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Abstract: Biosensors offer exciting opportunities for various clinical applications and constitute a
rapidly growing research branch due to new generations of bioreceptors, transducers, and biomateri-
als with versatile characteristics, such as conductive polymers. Polythiophene is a prominent example
of conducting polymers and convinces with excellent conductivity and stability—and is yet barely
used for the construction of biosensors. We want to address the fundamental lack of straightforward
fabrication procedures for bioreceptor immobilization platforms based on polythiophene. We in-
vestigate the literature-known monomer 3-thiopheneacetic acid and present our newly developed
method for electrochemical coupling of the linker p-aminobenzoic acid to deposited polythiophene
films. Aminated bioreceptors can subsequently be immobilized via EDC/NHS click chemistry. Films
were electropolymerized and modified by chronopotentiometry, characterized by electrochemical
impedance spectroscopy, surface-enhanced Raman spectroscopy, as well as energy-dispersive X-ray
spectroscopy. Both of the presented methods allow for the fabrication of functionalized polythiophene
thin films of high conductivity and good reproducibility while convincing with their ease in synthesis.

Keywords: electrochemical biosensor; conductive polymers; polythiophene; electropolymerization;
electrochemical impedance spectroscopy; chronopotentiometry; EDC/NHS click chemistry

1. Introduction

Conductive polymers possess unique and interesting properties as they combine the
advantages of both organic polymers and inorganic conductors. They can easily be elec-
tropolymerized and deposited on electrodes to form thin films, which serve as key compo-
nents in trendsetting applications, such as chemical sensors and biosensors. The thin films
demonstrate versatile and beneficial properties as they enhance electron transfer [1], reduce
electrode poisoning [2] and fouling [3], and demonstrate great chemical and structural
diversity, while being able to be co-deposited with other compounds of interest.

Polythiophene, consisting of interlinked sulfur heterocycles, is a prominent example
of conductive polymers, which owes its electrical conductivity to the delocalization of
electrons along the polymer backbone when being oxidized or reduced. Although poly-
thiophene outperforms other conductive polymers, such as polypyrrole and polyaniline,
regarding conductivity and stability [4], its application for the construction of biosensors
can barely be seen.

We think that this owes to the fact that there is a fundamental lack of fast and easy-
to-perform fabrication procedures for polythiophene-based bioreceptor immobilization
platforms. Almost all of the published protocols require complex synthesis and downstream
processing of new (macro)monomers with adequate know-how, well-equipped laboratories,
potentially costly and hazardous chemicals, as well as a significant amount of time. This
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way, biotinylated thiophene monomers [5,6], a 3-(oxyalkyl)-thiophene bearing arylsulfon-
amide group [7], a terthiophene monomer functionalized with acrylic acid and a methylhy-
droxyl group [8], a thiophene-functionalized polyphenylalanine macromonomer [9], and a
thiophene-EDPT monomer with a central thiodiazole unit [10] were introduced. Therefore,
there is a strong need for simple and cost-effective methods, which allow for covalent
binding of the bioreceptor to the polythiophene immobilization platform.

The utilization of a ready-to-buy, carboxylic acid functionalized monomer, namely
3-thiophene acetic acid, is already reported [11–14]. After electropolymerization, the biore-
ceptor can be bound to the carboxylic group by simple EDC/NHS click chemistry. However,
the nucleophilicity of the carboxylic group has to be considered, as it is reported to attack
the radical cations of monomeric intermediates and thereby inhibits electropolymeriza-
tion [15–17]. By co-polymerization with unfunctionalized thiophene monomers, however,
this issue can be avoided [15,16].

We decided to rise to the challenge of working with polythiophene and could identify
factors to significantly improve film properties. It is of utmost importance to carefully
dry the working solution since even minor amounts of water negatively affect electropoly-
merization to the point where film formation can be inhibited completely. We have found
that drying the solution of hygroscopic counter ion and solvent over a molecular sieve for
at least a week constitutes a simple yet effective method to remove water and allow for
successful electropolymerization [18]. This way, we could obtain polythiophene films with
exceptionally low charge transfer resistance RCT, which characterizes film conductivity in
perpendicular direction and can be obtained from electrochemical impedance spectroscopy.
By using the same conditions as described in the method section, the RCT of obtained
films was around 12 Ω and therewith significantly lower than that of the uncoated elec-
trodes. The parameters deposition current and time, as well as monomer and supporting
electrolyte concentration, were optimized to obtain films of remarkably smooth surface
topography to inhibit sterical hindrance of subsequently bound bioreceptors. Scanning
electron microscope (SEM) pictures of the optimized film in comparison to a film with
rough surface topography can be seen in Figure 1. Lately, we also found and published
that electropolymerization can be catalyzed, which also grants the films a smoother surface
morphology and increases the selectivity of polymerization [19,20].
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Figure 1. SEM pictures of (a) blank electrode, (b) polythiophene thin film that was electropolymerized
under the optimized conditions described in the method section, (c) rough polythiophene film
electropolymerized by a 6× higher current density. Scale bare is applicable to all pictures.

In this communication, we investigate electropolymerization of the monomer 3-
thiopheneacetic acid and present our newly developed method for covalent binding of a
linker to the beforehand deposited polymer thin films. The linker p-aminobenzoic acid
similarly possesses a carboxylic group for subsequent bioreceptor immobilization on one
end and a primary amine for binding to polythiophene on the other end. The crucial step
was to develop a suitable method for electrochemical coupling of the amine to the aromatic
structure of the polymer film while not severely altering its conductivity. Both of the
presented straightforward approaches offer the opportunity to construct a polythiophene
immobilization platform for bioreceptor binding with EDC/NHS click chemistry—all it
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takes is a potentiostat/galvanostat, affordable, low-hazard chemicals that can be used as
received, as well as only a few minutes of time.

2. Materials and Methods
2.1. Electrodes and Equipment

Screen-printed thick-film electrode chips (SPE) with an integrated gold working elec-
trode, silver reference electrode, and platinum counter electrode (model DRP-250AT) were
obtained from Metrohm DropSens (Llanera, Spain). The integrated silver electrode was
used for electropolymerization and modification, while an external Ag/AgCl reference
electrode (Sensortechnik Meinsberg, Waldheim, Germany) was used for characterization.

Electrochemical procedures were performed using the SP-300 potentiostat/galvanostat
with an impedance analyzer (Bio-Logic Science Instruments SAS, Claix, France). Films
were further characterized by surface-enhanced Raman spectroscopy (SERS) with the
QE65000 spectrometer (Ocean Insight, Orlando, FL, USA) and a 785 nm laser source
(Fat Boy Laser Module, Innovative Photonic Solutions, Plainsboro Township, NJ, USA),
and by energy-dispersive X-ray spectroscopy (EDS, Bruker, Microanalysis GmbH, Berlin,
Germany), consisting of the detector XFlash® 5030 T 127 eV and the signal processing unit
XFlash® SVE III.

2.2. Electrochemical Procedures

Polythiophene films were synthesized from 200 mM thiophene and 500 mM KPF6 in
acetonitrile by the application of a constant current of 0.5 mA, which equals 3.98 mA/cm2

for our working electrodes of a diameter of 4 mm. A mix of thiophene and 3-thiopheneacetic
acid was analogously electropolymerized, while the total monomer concentration was
fixed at 200 mM. Successful binding of the linker was similarly performed: The films
were incubated in different concentrations of p-aminobenzoic acid and 500 mM KPF6 in
acetonitrile, and a current of 0.5 mA was applied for 1 min. Electrochemical impedance
spectroscopy (EIS) was carried out with a sinusoidal 7.07 mV rms excitation voltage around
the DC potential of 0 V starting from a frequency of 100 kHz. The measurement buffer
consisted of 50 mM Tris–HCl (pH 7.4), 100 mM NaCl, 5 mM KCl, 1 mM MgCl2, with an
addition of 2 mM K3[Fe(CN)6] and 2 mM K4[Fe(CN)6]. Cyclic voltammetry (CV) was
performed in acetonitrile with 500 mM KPF6 as supporting electrolyte and a scan rate of
20 mV/s.

2.3. Electrode Cleaning

Polythiophene thin films were removed for electrode regeneration and reuse according
to our recently developed procedure [21]. Briefly, the electrodes were incubated in 2 M
sodium perchlorate in acetonitrile and a constant potential of 2.4 V was applied for one
minute. The electrodes were then rinsed with distilled water. The remaining film fragments
were wiped off with a Q-tip. Impedance measurement was deducted for quality assurance.
Subsequently, the silver reference electrodes were regenerated by treatment with a Q-tip
that was immersed in 30 mg/mL aqueous thiourea until the shiny silver surface was
restored. The cleaned electrodes can be stored in 5 mL Eppendorf cups until the next usage.

3. Results
3.1. Covalent Binding of Carboxylated Linker

We decided to investigate a linker that contains a carboxylic group for subsequent
bioreceptor binding and a primary amine for covalent linkage to the deposited polythio-
phene film. Primary amines oxidize at potentials greater than 1 V and form radicals, which
can covalently bind to aromatic structures. This strategy was already reported for the
modification of graphene-based materials, to which different amine-carrying compounds
were bound via cyclic voltammetry [22–25].

Two potential linkers were investigated, namely p-aminobenzoic acid and 6-aminohexanoic
acid, of which the latter unfortunately was found to be insoluble in acetonitrile, while
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p-aminobenzoic acid (PABA) showed solubility of at least 100 mM. To investigate its applica-
bility as a linker, cyclic voltammetry (CV) experiments were conducted. As can be seen from
Figure 2, p-aminobenzoic acid owes its electrochemical activity solely to the oxidation of its
primary amine since benzoic acid is electrochemically stable. Therefore, p-aminobenzoic
acid can be used as a linker to equip polythiophene films with carboxylic groups.
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Figure 2. Cyclic voltammetry of (a) 100 mM benzoic acid and the control of just solvent and support-
ing electrolyte without any compound under investigation, (b) 100 mM p-aminobenzoic acid (PABA)
in comparison to benzoic acid.

Analogous to literature reports [22–25], cyclic voltammetry was used to link PABA
to previously deposited polythiophene. As can be seen from Figure 3a, in the presence of
25 mM PABA, a significantly higher current can be measured above 1 V compared to the
control of polythiophene cycling in the absence of PABA. Therefore, it can be concluded
that the amine of PABA was oxidized and presumably bound to the polymer film. As the
vertex potential in CV, 1.13 V was chosen since it constituted the potential corresponding to
the maximum current measured in Figure 2b. The CV scan ended at the vertex potential to
ensure that polythiophene was in its oxidized state and, therefore, conductive.
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When the modified film was characterized by electrochemical impedance spectroscopy
(EIS), however, the charge transfer resistance RCT had increased from 12 Ω of the unmodi-
fied film to several 10,000 Ω after modification with PABA. The experiment was repeated
with a tenfold lower concentration of 2.5 mM PABA, but a similarly high RCT was obtained
(see Figure 3b). Since the potential measured during electropolymerization of thiophene
equals 1.65 V, the vertex/end potential was set to this value to improve film conductiv-
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ity. Here, equally high values for RCT were obtained, so it must be concluded that linker
binding by cyclic voltammetry severely blocks electron transfer of the modified film.

While graphene is stable and conductive in a wide potential window, this does not
account for polymer films, whose conductivity depends on its oxidative state and, therefore,
the applied potential. A gentle method is, hence, needed that does not severely alter the
conductivity of the polymer film. This, logically, should be achievable under the conditions
that are used for thiophene electropolymerization, which were optimized to obtain films
of good reproducibility and low charge transfer resistance. Therefore, binding of 25 mM
PABA was performed by the application of 0.5 mA (=3.98 mA/cm2) for 1 min, similar
to the conditions used for electropolymerization (see Figure 4a). The measured current
during PABA binding by chronopotentiometry lies between the currents resulting from
the control experiments of PTh oxidation in the absence of PABA and PABA oxidation in
the absence of PTh, which was overloaded and stopped after 10 s. The modified film was
characterized by EIS and revealed its great conductivity, as can be seen in Figure 4b. It can,
therefore, be concluded that linker binding under the same conditions used for monomer
electropolymerization can apparently be performed successfully and is additionally highly
beneficial for the conductivity of the modified film.
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Figure 4. (a) Chronopotentiometry for binding of 25 mM p-aminobenzoic acid (PABA) to polythio-
phene (PTh). Control experiments of PABA oxidation in the absence of PTh, and of PTh oxidation in
the absence of PABA are included. (b) Nyquist plots of PTh before and after binding of 25 mM PABA
by chronopotentiometry.

To verify PABA binding, surface-enhanced Raman spectroscopy (SERS) and energy-
dispersive X-ray spectroscopy (EDS) were employed. The bands of polythiophene in SERS
can be assigned to the vibrational modes pictured in Figure 5 [26,27]. Various benzoic acid
derivatives show a band at around 1370–1380 cm−1, which is identified as the symmetrical
stretching vibrations of COO− groups and can also be found in the SERS spectra of PABA
in this work. In addition, a broad band of similar intensity can be found with a maximum
at 230 cm−1, which is associated with oxygen but could not yet be clearly identified [20].
The spectrum of the PABA-modified PTh film contains both the band of νS(COO−) as well
as the oxygen-associated band, proving the successful binding of PABA to PTh.

The νS(C=C) band of PTh cannot be seen at the expected wavenumbers since PABA
binding shifted or suppressed the ring C=C stretch in SERS. It is reasonable to assume
that PABA binds to the Cβ position of polythiophene, as pictured in the proposed binding
mechanism in Figure 6. The introduced radicals can easily move along the polymer back-
bone and recombine because the conjugated system, accounting for the film’s conductivity,
is not disrupted. We assume that amine binding thereby shifts the quinoid structure of the
doped polythiophene to benzenoid structure or vice versa, which could be observed in
SERS by a shift of the νS(C=C) band that now might overlap with the νS(COO−) of PABA.
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Figure 6. Schematic representation of electropolymerization mechanism [26] and proposed binding
of p-aminobenzoic acid (PABA). Due to electrochemical oxidation, PABA forms radicals and binds to
polythiophene in, as we propose, the Cβ position.

In correlation with SERS results, energy-dispersive X-ray spectroscopy revealed in-
creasing amounts of oxygen (from 7.3 ± 1.8% to 12.2 ± 0.6%) and carbon (from 55.8 ± 2.7%
to 56.7 ± 0.6%), while nitrogen was now present on the modified films (0.26%). The sulfur
amount decreased (from 36.9 ± 4.3% to 30.8 ± 0.8%) since the relative abundance of poly-
thiophene decreased due to the newly present PABA on the modified films. The combined
data from chronopotentiometry, SERS, and EDS, therefore, proves the successful binding of
p-aminobenzoic acid to polythiophene via the presented method.
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With this optimized protocol, different concentrations of PABA were bound to poly-
thiophene films, and the resulting potential was monitored. With an increasing PABA
concentration, increasing potentials could be observed, as can be seen in Figure 7a. Film con-
ductivity and reproducibility of modification were evaluated by electrochemical impedance
spectroscopy. The Nyquist plots of polythiophene films can easily be fitted with the
Randles–Ershler equivalent circuit [28,29], which is typically used for the interpretation of
impedance spectra of biosensors. However, this is not the case for PABA-modified films
since the straight line, which is associated with the diffusion-controlled regime, occurs with
an angle greater than 45◦. Therefore, a new equivalent circuit was developed for accurate
fitting of the obtained measurement curves, as can be seen in Figure 7b.
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Figure 7. (a) Chronopotentiometry for binding of different concentrations of p-aminobenzoic acid
(PABA) to polythiophene films. (b) Identification of a new equivalent circuit for appropriate fitting
(red) in comparison to the commonly used Randles-Ershler equivalent circuit (blue).

The charge transfer resistance RCT of the PABA modified films were calculated and
are listed in Table 1. The modification with a PABA concentration of 2.5 mM did not lead to
reproducible results, while the binding of 50 mM PABA led to an RCT of several thousand
Ohm. In EIS, the diffusion of the redox mediator—in this case, the ferro/ferricyanide redox
couple—gets more and more impeded, the denser and bigger bound molecules on the
electrode are. Seemingly, 50 mM PABA built such a dense layer on the conductive polymer
film that electron transfer was severely hindered so that a high RCT resulted. By using
5–25 mM PABA, modified films could be obtained that convince with great reproducibility
and conductivity.

Table 1. Charge transfer resistance RCT of polythiophene films modified with different concentrations
of p-aminobenzoic acid. Experiments were performed in triplicates, and measurement curves were
fitted with the new equivalent circuit pictured in Figure 7b.

2.5 mM 5 mM 10 mM 25 mM 50 mM

196.2 Ω 76.7 Ω 71.9 Ω 131.0 Ω >1000 Ω
±90.7% ±13.9% ±8.7% ±7.3%

3.2. Electropolymerization of Carboxylated Monomer 3-Thiopheneacetic Acid

The utilization of a carboxylated monomer constitutes another opportunity for the
synthesis of a polythiophene-based immobilization platform. The nucleophilicity of its
carboxylic group is already known to attack radical cations of monomeric intermediates,
which inhibits electropolymerization but can be avoided by co-polymerization with the
unfunctionalized thiophene monomer [15–17]. We can confirm that 3-thiopheneacetic acid
cannot be polymerized alone, although a current can be measured during chronopoten-
tiometry: The current should correspond to monomer oxidation, however, films that visibly
fully covered the utilized electrodes could never be obtained.

While increasing the applied current did not solve this issue, mixing 3-thiopheneacetic
acid (Th-COOH) with unfunctionalized thiophene (Th), however, did. By using at least
three equivalents of thiophene, a co-polymer film that fully covers the electrodes could
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be obtained. Therefore, ratios Th:Th-COOH of 3:1, 5:1, and 10:1 were investigated while
keeping an absolute monomer concentration of 200 mM. Although a reciprocal tendency
was expected, the RCT of the synthesized films increased with decreasing concentration
of Th-COOH. From the 10:1 mix, films with a mean RCT of 824.5 ± 8.5% resulted, while
films synthesized from monomer ratios of 3:1 and 5:1 showed RCT values of 48.6 Ω ± 20.1%
and 53.3 Ω ± 6.8%, respectively. Experiments were performed in triplicates, and the
equivalent circuit pictured in Figure 7b was used for fitting. While film qualities of all tested
monomer ratios demonstrated acceptable reproducibility, a lower RCT of the immobilization
platform is more beneficial for the construction of biosensors since it usually leads to more
sensitive sensing.

A film resulting from the monomer ratio 3:1 was exemplarily characterized by SERS.
From the spectra pictured in Figure 8, it is evident that the deposited polythiophene
backbone is of the same quality compared to polymers origin from electropolymerization
of unfunctionalized monomers, while the broad peak around 200–400 cm−1 indicates
the presence of carboxylic groups. It can therefore be concluded that the synthesis of
a co-polymer film can be performed successfully so that films of reproducible and low
charge transfer resistance can be obtained that contain the desired carboxylic groups for
subsequent bioreceptor binding.
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4. Conclusions

In this communication, we investigated the electropolymerization of the literature-
known functionalized monomer 3-thiopheneacetic acid and presented our newly developed
protocol for electrochemical modification of polythiophene with the carboxylated linker
p-aminobenzoic acid. Successful binding could be verified with SERS and EDS, while
the films were characterized by EIS, where they demonstrated great reproducibility and
conductivity. Both of the presented strategies allow for the straightforward synthesis of
polythiophene immobilization platforms, to which bioreceptors can be subsequently bound
by simple EDC/NHS click chemistry. The platforms can be implemented with affordable,
low-hazard chemicals that can be used as received, a potentiostat/galvanostat, as well as
only a few minutes of time. With this communication, we hope to support other research
groups in the utilization of polythiophene thin films for the construction of electrochemical
biosensors for exciting new clinical applications.
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