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Abstract: Copper is a frequently used heavy metal worldwide and known to be an essential mi-
cronutrient for most living organisms including plants. However, excessive levels of copper in soil
may adversely affect plant growth and survival. The continuing introduction of copper to soil, e.g.,
through excessive utilization of agrochemicals has raised serious environmental concerns throughout
the world. A variety of plants have the capability to eliminate pollutants from soil through different
mechanisms; however, limited information is reported on phytoremediation potential of maize
(Zea mays L.) and its uptake and the accumulation potential in copper-containing soils. The effects of
additions of 0, 50, 100, 200 and 300 mg kg−1 of copper to soil on growth parameters of Z. mays, copper
uptake from soil and accumulation in roots and shoots, and phytoremediation potential of Z. mays
were investigated in this research. Copper content in soil and plant samples were determined using
atomic absorption spectrophotometry. The addition of 50 mg kg−1 Cu stimulated Z. mays growth
parameters, while higher content of Cu exhibited inhibitory effects of plant growth. Results indicated
that roots accumulated significantly higher levels of Cu than shoots in all treatments, suggesting
dominancy of phytostabilization mechanism in remediation of Cu-polluted soil by Z. mays. However,
translocation of Cu from the roots to the aerial parts enhanced to some extent with copper level in
soil. The greatest Cu accumulation capacity of 5210 µg per pot was gained in Z. mays cultivated in
soil treated with 200 mg kg−1 copper. Results demonstrated that Z. mays can promisingly remediate
low to moderately copper-contaminated soils.

Keywords: Z. mays; copper; phytoremediation

1. Introduction

Heavy metal contamination and their probable impacts on the food chain have been
associated with a wide range of human health risks. The accumulation of heavy metals in
a soil matrix can significantly endanger human health as well as other living organisms
life [1]. Despite many organic contaminants that can be biodegraded or naturally attenuated
in the environment, heavy metals may not be degraded through natural processes and
therefore tend to be continuously accumulated in the environment [2,3]. The occurrence
of heavy metals in agricultural soil, which can be caused by various activities such as
fertilization with fertilizers containing heavy metals, may endanger human health due to
the vulnerability of water resources and food chain. In other words, soil contamination
with heavy metals disrupts natural ecosystem services and ultimately adversely affects
the human health through food chain [4]. Heavy metals can also negatively affect central
nervous system posing mental disorder and damage other vital organs such as liver and
lungs, thereby promoting an array of diseases for humans. Several adverse impacts of
heavy metals of human health have been reported in the literature [5,6].

Heavy metals have also been recognized to endanger food security due to the rapid
rise in industrial and agricultural activities, over population as well as disruption of natural
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ecosystems [3]. It is documented that millions of sites with the area of more than 20 million
ha have been contaminated with various contaminants worldwide, with over fifty percent
of them affected by heavy metals or metalloids [7,8]. Main causes of soil contamination with
heavy metals include, but not limited to, metal plating and finishing operations, manure,
biosolids, sewage sludge, industrial wastewater, pesticides, herbicides, fertilizers, and
waste dumping [9]. Among them, agrochemicals play a significant role in the contamination
of agricultural soils. Agrochemicals, which are mainly being used in organic agriculture
contain remarkable levels of some heavy metals, e.g., copper sulfate [10,11]. Heavy metals
may enter the agro-ecosystem through natural (e.g., soils having high background levels of
such elements) and/or anthropogenic processes (e.g., application of phosphate fertilizers,
sewage sludge, urban runoff, etc.) [12]. An excessive application of agrochemicals to crops
contributes to the accumulation of chemicals in soil matrix and plant exposure [9]. Copper
(Cu) is a frequently used metal worldwide and its small quantities are considered to be
essential to promote survival of plant species. Copper is a vital micronutrient for all plant
species and its deficiency can suppress plant growth. However, high levels of copper
occurrence in soil due to excessive utilization of some agrochemicals may exhibit toxic
effects. Numerous studies have reported the Cu-induced growth inhibition, oxidative
damage and antioxidant response in agricultural food crops such as wheat, rice, maize,
sunflower and cucumber [13]. Excessive Cu levels in soil can induce formation of reactive
oxygen species (ROS) and interference with plant’s respiration and photosynthesis [14].

Typically, the required copper level for healthy growth and development of plant
species may vary with plant type [15]. Excessive concentrations of Cu in plants may reach
crucial levels at which negative effects including molecular, physiological and morpho-
logical symptoms occur in plants at all growth stages. For instance, germination of wheat
(Triticum aestivum L.) cultivated on filter papers in Petri dishes was reduced by 46% in
presence of 500 ppm Cu after one day of incubation [16] and shoot height of rice declined
by 48% in soil treated with 1000 mg kg−1 Cu compared to the control [17]. Accumulation
potential and nonbiodegradability of copper in soil make it detrimental to plant life and
human health at high concentrations [18–20]. Therefore, possibility of removal of excessive
amounts of copper from soil using maize (Z. mays) was investigated in this research. Z. mays
was selected because it is known as a tolerant and fast-growing plant species which has
been successfully employed in various phytoremediation studies [21,22] and its seeds can
be readily accessed and cultivated in most parts of the world with pretty low maintenance
requirements.

Designing and applying various approaches to remove toxic contaminants from soil
has been an area of interest over the last decades [23]. Various remediation methods,
including physicochemical and biological techniques, have been introduced for removal
of contaminants from soil; however, proper selection and application of a remediation
strategy should be made based on factors such as technical/financial constraints and
nature of pollutants in an affected site. In situ and ex situ decontamination approaches
are being practiced to remediate heavy metal contaminated soils. The ex situ approaches
such as pump-and-treatment, thermal desorption, and vitrification are mainly energy
intensive and costly [24,25]. In addition, some hazardous chemicals may be used in such
remediation methods; therefore, implying further potential risks to the environment [26].
Nowadays, there is an extensive need in removal of high levels of heavy metals from soil
using ecologically sound and cost-effective remediation approaches. Phytoremediation is
an ecologically acceptable technology through which synergistic effect of plants and their
associated microorganisms promotes remediation of soil affected with different organic and
inorganic contaminants, e.g., heavy metals [27]. It is also known as a green biotechnology,
facilitating removal of a wide range of substances from different media. A wide range of
brownfields such as fertilized farmlands, oil refineries, waste disposal sites, power plants
and agricultural sites can be managed using phytoremediation [28].

This research aimed to investigate the remediation of Cu-contaminated soil by phytore-
mediation. The impact of different contents of copper on the biomass of Z. mays; uptake and
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translocation of Cu in Z. mays cultivated in Cu-contaminated soil; accumulation capacity
and remediation capability of Z. mays to remediate copper were evaluated in this study.
High concentrations of Cu in soil may suppress Z. mays growth; however, if the plant
can still establish sufficient biomass, extraction of enough Cu from soil can be expected.
Therefore, the hypothesis of the present study was to ensure that, despite reduction in the
growth of Z. mays by Cu toxicity, sufficient biomass is still produced to extract sufficiently
high amounts of Cu from the soil.

2. Materials and Methods
2.1. Preparation and Characterization of Soil

The used soil was collected from a depth of 0–30 cm from a non-metal-contaminated
region in Southern part of Tehran, Iran. The gravel and large debris were removed by
passing the soil through a 2 mm sieve, before being air-dried at 22–25 ◦C for 7 days.
Different levels of Cu(SO4)·5H2O were added to 150 mL distilled water (DW), then mixed
with 1.5 kg soil to be placed in plastic pots. Control pots received the same amount of
DW, without addition of Cu(SO4)·5H2O. The prepared pots were incubated for 14 days
in a dark room and received tap water to maintain 75% of the field capacity. The test
soil was analyzed for the selected chemical properties using standard methods prior to
planting. For instance, phosphorous and total nitrogen were determined by the Olsen P
extracting solution and Kjeldahl measurement method, respectively [29,30], and Walkley-
Black method was used to analyze soil Organic Carbon (OC) [31]. Selected characteristics
of the test soil are provided in Table 1.

Table 1. Selected characteristics of the test soils in different phytoremediation treatments.

Treatment pH EC
(ds m−1)

OC
(%)

Total N
(%)

P
(mg kg−1)

Total Cu
(mg kg−1)

T1 (Control) † 7.81 ± 0.15 * 1.81 ± 0.04 0.78 ± 0.14 0.49 ± 0.06 8.18 ± 0.43 32.97 ± 3.41
T2 (50 mg kg−1 Cu) 7.58 ± 0.12 1.86 ± 0.08 0.69 ± 0.15 0.42 ± 0.07 7.52 ± 1.00 80.13 ± 8.38

T3 (100 mg kg−1 Cu) 7.19 ± 0.05 1.99 ± 0.11 0.62 ± 0.11 0.36 ± 0.05 6.80 ± 0.53 135.71 ± 11.30
T4 (200 mg kg−1 Cu) 6.87 ± 0.10 2.11 ± 0.10 0.57 ± 0.11 0.33 ± 0.06 5.62 ± 0.70 219.18 ± 19.75

* Values represent mean ± standard error (n = 3), † Soil Texture: Clay content (27%), Silt Content (38%), and Sand
Content (35%); Clay Loam (CL). T1, T2, T3 and T4 represent Treatment 1, Treatment 2, Treatment 3 and Treatment
4, respectively.

Acid digestion (6 mL nitric acid and 2 mL chlorohydric acid) in a microwave reaction
system was applied to determine copper content in soil. Extracts were finally analyzed for
copper concentration using an atomic absorption spectrophotometry (Perkin Elmer 700,
Boston, MA, USA) based on the standard methods [32].

2.2. Pot Experiments

Plant seeds were sown in plastic pots containing various levels of copper. Initially, five
treatments were considered, namely, T1, T2, T3, T4 and T5 (n = 3) with copper contents of 0,
50, 100, 200 and 300 mg kg−1, respectively. Applying 300 mg kg−1 copper almost completely
prevented seedling emergence and plant growth in this treatment was negligible, therefore
T5 was excluded from the reminder of the experiments and analyses. Z. mays was cultivated
in a greenhouse for 42 days, under the natural sunlight. Pots were irrigated twice or thrice a
week and monitored daily to evaluate germination rate and plant growth. After harvesting
the plants, the roots and shoots were separated carefully, root length and shoot height were
measured, then they were placed in an oven for 24 h at 70 ◦C to obtain dry biomass.

2.3. Analysis of Copper in Plant Roots and Shoots

Roots and shoots of Z. mays were initially air dried, then oven dried for 12 h at 60 ◦C.
The dried plant materials were ground to pass a 200 mesh, then extracted using digestion
method (4.0 mL HNO3 and 1.0 mL HClO4) at 100–230 ◦C. Filtration of the extracts was
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performed by MILEXHA 0.45 µm diameter filter. The total concentration of copper was
ultimately analyzed using a Perkin Elmer 700 atomic absorption spectrometer [33,34].

2.4. Translocation, Bioconcentration, and Bioaccumulation Factors and Phytoremediation Ratio

The translocation factor (TF) is an important index to evaluate capability of a given
plant species to translocate a contaminant from roots to shoots was determined in this
study. Z. mays potential to uptake copper from soil was assessed by calculation of bio
concentration factor (BCF). Bioaccumulation Coefficient (BAC) was also determined for
different treatments in this research. In addition, the phytoextraction efficiency of Z. mays
was evaluated through determination of phytoremediation ratio (PR) index. TF, BCF, BAC,
and PR values were determined using the following equations [35,36]:

TF =
Concentration o f metal in shoots
Concentration o f metal in roots

. (1)

BCF =
Concentration o f metal in roots

Concentration o f metal in test soil
(2)

BAC =
Concentration o f metal in shoots

Concentration o f metal in test soil
(3)

PR (%) =
Copper concentration in plant × dry biomass o f plant
Copper concentration in soil × Soil weight in each pot

× 100 (4)

2.5. Statistical Analysis

In this study, all statistical analyses were performed using IBM SPSS Statistics 24.
Standard errors for three replicates are presented (mean ± SE; n = 3). Significance of
differences was determined using one-way analysis of variance (ANOVA). Significance
level was considered at p = 0.05.

3. Results and Discussion
3.1. Z. mays Growth
3.1.1. Germination rate of Z. mays in Copper-Treated Soils

Applying copper concentration of 50 mg kg−1 to soil did not alter seedling emergence
in comparision with the control treatment, while gradual increase of copper content in
soil reduced seedling emergence. Addition of 100 and 200 mg kg−1 copper significantly
lessened germination of Z. mays (Figure 1).

For instance, the presence of 200 mg kg−1 copper in soil decreased Z. mays germination
by 28% in contrast to the non-contaminated treatment (p < 0.05). Ultimately, the application
of 300 mg kg−1 copper prevented germination of Z. mays in this study. In a study by
Amin et al. (2021), the addition of 200 mg/kg Cu to soil lessened germination of A. sativa
by around 55%, while germination of G. max did not occur at the same content of Cu in
soil [35]. Phytotoxicity of heavy metals to plant seeds varies among different plant species.
Toxic metals may interfere with enzymes, e.g., protease, thereby accelerate breakdown
of stored food materials in plant seeds, which can alter permeability properties of cell
membranes [37]. Reduced germination of plant species in presence of excessive quantities
of copper in soil has been reported [38]. In this study, delayed emergence of Z. mays
seedlings was also occurred due to the application of 200 mg kg−1 Cu to soil. However,
Z. mays exhibited promising toleration in presence of copper in soil in most cases.
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Figure 1. Ultimate germination of Zea mays in contaminated soil with 0, 50, 100 and 200 mg kg−1

copper. Mean values that do not share a letter are significantly different at p = 0.05 (mean ± S.E.;
n = 3).

3.1.2. Copper Toxic Impacts on Growth of Z. mays

The Z. mays biomass and length were used to evaluate the impacts of different levels
of Cu in soil on plant growth (Figures 2 and 3). Results showed that addition of 50 mg kg−1

Cu slightly increased plant biomass, in contrast to the control treatment. This is because
of the fact that copper is a beneficial micronutrient to plant growth, particularly at low
concentrations. However, addition of higher concentrations of Cu reduced plant biomass
in contrast to T1. Increased Cu content in soil caused further decrease of root biomass in
this study. For instance, addition of 200 mg kg−1 Cu reduced both root biomass and shoot
biomass significantly, in comparison with the control treatment (p < 0.05) (Figure 2).
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Figure 2. Dried biomass of Zea mays grown in contaminated soil with soil with 0, 50, 100 and
200 mg kg−1 copper after 42 days. Mean values that do not share a letter are significantly different at
p = 0.05 (mean ± S.E.; n = 3).
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Figure 3. The length of Zea mays grown in contaminated soil with soil with 0, 50, 100 and 200 mg kg−1

copper after 42 days. Mean values that do not share a letter are significantly different at p = 0.05
(mean ± S.E.; n = 3).

Biomass of the total plant became somewhat enhanced through the addition of
50 mg kg−1 Cu, whereas applying higher copper levels reduced Z. mays biomass. Presence
of 100 and 200 mg kg−1 copper in soil reduced root biomass of Z. mays by 18.72% and
32.66%, respectively. Plant growth depression upon occurrence of high levels of heavy
metals in soil was suggested to be associated with the plant type, metal speciation and
concentration [39]. Heavy metal stress can disturb plant metabolic activities, reduce pho-
tosynthesis, and decrease uptake of essential nutrients from soil, which in turn diminish
plant biomass establishment [35,40]. For instance, remarkable reduction in Fe, Zn and P
uptake in maize cultivated in copper contaminated soil was reported in the literature [41].
Selected plants for phytoremediation are preferred to have fast growth, extensive root
development capability, remarkable biomass establishment and high storage capacity for
heavy metals [42]. Based on the obtained results, Z. mays seems to be a reasonably toler-
ant and rapid growing plant which is beneficial in terms of phytoremediation potential.
Remarkable biomass establishment is also a crucial factor which can promote phytoremedi-
ation potential of plants [43]. Shoot height and root length of Z. mays in different treatments
illustrated similar trend as biomass in response to applying different levels of copper to
soil and lessened with rising copper content from 100 to 200 mg kg−1 (Figure 3).

The extension of Z. mays in T4 with the root length and shoot height of, respectively,
25.3 ± 0.3 cm and 25.8 ± 0.8 cm, was significantly suppressed compared to the plant growth
in T1 (p < 0.05). Phytotoxicity of excessive amounts of heavy metals in soil has been reported
by other authors [44,45]. The sensitivity of Z. mays biomass and length to the addition of
200 mg kg−1 copper to soil was obtained in this study, while lower levels of copper did
not inhibit plant growth significantly (p > 0.05). In other words, elongation of Z. mays root
and shoot indicated a remarkable sensibility to the presence of excessive amounts of Cu in
soil. Heavy metals can adversely affect uptake of nutrients and water, thereby reduce root
extension in soil [46]. Migration of metals such as copper from roots to shoots can act on
sensible parts of the plants, e.g., leaves and adversely affect photosynthesis process, which
can pose plant height reduction [47]. Lower levels of Cu favoured plant establishment and
growth, whereas higher Cu levels, i.e., 100 and 200 mg kg−1 in soil suppressed Z. mays
growth. Additionally, onsite observations indicated that Z. mays leaves were withered more
rapidly due to applying higher levels of copper.



Pollutants 2022, 2 59

3.2. Copper Uptake and Accumulation in Z. mays Tissues

Figure 4 shows the distribution of Cu in the roots and shoots of Z. mays for different
treatments at the end of the phytoremediation experiment. The average concentrations of
Cu in Z. mays roots were determined to be 56.0, 126.4, 237.4 and 435.8 mg kg−1 in amended
soils with 0, 50, 100, and 200 mg kg−1 copper, respectively. Phytoextraction is the principal
mechanism through which metals are eliminated from soil during a phytoremediation
process [48]. The results showed that the concentration of Cu in Z. mays roots and areal
parts became enhanced with copper content in soil. For instance, copper concentrations in
Z. mays roots and shoots in T4 were 435.8 mg kg−1 and 831.5 mg kg−1 with a significant
enhancement of 7.8 and 10.2 times, respectively, compared to T1 (p < 0.05). This is consistent
with the literature in which an increase in copper content of soil from 20 mg kg−1 to
100 mg kg−1 caused a reduction in maize growth and an increase in copper uptake from
soil [49]. This might be attributed to the higher availability of copper in soil to be up taken
by plant roots. In other words, increase in bioavailability of Cu in soil treated with higher
Cu levels could be a probable reason for that phenomenon. Metal speciation in soil is a
crucial factor in controlling metal uptake by plants. In this study, soil pH values decreased
with enhanced levels of Cu in soil (Table 1), which may alter Cu speciation in soil and make
them more accessible to be up taken by roots. Contaminant bioavailability is also a critical
factor affecting contaminant toxicity as well as the contaminant accessibility to both soil
microbes and plants. For plants to be able to remediate pollutants, they must be accessible
by the plant roots, such that plants can act on them [50]. Concentration of copper in
Z. mays roots were greater than shoots in both treated and non-treated soils, suggesting
that Z. mays roots are the preferential organ for copper storage. This is consistent with the
results reported by Korzeniowska et al. (2011) who found higher concentrations of Cu and
Zn in maize roots compared to the stems and leaves [51].
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Figure 4. Copper concentration in roots and shoots of Zea mays grown in contaminated soil with
soil with 0, 50, 100 and 200 mg kg−1 copper. Mean values that do not share a letter are significantly
different at p = 0.05 (mean ± S.E.; n = 3).

Along with concentrations, copper accumulation in Z. mays tissues is also an important
factor that determines phytoremediation capability [52]. Copper accumulation capacity of
Z. mays depends on both the copper concentration in tissues as well as biomass of a given
plant species (Figure 5). Copper accumulation capacity of Z. mays in the control treatment
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was 959.8 µg per pot, which was continually increased with Cu levels in soil. The highest
total Cu accumulation capacity was obtained to be 5210.5 µg per pot (T4). Phytoremediation
of metals can be promising when considerable concentrations of metals are up taken
and accumulated in plant tissues [9]. Phytoremediation mechanisms in remediation of
contaminants are mainly complex and not depends only on direct metabolism by plant
species [28].
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Figure 5. Copper accumulation capacity in Zea mays grown in contaminated soil with soil with 0,
50, 100 and 200 mg kg−1 copper. Mean values that do not share a letter are significantly different at
p = 0.05 (mean ± S.E.; n = 3).

The accumulation capacity of roots showed similar trend as the areal parts (Figure 5).
However, higher accumulation capacity was found in roots rather than shoots, because of
higher root biomass as well as greater Cu concentrations in root. Plant biomass reduction
due to the addition of higher concentrations of Cu to soil did not reduce Cu accumulation
capacity of Z. mays, because of the greater impact of enhanced Cu uptake in corresponding
treatments. However, aaccumulation of heavy metals in plant tissues may cause oxidative
stress as a result of evolution and accumulation of reactive oxygen species (ROS). Therefore,
excessive amounts of copper in soil may bring about remarkable oxidative stress, and
therefore remarkable damage to the antioxidant enzymes of plant species. On the other
hand, some plant species, e.g., ramie (Boehmeria nivea L.) may activate a detoxification
mechanism that partially neutralize the adverse effect of oxidative stress when exposed to
copper [53].

Heavy metals at higher levels can also change water balance and assimilation of
nutrients, which might ultimately lead to the death of the plant. Moreover, heavy metals in
soil may compete with mineral nutrients for adsorption by plant roots. This phenomenon
may result in deficiency of essential elements for plant survival, e.g., iron [54,55]. In a
previous study, increase in applied concentration of lead in soil promoted its accumulation
by plants [56]. To be brief, the obtained results suggested that Z. mays is a suitable plant
species for copper extraction from soil and its accumulation in the plant tissues, particularly
in presence of higher copper contents in soil, i.e., in T4.

3.3. Cu phytoextraction Efficiency

Translocation factors (TF), bio-concentration factors (BCF), and bioaccumulation coef-
ficients (BCF) were determined and are presented in Figure 6 in order to better demonstrate



Pollutants 2022, 2 61

the effect of variation of Cu content on phytoextraction efficiency of Z. mays. BCF and
BAC values for most treatments were found to be higher than 1, while TF values in all the
examined treatments were less than 1, suggesting that phytostabilization is the principal
mechanism by which Cu is remediated by Z. mays. However, Cu phytoextraction efficiency
of Z. mays enhanced with Cu content in soil. In other words, TF values increased in presence
of higher levels of Cu, with the greatest value of 0.8 in T4. Occurrence of heavy metals in
soil may block the plant root apex, thereby reduce plant capability to transfer heavy metals
from roots to the areal parts [57].
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Moreover, apoplastic barriers might be formed proximate to the root apex in plant
species cultivated in heavy metal contaminated soils, which reduces the translocation of
sorbed metals from roots to shoots [58]. Using fast growing plant species to remove heavy
metals from soil by phytoextraction mechanism has been encouraged in the literature [59].
When suitable plants are employed, heavy metal removal through phytoextraction can
be up to ten times less expensive than the conventional remediation techniques, with
comparable effectiveness [60]. The following five distinct phases have been recognized for
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phytoextraction: (a) adsorption of some fractions of metals at root surface, (b) sorption of
bioavailable fraction of metals via cellular membrane, (c) immobilization of small fraction
of sorbed metals by roots in vacuole, (d) entry of mobile metals into the xylem, and
(e) migration of metals from roots to the areal parts. Plant biomass enhancement as well
as increase in bioavailability of heavy metals in soil matrix can promote phytoextraction
efficiency for heavy metals [9,46].

BCF is known to be an important indicator of heavy metal accumulation capability
because the ability of plants to extract heavy metals from soil is taken into consideration for
its determination. Results indicate the increased ability of Z. mays to uptake copper from
soil when higher concentrations of copper were applied. The highest value of BCF was
obtained as be 2.0 in T4. Considerably high BCF values for Cu in Z. mays has been reported
in the literature which is mainly due to the easy uptake of copper from soil by maize [61].
BAC is also a beneficial factor gaining insight into the ratio of heavy metals accumulated in
the areal parts to that in soil. Plants exhibiting BCF values greater than one and TF values
less than 1 are suggested to be more suitable candidates to remove metals from soil through
phytostabilization [62]. Overall, results suggested that Z. mays can be categorized as Cu
phytostabilizer plant species. Based on the obtained results, Cu phytoextraction as well as
phytostabilization efficiency of Z. mays promoted with elevated levels of Cu in soil.

3.4. Phytoremediation Ratio (PR)

Phytoremediation capability of a given plant may be affected by several factors, e.g.,
pollutant bioavailability in soil, soil properties, plant type, root exudate composition, etc.
The PR values for Z. mays grown under different Cu treatments were determined in this
study and are presented in Figure 7. PR values for all the studied treatments were found to
be greater than 1%. The highest PR values was found in T2 (3.7%) followed by T1 (3.7%).
In other words, an addition of 100 and 200 mg kg−1 Cu to the soil slightly reduced PR for
Z. mays, such that applying 200 mg kg−1 of copper reduced PR by 15.5%, compared to
the control treatment. However, the differences found among the studied treatments were
not statistically significant (p > 0.05). The capability of a given plant species in removing
heavy metals from soil depends on biomass establishment as well as metal uptake and
accumulation ability. Overall, the results indicated that Z. mays is a phytoremediator plant
with a high capability to remove Cu from soil.
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4. Conclusions

The increasing occurrence of copper in soil can endanger food safety for the upcom-
ing years, which necessitates the application of eco-friendly and effective approaches to
remove excessive amounts of copper from soil. Copper uptake from soil by Z. mays and
accumulation capacity of its roots and shoots have not been investigated extensively and
have therefore been addressed in this research. This study investigated the capability of
Z. mays to remediate soil contaminated with different levels of copper. The results indicate
that Z. mays is a promising plant species to remediate Cu from soil contaminated with
low to medium levels of Cu. Furthermore, we found that Z. mays is a tolerant plant and
could establish considerable biomass over the period of the experiment. The addition of
low concentrations of Cu, i.e., 50 mg kg−1 supported Z. mays growth compared to the
control treatment. However, the greater levels of Cu in soil exhibited adverse effects on
plant growth. An addition of Cu to soil (50–200 mg kg−1) enhanced Cu concentration in
Z. mays roots and shoots, compared to the control treatment. Higher concentrations of
the applied Cu to soil effectively enhanced the capacity of Z. mays for copper. Greater
accumulation of copper in Z. mays roots rather than the shoots for all treatments suggesting
that phytostabilization might be the principal mechanism in phytoremediation of copper
using Z. mays. Along with phytostabilization, Cu phytoextraction efficiency was also
boosted by applying higher concentrations of Cu to soil. High values of BAC, BCF and PR
suggested that Z. mays is a promising plant to uptake and accumulate Cu from soil. Overall,
phytoremediation of copper contaminated soils by Z. mays was found to be promising
approach to manage copper-contaminated soils, particularly at low to moderate Cu levels.
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