref)).
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Figure 2. Angular response from generator 14.
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Figure 3. Angular response from generator 14 with permanent loss of speed signal from generator 14.
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Figure 4. Angular response from generator 14 with permanent loss of control signal to AVR from
generator 5.
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Figure 5. Angular response from generator 14 with permanent loss of control signal to AVR from
generator 5 and speed signal from generator 14.
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Figure 6. Angular response from generator 14 and disconnection of the transmission line 31–53.
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Figure 7. Angular response from generator 14 with permanent loss of speed signal from generator 14
and disconnection of the transmission line 31–53.
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Figure 8. Angular response from generator 14 with permanent loss of control signal to AVR from
generator 5 and disconnection of the transmission line 31–53.
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Figure 9. Angular response from generator 14 with permanent loss of control signal to AVR from
generator 5 and speed signal from generator 14 and disconnection of the transmission line 31–53.
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5. Conclusions

This work proposes a WAPSS design method robust to multiple communication
failures based on an optimization model. The developed method and the results showed
the possibility of considering multiple communication failures, but the greater the number
of combinations of communication failures, the longer the simulation time of the algorithm
and the lower the damping rates of the eigenvalues of the closed-loop control system.
Thus, it is not possible to consider several communication failures because the design
and performance of the WAPSS will not be viable. The metaheuristics applied in the
optimization model for the WAPSS design were effective with a slight superiority of the
GWO. It was observed through the achieved results that the random initial conditions of
the variables of the optimization problem result in WAPSS-type controllers with different
performances and thus different simulations may be necessary to reach a desired WAPSS.
Furthermore, different metaheuristics provide different performance and thus the choice of
metaheuristic is fundamental for solving the optimization model. Dynamic simulations
showed the ability of the closed-loop control system to present well-damped angular
responses even in the event of permanent communication failures.
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