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Abstract: Chemically modified electrodes based on polymer nanocoatings as sensitive layers are
some of the intensively developed areas in modern electroanalysis. Electropolymerization of com-
pounds containing phenolic fragments is a promising approach for electrode surface modification.
Novel electrodes based on a combination of carbon nanotubes and electropolymerized ellagic acid or
aluminon were developed for the direct quantification of flavanones (naringin and hesperidin)—the
major flavonoids of Citrus fruits. The conditions of monomers’ potentiodynamic electropolymer-
ization were optimized. Electrode surfaces were characterized by scanning electron microscopy
and electrochemical methods. A glassy carbon electrode (GCE) modified with multi-walled carbon
nanotubes (MWCNTs) and poly(ellagic acid) allowed for the quantification of naringin in the ranges
of 0.050–1.0 and 1.0–100 µM with the detection and quantification limits of 14 and 47 nM, respectively.
Simultaneous voltammetric quantification of naringin and hesperidin in the ranges of 0.10–2.5 and
2.5–25 µM for both analytes with the detection limits of 20 nM and 29 nM for naringin and hesperidin,
respectively, was achieved on GCE modified with polyaminobenzene sulfonic acid functionalized
single-walled carbon nanotubes (f-SWCNTs) and polyaluminon. High selectivity of the electrodes’
responses to flavanones in the presence of typical interferences and natural phenolics was confirmed.
The approaches were successfully applied to Citrus juices.

Keywords: electropolymerized nanocoatings; natural phenolics; carbon nanotubes; flavanones;
electroanalysis; Citrus juices

1. Introduction

Chemically modified electrodes are some of the most intensively developed areas in
modern electroanalysis. This trend is mainly caused by the appearance of a wide range of
nanomaterials (different types of nanoscale carbon, metal, and metal oxide nanoparticles,
nanostructured polymers, other nanosized compounds, and composites) that are used as
effective electrode surface modifiers. One of the approaches for electrode surface modi-
fication is coverage with electropolymerized films. The non-conductive polymers based
on phenolic compounds are of interest insofar as they give a highly sensitive and selec-
tive response to low-molecular-weight substances, including antioxidants [1–3]. Further
development in this field using a combination of such electropolymerized coatings with
carbon nanomaterials provides conductivity of the electrode as well as high loading and
more uniform coverage of the electrode surface [1].

Among the wide range of analytes, natural phenolic antioxidants, being a part of the
daily human diet and medicinal therapy, are of great interest and widely investigated in life
sciences. Given that their antioxidant effects are caused by electron transfer reactions, elec-
trochemical methods are often used for their determination [4,5]. Flavanones—flavonoids
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of Citrus fruits [6]—are less investigated and almost out of consideration in electroanalysis
in comparison to other natural phenolics. The major natural flavanones are naringin and
hesperidin (Figure 1), possessing a wide spectrum of biological activity, including antioxi-
dant activity [6]. Nevertheless, like other natural phenolic antioxidants [7], they exhibit
prooxidant properties when presented in high concentrations. Therefore, rigorous control
of their contents in real samples is required.
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Figure 1. Structure of flavanones: (a) hesperidin; (b) naringin.

A limited number of chemically modified electrodes has been developed for the voltam-
metric quantification of hesperidin and naringin. Carbon nanomaterials [8,9], metal-based
nanomaterials [10,11], tin dioxide [12] and silica [13] nanoparticles, amberlite-IRA 400 [14,15],
and DNA [16,17], as well as poly-o-aminophenol [18]- and poly-o-aminothiophenol [19]-
based molecularly imprinted polymers are used as a sensitive layers of modified electrodes.
The analytical characteristics are typical, and the linear dynamic ranges mainly cover
10−7–10−5 M concentrations. In many cases, the linear dynamic ranges are narrow enough
to limit the applicability of the electrodes. Another disadvantage of the electrodes is the
selectivity, which is insufficient or fully out of consideration.

Therefore, further improvement of the flavanones’ analytical characteristics, as well
as their simultaneous determination, is of practical interest. The current work is focused
on the creation of novel modified electrodes based on a layer-by-layer combination of
carbon nanotubes and electropolymerized coatings for the direct quantification of naringin
and hesperidin. Ellagic acid or aluminon-containing phenolic fragments in their structure
have been used as monomers. Conditions of their potentiodynamic electropolymerization
(the monomer concentration, supporting electrolyte pH, potential scan rate and range,
the number of cycles) have been found. The electrodes created have been studied by
scanning electron microscopy and electrochemical methods. The individual quantification
of naringin and the simultaneous determination of hesperidin and naringin with high
sensitivity and selectivity have been achieved.

2. Materials and Methods

Ellagic acid (95% purity) from Sigma-Aldrich (Darmstadt, Germany) and aluminon
from Sigma-Aldrich (Germany) were used. Their standard solutions (0.86 mM for ellagic
acid and 10 mM for aluminon) were prepared in methanol (c.p. grade). Analytes (hesperidin
of 94% purity and naringin (95%)) were purchased from Sigma-Aldrich (Germany). Stock
solutions of 10 or 0.40 mM for naringin and 0.40 mM for hesperidin were prepared in
methanol (c.p. grade) in 5.0 mL flasks. Less concentrated solutions were obtained by the
exact dilution.

Multi-walled carbon nanotubes (MWCNTs) (outer diameter 40–60 nm, inner diameter
5–10 nm, and 0.5–500 µm length) from Aldrich and polyaminobenzene sulfonic acid
functionalized single-walled carbon nanotubes (f-SWCNTs) (d × l is 1.1 nm × 0.5–1.0 µm)
from Sigma-Aldrich (Steinheim, Germany) were used as a platform for the electrodeposition
of polymeric coverages. Homogeneous suspensions of carbon nanomaterials (0.5 mg mL−1
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of MWCNTs in 1% sodium dodecylsulfate (Panreac, Barcelona, Spain) and 1.0 mg mL−1 of
f-SWCNTs in dimethylformamide) were obtained by 30 min sonication using an ultrasonic
bath (WiseClean WUC-A03H (DAIHAN Scientific Co., Ltd., Wonju-si, Korea).

Chlorogenic (95%) and ferulic (99%) acids from Sigma-Aldrich (Germany); ascorbic
(99%), gallic (99%), caffeic (98%), and p-coumaric (98%) acids and quercetin dihydrate
(95%) and catechin hydrate (98%) from Sigma-Aldrich (Germany); rutin trihydrate (97%)
from Alfa Aesar (United Kingdom); sinapic acid (97%) and tannin (Ph. Eur.) from Fluka
(Germany) were used in the interference study. Their 10 mmol L−1 stock solutions in
methanol were prepared in 5.0 mL flasks.

All reagents were c.p. grade. Distilled water was used for the measurements. The
laboratory temperature was (25 ± 2 ◦C).

Electrochemical measurements were conducted on a µAutolab Type III (Eco Chemie
B.V., Utrecht, The Netherlands) potentiostat/galvanostat supplied with GPES 4.9.005
software and Autolab PGSTAT 302N with the FRA 32M module (Eco Chemie B.V., Utrecht,
The Netherlands) and NOVA 1.10.1.9 software. The glassy electrochemical cell of 10 mL
volume was used. The tree-electrode system consisted of the working GCE of 3 mm
diameter (CH Instruments, Inc., Bee Cave, TX, USA), or a modified electrode, an Ag/AgCl
reference electrode, and a platinum wire as the auxiliary electrode.

The pH measurements were carried out using an “Expert-001” pH meter (Econix-
Expert Ltd., Moscow, Russian Federation) with a glassy electrode.

A MerlinTM (Carl Zeiss, Oberkochen, Germany) high-resolution field emission scan-
ning electron microscope was applied for the electrode surface morphology characterization
and operated at 5 kV accelerating voltage and a 300 pA emission current.

3. Results and Discussion
3.1. Polymer-Modified Electrodes Preparation and Characterization

Electropolymerization of ellagic acid and aluminon was carried out on the surface
of GCE modified preliminarily with MWCNTs or f-SWCNTs by drop-casting technol-
ogy (4.0 µL of MWCNTs or 2.0 µL f-SWCNTs suspensions were applied). This approach
provided sufficient conductivity of the electrode as well as a high surface area. Poly-
meric coatings were electrodeposited in potentiodynamic mode. Both monomers were
irreversibly oxidized at the electrode surface at 0.287 and 0.497 V for the ellagic acid at
MWCNTs/GCE in phosphate buffer pH 7.0 and 0.50 V for aluminon at f-SWCNTs/GCE
in 0.1 M NaOH. A decrease of the oxidation steps was observed for the following cy-
cles, which means the formation of non-conducting polymer and typical for the phenolic
compounds [1]. The oxidation peaks of monomers almost disappeared after the seventh
cycle for ellagic acid and the tenth cycle for aluminon. The conditions of electropolymer-
ization (the monomer concentration, supporting electrolyte pH, potential scan rate and
range, and the number of cycles) were optimized based on the response of target analytes
(naringin on poly(ellagic acid)/MWCNTs/GCE and the hesperidin and naringin mixture
on polyaluminon/f-SWCNTs/GCE). Electropolymerization conditions providing the best
voltammetric characteristics of the analytes are presented in Table 1.

Table 1. Ellagic acid and aluminon electropolymerization conditions.

Parameter Poly (Ellagic Acid) Polyaluminon

Supporting electrolyte Phosphate buffer 0.1 M NaOH
pH 7.0 13

Monomer concentration (µM) 10 100
Number of cycles 7 10

Polarization window (V) 0.0–1.0 0.1–0.8
Potential scan rate (mV s−1) 100 100

The suggested modification of the electrode surface provided significant improvement
of the voltammetric response of the flavanones under consideration. The shifts of oxidation
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potentials to less positive values (Figure 2) confirmed the increase of the electron transfer
rate at the modified electrodes, which was proved by charge transfer resistance data
obtained by electrochemical impedance spectroscopy in the presence of a 1.0 mM equimolar
mixture of hexacyanoferrate(II)/(III) ions (Table 2). A statistically significant increase of the
flavanones’ oxidation currents (Figure 2) was caused by the increase of the electroactive
surface area of polymer-modified electrodes, as confirmed by electrochemical data based
on the electrooxidation of hexacyanoferrate(II) ions (Table 2).
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Figure 2. Baseline-corrected differential pulse voltammograms of flavanones: (a) 100 µM naringin at
the GCE (1), MWCNTs/GCE (2), and poly(ellagic acid)/MWCNTs/GCE (3); (b) 5.0 µM mixture of
hesperidin and naringin at the GCE (1), f-SWNTs/GCE (2), and polyaluminon/f-SWNTs/GCE (3).
Supporting electrolyte is phosphate buffer pH 7.0. Modulation amplitude is 50 mV, modulation time
is 50 ms, and potential scan rate is 10 mV s−1.

Table 2. Charge transfer resistance (Rct) and electroactive surface area (A) of the electrodes (n = 5; p = 0.95).

Electrode Rct (kΩ) A (cm2)

GCE 72 ± 3 0.089 ± 0.002
MWCNTs/GCE 12.1 ± 0.9 0.75 ± 0.02

Poly(ellagic acid)/MWCNTs/GCE 50 ± 2 0.79 ± 0.01
f-SWNTs/GCE 8.0 ± 0.1 0.136 ± 0.002

Polyaluminon/f-SWNTs/GCE 3.8 ± 0.2 0.206 ± 0.001

The electrode surface morphology was studied by scanning electron microscopy
(Figure 3). The polymeric coatings exhibited a porous structure with the shape of spherical
particles of 30–50 nm in diameter for poly(ellagic acid) (Figure 3a) and a folded structure
with channels and cavities for polyaluminon (Figure 3b), confirming successful electropoly-
merization as well as a high roughness of the electrode surface. These results agree well
with those reported for other phenol-based polymeric coatings [1,20,21].
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3.2. Analytical Application of the Electrodes

The electrodes created were used for analytical purposes in the differential pulse mode.
The best responses of flavanones were observed in phosphate buffer of pH 6.5 for naringin
at the poly(ellagic acid)/MWCNTs/GCE and of pH 5.0 for hesperidin and naringin at
the polyaluminon/f-SWNTs/GCE. There were well-pronounced oxidation peaks on the
voltammograms (Figure 4).
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Figure 4. Baseline-corrected differential pulse voltammograms of flavanones: (a) 0.050–100 µM
naringin at the poly(ellagic acid)/MWCNTs/GCE in phosphate buffer pH 7.5, modulation amplitude
is 100 mV, modulation time is 50 ms, and potential scan rate is 10 mV s−1; (b) 0.10–25 µM equimolar
mixtures of hesperidin and naringin at the polyaluminon/f-SWNTs/GCE in phosphate buffer pH 5.0,
modulation amplitude is 100 mV, modulation time is 25 ms, and potential scan rate is 10 mV s−1.

The oxidation currents of flavanones were linearly dependent on their concentration.
The analytical characteristics obtained (Table 3) were significantly improved or compara-
ble with those reported with other modified electrodes. Simultaneous determination of
hesperidin and naringin was performed for the first time.

Table 3. Analytical characteristics of flavanones and the polymer-modified electrodes.

Electrode Flavanone Detection Limit (µM) Quantification Limit (µM) Linear Dynamic Range (µM)

Poly(ellagic acid)/MWCNTs/GCE Naringin 0.014 0.047 0.050–1.0 and 1.0–100

Polyaluminon/f-SWNTs/GCE Hesperidin 0.029 0.096 0.10–2.5 and 2.5–25
Naringin 0.020 0.062 0.10–2.5 and 2.5–25

The electrodes developed were characterized by high accuracy of flavanone determi-
nation (recovery of 99.3–100.3%), as shown with the model systems. The relative standard
deviation of 0.55–3.1% confirmed the absence of random errors of determination, as well
as the high reproducibility of the analytical signal of flavanones, since the surface of the
electrodes was renewed before each measurement.

The interference study showed excellent selectivity of polymer-based electrodes to-
wards flavanones. Typical interferences (1000-fold excesses of K+, Mg2+, Ca2+, NO3

−, Cl−,
and SO4

2−, and 100-fold excesses of glucose, rhamnose, sucrose, and ascorbic acid) did not
show interference effects. Structurally related natural phenolics were the major potential in-
terferences and were widely distributed in Citrus fruits. Poly(ellagic acid)/MWCNTs/GCE
showed a selective response towards naringin in the presence of 10-fold excesses of phe-
nolic acids (gallic, ferulic, caffeic, and chlorogenic acids) and hesperidin. In the case of
polyaluminon/f-SWNTs/GCE, 10-fold excesses of gallic, caffeic, and chlorogenic acids, as
well as tannin, 1.0 µM of ferulic, sinapic and p-coumaric acids, catechin, quercetin, and
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rutin did not interfere with hesperidin and naringin response. Sample dilution could be
used for the masking of the interference signals, while the target flavanones’ response was
still sufficient.

The electrodes developed were successfully applied to Citrus (fresh and commercial)
juice analysis. The standard addition method was used for the confirmation of the signal-
forming compounds. The absence of matrix effects in the determination of flavanones
was confirmed by recoveries of 98–101%. Grapefruit and orange juice analysis results are
presented in Figure 5. The data obtained agreed well with the results of the independent
methods (F-test confirms similar accuracy of the methods).
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