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Abstract: Anthropoid activities are severely altering natural land cover and growing the transport
of soil, organic and inorganic compounds, nutrients, toxic chemicals, and other pollutants to the
water ecosystem. The eutrophication of the coastal water environment is one of the furthermost
bitter consequences of human activities. In this research, we have used three different satellite
images for efficient land-use land-cover (LULC) classification, comparison, and further coastal water
quality assessment over the coastal zone of the Boseong County of South Korea. The results of
LULC classification showed that Landsat-8, Sentinel-2, and WorldView-3 gave an overall accuracy of
about 74%, 82%, and 96% with Kappa coefficient of 0.71, 0.78, and 0.91, respectively. By comparing,
LULC accuracies and kappa coefficient, the very high-resolution Worldview-3 satellite imagery is
considered one of the best-suited satellite imageries for water quality assessment. The study used
recently developed algorithms for the calculation of the transparency of Secchi depth, concentration of
Chlorophyll-a, Total Phosphorus, and Total Nitrogen; whereas the eutrophication status of the coastal
water has been identified using the Carlson Trophic State Index (CTSI) method. The result show
that the medium state of eutrophication occurred nearby agricultural regions and urban settlements.
Overall, trophic status of the coastal water is ranged from 61.56 to 74.37 with a mean value of 65.63
(CTSI) and placed under the medium eutrophic state. The study analysed that the nutrient entrance
from the surrounding land cover is high and needs proper water treatment before releasing into a
coastal ecosystem. Hence, these investigations will assist the various local and international agencies
in improving the reliability of the monitoring of eutrophication state, dynamics, and potential impacts.

Keywords: eutrophic status; Landsat-8; Sentinel-2; WorldView-3; Carlson Trophic State Index (CTSI);
coastal zone; South Korea
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1. Introduction

Littoral and the pelagic coastal environment are key to socio-economic development,
and ecological and biodiversity balance in many countries. Anthropogenic activities, such
as agriculture (fertilizers), aquaculture (fish feeds), industrialization (salts), social-cultural
norms (organic wastes), and atmospheric inputs (nutrients), export as residual waste to the
coastal waters [1–5]. Residual wastes contribute to the elevated concentration of nutrients in
the water body. Excessive concentrations of Chlorophyll-a (Chl-a), Total Phosphorous (TP),
and Total Nitrogen (TN) indicate an oversupply of nutrients (nitrogen, phosphorus, etc.),
while under concentrations indicates shorting of the nutrient sources from anthropogenic
activities. High concentrations of Chl-a, TP, and TN cause eutrophication, resulting in the
development of harmful algal bloom and oxygen depletion conditions, compromising the
carrying capacity of the water body [6–10].

The Trophic State Index (TSI) is the valuable method to investigate the state of aquatic
systems and classifying the eutrophic stage. Numerous approaches have been employed
for the ranking the quality of the water bodies and to specify their trophic status. The
most applied index-based eutrophic classification of aquatic bodies is the Carlson Trophic
State Index (CTSI) [11]. CTSI is based on the combination of three or many parameters of
water quality, such as Chl-a, depth of Secchi-disc transparency (SDT) and total phosphorus
(TP) [9–11]. However, the application CTSI can be influenced by errors associated with
specific imagery technology, terrestrial locations, ecological issues, anthropogenic activities,
or inference algorithm [9,10]. In this study, Chl-a, SDT, and TP were employed to analyse
the eutrophication status of the Korean coastline water environment.

The literature review revealed that Water quality is often investigated by labour-intensive
water sampling and laboratory analysis based on ground-based observations [12–15]. This
method is improper for displaying the spatiotemporal fluctuation of larger aquatic ecosys-
tems in real-time, and is also detrimental in terms of economics, employment, etc. Due
to this considerable spatial heterogeneity, monitoring water quality by ship or boat sur-
vey becomes challenging. Oceanographic investigations that are insufficient do not fully
explain the state of eutrophication along the shoreline. Therefore, this is one of the major
motivations of this study to use very first time of high-resolution satellite data to assess the
Eutrophic status in the coastline of Korea [14–17]. In order to understand eutrophication
status and production of HABs, researchers are studying remote sensing data, by which
they are able to estimate trophic states in the coastline environment and open seas [17,18].
A number of water body colour based trophic studies has been progressed since the late
21st century from reality to simply distinguish their biophysical activities to detect trophic
state index using remotely sensed data [14,16–18]. Furthermore, the efficient classification,
comparison, and subsequent assessment of coastal water quality using high resolution
data from three separate satellite pictures (Landsat-8, Sentinel-2, and WorldView-3) have
not yet been conducted. In order to bridge this significant scientific gap, this research
was conducted.

The remote sensing techniques are capable of sorting out these challenges and are
capable of monitoring and evaluating the water quality status jointly at geographical and
temporal scales without the need for any arduous ground observation [18–20]. Due to
the rapid development of photosensitive and thermal sensors, high spatial, spectral, and
temporal resolutions were possible for water quality parameter measurements via remote
sensing [17–21]. The airborne and satellite remote sensing techniques are very fast and,
comparatively, have a lower operative cost procedure than the traditional system and can
be employed as an instrument to extract spatiotemporal variability in the water quality of
the water bodies [16–18].

This research aims to address the typical single imagery bias phenomenon by compar-
ing three advanced moderate to very high-resolution satellite images—Landsat-8, Sentinel-
2, and Worldview-3—on the coastal waters of the Korean peninsula. On the bases of the
accuracy of land-use classification, the study used the most suitable satellite imagery for
extractions of SDT, Chl-a, TP, and TN concentration. The study used CTSI for classifica-
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tion of the selected study region of the coastal environment. Furthermore, the study also
investigated the spatial influence of land-cover on the coastal water quality of the selected
study region.

2. Materials and Methods
2.1. Study Site

The chosen study zone is a section of the coastline terrain of Beolgyo in the Boseong
County of South Korea. The study range is situated inside the south of Jeollanam-do
wetland (latitude 34◦49′–34◦52′ N, longitude 127◦21′–127◦25′ E), a complicated natural and
anthropoid region. The study zone is located in the southern part of Beolgyo, Boseong
County, South Korea (Figure 1). The Korean peninsula situated in north-eastern Asia.
Nearly 75% of the land area in South Korea (roughly 38,224 square miles) is made up of
highlands and mountains. The coastal zone of South Korea has huge industrial develop-
ments, urban settlements, and concentrated aquaculture. The Korean coastal zone has
undergone various developments with the major aim of land reclamation since the last
decade of the 20th century [22–24].
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Figure 1. The location of the study area inside the southern part of Beolgyo, Boseong County,
South Korea.

The Boseong region is located in the southern coastal zone of the Korean peninsula.
It is comprised of an area of about 660 km2 and with a population of around half million
in 2014. The region has productive soil and surrounded by highlands and mountains.
The climate of the county is mostly warm and rainy, with a yearly mean temperature of
12.5 ◦C (0–1 ◦C in December-February and 20–25 ◦C in September–October), and a yearly
mean precipitation of 1600 mm [25], whereas Beolgyo is a village which located in the
municipality of the Boseong County, the province of Jeollanam-do, in the southern part of
the country, 300 km south of the country capital Seoul. The Beolgyo village is famous for
sea foods, the Korean name Kuma, and green tea. According to an updated Koppen-Geiger
climate classification map, the Beolgyo climate is humid and subtropical. An average
temperature in the region is 13 ◦C. The warmest temperature occurs in August at 24 ◦C,
and the coldest in January at 1 ◦C. The average rainfall is 1999 mm per year [26].

2.2. Remote Sensing Data

An airborne and satellite remote sensing is the valuable tools with the low operational
cost in monitoring and investigating the eutrophication status both at spatial and temporal
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scales without any painstaking ground observations [27–30]. In our study, we have used
three different satellite images, the Worldview-3, Sentimental-2, and Landsat-8 satellites to a
more inclusive identification, the satellite superiority was evaluated through a comparison
of performance evaluation, in respect to the LULC classification. The most appropriate
satellite image with the high accuracy percentage and Kappa coefficient was used for the
identification of Chl-a, SDT, TP, and TN concentrations.

2.2.1. WordView-3

Worldview-3 is a very high-resolution commercial satellite and owned by the digital
globe. It was launched in 2014 to acquire observations of the ground surface from the orbit.
It is the sixth satellite of digital globe earth observation mission satellite series, similar to
the spy satellite, but not intending military purposes. It has equipped with 29 spectral
bands, more than other sister satellites of the digital globe, QuickBird, WorldView-2,
Ikonos, GeoEye-1, and Worldview-1. The Worldview series is quite alike in terms of
the electromagnetic spectrum of the Visible (VIS) and Near Infrared (NIR) bands. In the
near-infrared (NIR) and visible electromagnetic spectra. Worldview-3 also provide very
high-resolution panchromatic spectra with a spatial resolution of about 31 cm. It also
provides eight multispectral bands with 1.24 m spatial resolution, Shortwave infrared (SWI)
with a resolution of 3.7 m, and CAVIS electromagnetic spectra at 30 m resolution. With the
addition of the four additional bands, and the conventional blue, green, and near-infrared-1
wavelengths, WorldView-2 delivers a total of six bands, whereas four new VNIR Colors
have been introduced to the VNIR Color palette: coastal (red edge), yellow (yellow edge),
and Near-IR (near-IR). Around 617 kilometres above the Earth’s surface, the Worldview-3
has a revisit time of less than a day [31–33]. With no cloud cover above our study location,
a Worldview-3 image taken on 16 July 2016, was utilized to identify Chl-a, SDT, TP, and
TN concentrations.

2.2.2. Sentinel-2

European Space Agency launched the Sentinel-2A spacecraft, which is equipped to
deliver high spatial resolution optical images of the world’s land surfaces, as part of the
Copernicus European programme on 23 June 2015 [34]. After three decades of SPOT
and Landsat, the EU’s Sentinel-2A satellite is able to take full benefit of these decades
of experience with technology and skills. The 290 km SWAT width, better resolution,
and multi-spectral imager of the Sentinel-2 satellite are all aboard the spacecraft (MSI).
It possesses thirteen different electromagnetic spectra, including the visible (VIS), near-
infrared (NIR), and short-wave infrared (433–2190 nm) wavelength ranges [35]. Using this
study’s 60 and 10 m spatial resolution bands, the 60 m spatial resolution band must be
resampled to 10 m by the nearest neighbouring method. According to the results, the best
association could be found between reflectance values and ground measurements using
Sentinel-2 imagery’s red/blue/green/coast band.

2.2.3. Landsat-8

The Landsat package has been offering images which have been functional in the earth
surface assessment since 1972 [36]. Landsat it is the longest functional continuous earth
and atmosphere observation package. The latest satellite of the Landsat programme is the
Landsat-8 satellite which eighth satellite of Landsat program. The National Aeronautics and
Space Administration (NASA) completed construction, engineering work, and procurement
of the launching vehicle, whereas the United States Geological Survey (USGS), offered for
advancement of the ground control unit [37]. Landsat-8 comprises of two sensors, OLI
(Operational Land Imager) and TRIS (Thermal Infrared Sensor). The OLI is an improved
sensor than prior Landsat satellite series. Landsat-8 provides high resolution imagery
with a spatial resolution of 15 m to 100 m. It captures around 700 ground scenes per
day and stored them in the United State Landsat programme archive [38]. The Landsat-
8 provides the finer resolution wavelength spectra than the Landsat prior series plus
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additional new aerosol/coastal band (440 nm) for detecting coastal shorelines, Chl-a, blue
green algae, and aerosol particles [39]. The Landsat image used in the following study were
freely attained from the USGS Landsat data archives (https://glovis.usgs.gov accessed
on 31 December 2021). The cloudless Landsat-8 OLI scene was utilized in the work. The
study utilized corresponding spectral bands such with other satellites for land-use land-
cover classifications.

2.3. Processing of Satellite Data

In the reference study, the Siwei Worldview Technology (Beijing, China) Company
provided the WorldView-3 image level 2A. The level 2A imagery already has an atmo-
spheric correction and radiometric calibration and was pre-georeferenced to the UTM
projection by means of WGS-84. Sentinal-2 and Landsat-8 are freely available and obtained
from the USGS Landsat programme data archives (https://glovis.usgs.gov (accessed on
31 December 2021)). For processing of the satellite image, the pixel digital numbers (DN)
were obtained from the satellite images for the latitude-longitude coordinate with respect
to observation data, whereas for radiometric calibration, DN of the original image value
was transformed into radiance values [39]. We used the following formula:

R =
DN × aCF

∆λ
(1)

The αCF is the absolute calculation factor, (m) is the effective band width, and R
(W m−2 sr−1 mm−1) is the radiance. ACF and are included in the satellite data’s meta
information. Atmospheric attenuation reduced the amount of radiation reaching the sensor.
An atmospheric correction is required to remove the effect of the atmosphere from the
image. To compensate for atmospheric conditions, ENVI (Environment for Visualizing
Images) software version 5.2 was employed in this study. The spatially varying resolution
should be resampled using the nearest adjacent method for subsequent applications, so
that all satellite images have similar spatial resolution for better interpretation, according
to this approach.

2.4. Land-Use Land-Cover Classification

Worldview-3 acquired on 16 July 2016, Sentinel-2 and Landsat-8 cloud free images,
both having nearby possible image (concurrent) date acquisition, were used as remote
sensing images in this research. The same bands of those three datasets were used in the
land-use land-cover (LULC) classification. The spatial resolution and spectral bands of
all three satellites are shown in Table 1. The landscape features comprised four major
classes were extracted using a supervised and unsupervised set of classification schemes.
A set of training samples were formed by means of polygons for the land-cover classes:
mountainous forest, agricultural land, urban settlements, and water bodies. The land-cover
features were extracted using the spectral response of each satellite scenes. The LULC
classification schemes are generally categorized as supervised and unsupervised. The
main difference between these classification schemes, training by user, and maximum
likelihood detection by computers. In supervised classification training of imagery is
involved, whereas in unsupervised classification no training is required and the interpreter
assign different classes [40–42]. Data training is the procedure of choosing random sample
data from the imagery and via it to create thresholds signatures to demarcate the specific
land-cover on the earth surface landscape. For the LULC classification, spectral signature of
around 100 samples were created from each image and employed supervised classification
in ArcGIS.

https://glovis.usgs.gov
https://glovis.usgs.gov
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Table 1. Spectral bands and spatial resolutions of the remote sensing datasets.

Landsat-8 Sentinel-2 WorldView-3
(Multispectral)

Bands Resolution
(m) Bands Resolution

(m) Bands Resolution
(m)

B-1 30 B-1 60 B-1 1.24
B-2 30 B-2 10 B-2 1.24
B-3 30 B-3 10 B-3 1.24
B-4 30 B-4 10 B-4 1.24
B-5 30 B-5 20 B-5 1.24
B-6 30 B-6 20 B-6 1.24
B-7 15 B-7 20 B-7 1.24
B-8 30 B-8 10

B-8

1.24
B-9 30 B-8a 20

-B-10 100 B-9 60

B-11 100
B-10 60
B-11 20

- - B-12 20 - -

2.5. Water Quality Parameters Assessment

Based on the accuracy of the satellite scenes for LULC mapping, imagery having
the highest accuracy and the finest spatial resolution (WorldView-3) were selected for
assessments of water quality parameters. The study used recently developed algorithms
for extraction of water quality information’s including the transparency depth of Disk [43],
that is:

SDT = 1.7351× exp
(
−2.141× B5

B3

)
(2)

For the calculation of chlorophyll-a, algorithm developed for complex coastal water
quality was used [44]:

Chl − a = 1.31 + 0.64× (B5)/(B2)2 (3)

For the estimation of TP, the band ratio model was used in this study [45]:

ln(TP) = −21.45
(

B5
B3

)
− 14.42

(
B2
B5

)
+ 42.99(B2) + 27.1 (4)

Algorithm for TN calculation [46]:

ln(TN) = B5 + B2/B5 + B5/B2 (5)

where B5, B3, and B2 are the red, green, and blue band value of the Worldview-3 multispec-
tral bands. All of the above calculation is performed using above algorithm in ENVI 5.2
(“Environment for Visualizing Images” 5.2) software.

2.6. Evaluation and Accuracy Assessment
2.6.1. Accuracy Assessment of Land-Cover Classification

The objective of accuracy assessment is to evaluate quantitatively performance of
different satellite scenes in respect to land-cover extraction. Furthermore, the main focus of
accuracy assessment was on the classes that could be obviously recognized on both satellite
images, Google earth. The maximum likelihood classification results were assessed via
ground observation and for land-cover validation.

2.6.2. Accuracy Assessment of Water Quality Parameters

Due to the geopolitical sensitivity of the Korean Peninsula, it is extremely difficult
to obtain a very high resolution prefixed the date image of WorldView-3 of the specific
predefined location. Therefore, owing to the lack of ground observation data (unavailability
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of prefixed date image), the study used the recently developed algorithm and validated
it with the previously published different algorithms [43–46]. The statistical analysis was
performed to assess the reliability of the used algorithm in the reference study with some
of the other previous study algorithm. The Root Mean Square Error (RMSE), bias, and
Pearson correlation coefficient (R) were used to study accuracy assessment [47]. The Bias is
the measure of the difference between two values [47]:

bias =

n
∑

i=1
(yi(rda)− yi(osa))

n
(6)

RMSE value is used to indicate the suitability of used algorithm [47]:

RMSE =

√√√√√ n
∑

i=1
[log{yi(rda)} − log{yi(osa)}]

n− 2
(7)

Pearson correlation coefficient (R) was calculated by the following equation:

R =

{
n
∑

i=1

(
yi(rda)− yi(rda)

)(
yi(osa)− yi(osa)

)}
√

n
∑

i=1

(
yi(rda)− yi(rda)

)2 n
∑

i=1

(
yi(osa)− yi(osa)

)2
(8)

where yi(rda) is pixel values obtained from the study results, while yi(osa) is the other
study available algorithm, and n is the total number of pixels in the study area.

TSI(Chl) = 9.81× ln[Chl(µg/L)] + 30.6 (9)

TSI(TP) = 14.42× ln[TP(µg/L)] + 4.15 (10)

TSI(SDT) = 60− 14.42× ln[SDT(m)] (11)

Carlson’s Trophic State Index (CTSI):

(CTSI) =
TSI(Chl) + TSI(TP) + TSI(SDT)

3
(12)

2.7. Adding Another Trophic Index

As Carlson [11] described that TSI is not only limited to three parameters. Thus,
another index has been developed to be employed with the basic three. Since another
nutrient, such as nitrogen, also performs a significant role in eutrophication development.
Thus, the influence of TN can be assessed by having a sister index to the TP. The TSI for TP
was developed by the Kratzer [48] by using CTSI type index for TN. The TSI index for TN
can be estimated using the following equation:

TSI(TN) = 54.45 + 14.43× ln[TN(mg/L)] (13)

3. Results
3.1. Analysis and Assessment of the Land-Cover Classification

Accuracy assessment report of Landsat-8, Sentinel-2, and WorldView-3 scenes are
shown in Table 2. Due to the spatial landscape of the chosen study region, the general
classes named urban settlement, mountainous forest, water, and agricultural farms were
considered as LULC feature classes. About 60% of the study region is covered by the
mountainous forest. Figure 2a shows that the eastern side of the coastal water is connected
with the agricultural land and urban settlement. After extracting the LULC classified image,
accuracy assessment for all three images was performed using 100 random sampling points.
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By means of the randomly selected sample assessment, the Worldview-3 classified image
presented the higher value of Kappa coefficient and higher overall accuracy, about 96%,
than Sentinel-2 and Landsat-8 classified images (Table 2). The Land-use land-cover classes
having the highest accuracy derived from the WorldView-3 satellite image is shown in
Table 2 and Figure 2a. The exact area of water body was classified by using the technique
of land-use land-cover classification system. From these accuracy assessments, it can be
deduced that high-resolution image can be best suited for water body detection and the
further assessment of the water body.

Table 2. The accuracy assessment approach between observed and land cover dataset.

Classes Landsat-8 Sentinel-2 Worldview-3

- User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

Water 66.67% 90.91% 80.00% 92.31% 100.00% 100%
Urban 70% 87.50% 70% 77.78% 90% 100%

Mountainous Forest 80% 66.67% 87% 76.47% 100% 88.24%
Crop 80% 61.54% 90% 81.82% 90% 100.00%

Overall Accuracy 74% 82% 96%
Kappa Coefficient 0.71 0.78 0.91

3.2. Accuracy Assessment of the Employed Models

The statistical analysis assessment (Table 3) shows that models used in this study are
reliable to investigate the trophic state of the coastal water by using a very high-resolution
WorldView-3 imagery. The statistical analysis show that the result is well agreed with
other regional/world-wide algorithms. The values show that the result has a high value of
correlation coefficient, low bias, and the low RMSE value for Chl-a, SDT, and TP. Hence,
this study can be reliable in monitoring and classifying the water quality status of the
selected coastal zone.

3.3. Analysis of the Trophic Status

The Carlson Trophic State Index (CTSI) of the Korean coastline environment was
determined using very high-resolution WorldView-3 imagery are shown in Figure 2b–f. The
CTSI values calculated by averaging TSI of SDT, Chl-a, and TP of the water body presented
in the image is shown in Figure 2f. The result clearly indicates that the region nearby the
cropping area, urban land, and the deep drain coming from agricultural zone have higher
TSI index as compared to the extent in other regions and is shown in Figure 2b. This means
that Chl-a nutrients loading arrived from the surrounding environment, especially the
agricultural region, which will contribute the algal growth in the Korean coastal waters [49].
TSI for Chl-a is ranged from 51.81 to 59.67, with the mean value of 55.83, which is classified
as the light eutrophic stage [9–11]. Table 3 shows that the mean value of TSI for water
clarity (the transparency of Secchi depth) is about 69.78, placed in medium trophic status
classification (Table 4), which has been linked with poor water status due to turbidity of
organic material or presence of suspended solid [50].
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Figure 2. (a) Land-use Land-cover classification map, (b) TSI of Chl-a, (c) TSI of SDT, (d) TSI of TP,
(e) TSI of TN, and (f) Overall CTSI.
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The TSI status of the major agrochemical nutrients, TP and TN are higher nearby the
cropping area and urban settlements. Which means, the major plant nutrients release from
agricultural land and other human activities. Another aspect which has been emphasized
in this research is the trophic status of SDT. It is shown in Figure 3 that the TSI value
based on SDT is the higher than other TSI of Chl-a, TP and TN. The reason for this low
water clarity is may be due to the presence of large numbers of suspended solids [49]. The
monsoon’s season along with anthropogenic activity also play a significant role in nutrient
development nearby the surrounding regions of coastal waters. The cause for this is due to
the rainy season in the prior months (June to September) in the county. Throughout the
rainy season, the water flow in the drain and cropping extent is high due to an enhancement
in surface runoff, which carries with it an augmented quantity of pollutants along with
toxic substances from the agronomic and urban settlement, thus contaminating the coastal
waters [49,51].
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The spatial variation analysis of water quality parameters provided a very good
insight for viewing and connecting with lands use and another factor for aid in decision
making and management practices [52]. As evident from LULC, the spatial view of CTSI
shows that the water body to high anthropoid activities such a cropping zone and the land
settlement has the high disposal of nutrients. Thus, the debris of numerous agrochemicals
and household discharge particles cause water bodies to become deteriorated [49,50].
Overall, CTSI of coastal water to be found in the state of medium eutrophic (Figure 3 and
Table 4), with values ranging from minimum 58.13 to maximum 67.71, with a mean value
of about 65.19. According to the trophic classification of the study region, it is evident that
based on CTSI values, the Korean coastal water zone under study falls under the categories
of medium trophic state (Table 4) [8–11,48–51]. If the present status of contaminating the
coastal water is sustained, it is forecast that the Korean coastal water may become further
deteriorated in the future.

Table 3. Statistical comparisons of used algorithm in this study with other regional/world-wide
algorithms.

Algorithms R Bias RMSE

Chl-a [53] 0.97 0.13 0.23
SDT [54] 0.79 0.07 0.02
TP [55] 0.91 0.15 0.17
TN [55] 0.89 0.21 0.22
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Table 4. Carlson Trophic Index classification [11].

Index Value Trophic Status Explanation

<30 Ultraoligotrophic The nutrients quantity is negligible. The water is almost
pure, has plenty of dissolve oxygen concentration.

30–40 Oligotrophic The nutrients quantity in water body is low. The water
is good for aquatic life

40–50 Mesotrophic The nutrients concentration is moderate. The clarity of
the water is in medium state.

50–60 Light Eutrophic
The nutrients concentration is high. Declining in water
purity. Only fish can live in warm water. Water body

need proper treatment.

60–70 Medium Eutrophic
The nutrients concentration is high. Algal

blooms development is started. Problematic for
aquatic environment.

70–80 Heavy Eutrophic The nutrients concentration is high. Harmful algal
blooms occurred

>80 Hyper Eutrophic
The nutrients concentration is very high. Algal
clamping is developed. Most of the aquatic life

including fish cannot survive

4. Discussion

Along with an increasing eutrophication status, variations in the biological and phys-
ical parameters of the water environment may expressively provide chance of harmful
algal bloom development [2–5]. The nutrient rich coastal water ecosystem has plenty
can provide colonies to the microorganism and their emergence revolute with worsen-
ing oxygen conditions and the declining transparency of water, which go together with
the development of eutrophication [56]. Generally, urban development activities had a
greater impact on water quality by changing hydrological processes like runoff and erosion,
whereas agricultural and forest-related activities had a greater impact on water quality
through their significant positive correlation with physical and chemical indicators of water
quality. Moreover, surface water quality is negatively impacted by land use for agriculture
and construction, although it is slightly improved by woodland use. In pertinent research,
correlation analysis, regression analysis, redundancy analysis, etc., are the key statistical
techniques used. Different approaches each have their own benefits and drawbacks. Re-
mote sensing monitoring technology has advanced quickly in recent years and is now a
useful instrument for managing and accessing water quality in its entirety. However, the
rise in data volume that came along with the increase in spatial resolution of remote sensing
data has complicated information interpretation and other issues. Previous studies have
investigated different water ecosystems, the numbers and biomass of different nutrients
have been increasing together with the development of eutrophication [57]. Although
early studies of eutrophication were based on lakes, pond data, the status of this process
in the ecological study is widely familiar. According to the study of Dodds [58], trophic
status is an important property of the ecosystem constructions linked to the anthropogenic
influences and water quality of streams.

The use of numerous procedures is largely resolute by the scope of the study and the
purposes of such investigations. The current work engaged the CTSI trophic assessment
with the consideration that it is a well-established and globally applied vigorous evaluating
technique and replicable procedure in view of biophysical parameters [8–11,58]. Table 4
shows that an index value between 50 to 60 is usually associated with light trophic status
named as light eutrophication (high nutrients); indexes larger than 70 are accompanying
with heavy eutrophic (high nutrient), and index numbers less than 30 are allied with
ultraoligotrophic condition (very low nutrients) of the aquatic environment [59]. If the
eutrophication status is identified using the Carlson Trophic State Index method, measuring
TSI (SDT), TSI (Chl-a), and TSI (TP) values, the current work discloses that the Korean
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coastal environment has an Index value under range from 60–70, and is thus considered to
be medium eutrophic coastal water.

Eutrophication usually occur due to the excessive amount of organic and inorganic
pollutants such as Chl-a TN and TP is a worldwide aquatic and marine water bodies
ecological issue [50]. The coastal water eutrophication can consequence in harmful algal
bloom development and deterioration of ocean water quality, which can influence on the
eco health of the marine system. The TSI offers an inclusive evaluation of the trophic state
and endorses decision making groups and association to help in managing the sustainable
eco healthy water environment. Consequently, over the previous eras, exertions have been
dedicated to the classification of the trophic states of different surface and the marine water
system [11,60,61]. Furthermost trophic classification schemes have been based on water
quality parameters, such as an organic and inorganic pollutants, chlorophyll, and biomass
production quantities. However, this study has some limitations due to geo-political
sensitivity of the region for acquiring prefixed image date. Hence, this study is lacked with
ground truth information’s. Therefore, future research is required to link the in situ data,
anthropogenic activities, environmental, and ecological conditions with the coastal waters’
eutrophication status [51].

5. Conclusions

In the current study, a eutrophic state assessment was performed for the first time using
very high-resolution Worldview-3 satellite imagery over the geo-political sensitive region of
the Korean peninsula. The LULC was classified using three different high-resolution satel-
lite images Landsat-8, Sentinel-2, and WorldView-3. On the basis of classification accuracies
and kappa coefficient, Worldview-3 imagery is selected for trophic state assessment. The
results of LULC classification showed that Landsat-8, Sentinel-2, and WorldView-3 gave an
overall accuracy of about 74%, 82%, and 96% with Kappa coefficient of 0.71, 0.78, and 0.91,
respectively. The implemented approach for assessing trophic status in the Beolgyo village
coastal water uses TSI(Chl-a), TSI(SDT), and TSI(TP), averaging them to come up with an
overall CTSI of the Korean coastal water environment. The result show that the medium
state of eutrophication occurred nearby agricultural regions and urban settlements. Overall,
trophic status of the coastal water is ranged from 61.56 to 74.37, with a mean value of 65.63
(CTSI), and placed under the medium eutrophic state. Overall, CTSI of coastal water to
be found in the state of medium eutrophic (Figure 3 and Table 4), with values ranging
from minimum 58.13 to maximum 67.71, with a mean value of about 65.19. Through the
investigation of the Korean coastal water environment nearby Boseong county recently, we
believe that coastal eutrophication is the process in which the anthrophonic debris transport
occurs resulting in the deterioration of the water quality due to the enrichment of nutrients.
The containment transport is the radical factor of coastal water eutrophication, including
the exterior engrossment, such as human activities, organic and inorganic sedimentations,
and interior contribution, such as different biophysical and chemical processes.

Based on the results of the Carlson Trophic Status Indexes, it is concluded largely;
trophic state near agriculture farms and urban settlement are high, water must be treated
before discharge and land-use management strategies should be implemented to protect
the coastal water environment. Furthermore, this study also determined that the Korean
coastal water neighbouring Boseong County is under medium eutrophic conditions. Thus,
the nutrient concentration of coastal water is high and it is dominated by the harmful algal
blooms, aquatic plants are under threatening. Our results recommended that wastewater
treatment plant in the Beolgyo village must be installed so that the water discharged from
the cropping zone and residential land could be treated, and the coastal environment can
be preserved. A revolution in land-use management strategies is obviously required in
order to protect and preserve one of the most important coastal water ecosystems.
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