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Abstract: The results of calculations by the DFT method with the exchange–correlation functional
B3LYP 6–31 G** of the electronic and spatial structure of the 3,4-ethylenedioxythiophene oligomer
containing 12 units (E12) in the charge states 0, +1, +2, +3 and +4 were obtained. Increasing the charge
reproduces the increase in the degree of doping. The received results allow us to conclude that in
the oxidized oligomer of 3,4-ethylenedioxythiophene containing 12 monomer units, conductivity
is provided by the formation of two polarons at the ends of the chain at a high degree of doping.
For oligomers with a different number of units in poly 3,4-ethylenedioxythiophene, more complex
polaron structures can be realized by charge carriers.
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1. Introduction

Conductive polymers (CP) belonging to the so-called “synthetic metal” are polymers
with a conjugated carbon chain. They have electrical, electronic, magnetic and optical
properties of metals, but retain the plastic properties of conventional polymers, facilitating
their processing and further use. Their conductivity, when small amounts of dopants
are introduced into the matrix of the original polyconjugated polymers with a typical
conductivity of 10−10 to 10−5 Sm·sm−1, significantly increases, reaching the conductivity
of semiconductors or even metals from 1 to 10−5 Sm·sm−1.

Doping is performed by chemical or electrochemical oxidation (p-doping) or reduction
(n-doping) of the polymer. In this case, the polymer chains acquire, respectively, positive
or negative charges, which are compensated by the formation of a polymer matrix of
intermolecular complexes in the electrolyte solution with polyions of opposite sign. By
adjusting the level of doping, it is possible to change the conductivity of the CP in a
wide range.

The main task in the study of CP is to establish the nature and characteristics of
charge carriers. As follows from the literature [1–3], polarons and/or bipolarons with or
without spin can be the charge carriers, ensuring the conductivity of CP. The unambiguous
resolution of this task can significantly facilitate the development of new materials with
improved properties based on CP for their use in molecular electronics.

Derivatives of polythiophene, including poly 3,4-ethylenedioxythiophene, are the
most studied among CP. However, even for this polymer, there are conflicting opinions
about the nature of charge carriers and its dependence on the length of the polymer chain.

2. Calculation Methods and Models

The proposed communication presents the results of a study of the electronic and
spatial structure of a 3,4-ethylenedioxythiophene oligomer containing 12 units (E12) in
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charge states 0, +1, +2, +3 and +4, obtained by the density functional theory method with
exchange–correlation functional B3LYP 6–31 G**. The increase in charge simulates an
increase in the degree of doping. An unrestricted approach was used (UB3LYP functional)
for calculations in charge states +1 and +2.

3. Results and Discussion

For the electroneutral state of the E12 oligomer, the calculated C–C bond lengths
between adjacent monomer units are 1.433 Å, which is typical of the benzenoid phase (see
Figure 1).
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Figure 1. Dependence of the length of C–C bonds between monomeric units on the charge state of the
E12 oligomer. Bond numbering begins with the bond between the first and second monomer units.

However, already at a low degree of doping, i.e., for the E121+ cation, the lengths
of these bonds decrease monotonically from the ends of the chain to its center, reaching
a minimum value of 1.417 Å at bond 6 (central), which is typical for the quinoid phase
of the systems under study. For the E122+ bication, a similar dependence of the bond
lengths between monomeric units is also observed. However, these bond lengths are
still significantly smaller compared to similar bond lengths in the E121+ cation, which
determines the increase in the contribution of the quinoid phase. For higher oxidation
states (+3 and +4), on the corresponding curves of the dependence of the charge on the
bond number between the intermonomer units, two minima appear in the bond regions
2 and 3, as well as 9 and 10, which indicates a further increase in the contribution of
the quinoid phase and the formation at the ends of the oligomer chain of two separated
polarons. Similar dependences were obtained for charged pyrrole oligomers [4].

When a positive charge appears in the E12 oligomer, a polaron “hole” level appears in
the gap between the energies of the upper occupied molecular orbital (HOMO) and the
lower unoccupied molecular orbital (LUMO) of the E121+ cation, which is 0.46 eV away
from the top of the valence band (Figure 2).
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HOMO level of the E12 oligomer, the level corresponding to the formation of a “hole” will 
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pied molecular orbital. For the neutral oligomer E12, the width of this gap is 2.06 eV (Fig-
ure 3), which shows the dependence of E(LUMO)-E(HOMO) on the number of monomer 
units. Furthermore, in the text, the HOMO level will be identified by the top of the valence 
band, and the LUMO level by the bottom of the conduction band. 
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Figure 2. Formation of the polaron band (eV) depending on the charge state of the E12 oligomer.

Since, during the formation of the E121+ cation, an electron is removed from the
HOMO level of the E12 oligomer, the level corresponding to the formation of a “hole” will
lie above the HOMO level, as occurs when one electron is removed from a doubly occupied
molecular orbital. For the neutral oligomer E12, the width of this gap is 2.06 eV (Figure 3),
which shows the dependence of E(LUMO)-E(HOMO) on the number of monomer units.
Furthermore, in the text, the HOMO level will be identified by the top of the valence band,
and the LUMO level by the bottom of the conduction band.
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With a further increase in the degree of doping, two polaron hole levels appear in the
E122+ bication, spaced from the top of the valence band and the bottom of the conduction
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band by 0.50 eV. There are three such levels in the E123+ cation, two of which lie at a distance
of 0.8 eV from the top of the valence band, and one is 0.90 eV away from the bottom of the
conduction band. For the E124+ cation, there are already four such hole levels that arise
during the fourfold ionization of the E12 oligomer, which in pairs give rise to the formation
of a polaron band in the energy gap between the HOMO and LUMO levels. The structure
of the molecular orbital corresponding to the lowest level, which lies at a distance of 0.85 eV
from the HOMO level (Figure 4), clearly demonstrates the formation of two polarons at the
ends of the E12 oligomer. With an appropriate interpretation, confirmation of the fact of the
formation of two polarons can be obtained from the corresponding experimental data [5,6].
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Figure 4. Structure of the molecular orbital localized at the lowest polaron level in the gap between
the HOMO and LUMO energies of the E124+ oligomer.

Figure 4 shows that the quinoid phase of the considered molecular orbital of the E124+

cation is localized at the ends of the chain in two regions, each of which captures four
monomeric units. This indicates that the resulting vacancies, “holes”, are not delocalized
over the entire oligomeric chain, which should be expected within the framework of the
band theory of solids. Holes are localized in two four-link regions of the oligomeric chain
of the E124+ cation; so, a bipolaron forms. The appearance of a bipolaron in E124+, as well
as a polaron in the E121+ cation, causes structural deformation of the carbon chain of the
oligomer (transition of the benzenoid phase to the quinoid phase). Two positive charges of
a bipolaron, each with a charge of +2e, influence each other and behave like a pair. Both
polarons and bipolarons, under the action of an electric field, are able to move along the
polymer chain, leading to the reorganization of double and single bonds in the conjugated
system (see Figure 5).
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4. Conclusions

Thus, the obtained results allow us to conclude that in the oxidized 3,4-ethylenedioxyth-
iophene oligomer containing 12 monomer units, at a high degree of doping, the conductiv-
ity is provided by the formation of two polarons at the ends of the chain. For oligomers
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with a different number of units and 3,4-ethylenedioxythiophene, more complex polaron
structures can be charge carriers.
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