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1. Introduction

Cellular structures allow the minimizing of the mass of a part while keeping its shape.
For example, in additively manufactured parts, setting specific infill definitions allows
for substantial material savings. Thus, in order to achieve material savings and structural
performance, it is possible to use structural optimization techniques to vary the infill density
spatially. Some examples of infill distribution optimization can be found in the following
works: [1–5].

The infill shape chosen for this work is the gyroid infill, available in fused filament
fabrication (FFF) slicers, such as PrusaSlicer, which was the slicer used in this work. The
gyroid infill is an approximation of the gyroid foam, derived from the gyroid surface. In
Figure 1, the gyroid infill is shown next to the gyroid foam.
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1. Introduction 
Cellular structures allow the minimizing of the mass of a part while keeping its 

shape. For example, in additively manufactured parts, setting specific infill definitions 
allows for substantial material savings. Thus, in order to achieve material savings and 
structural performance, it is possible to use structural optimization techniques to vary the 
infill density spatially. Some examples of infill distribution optimization can be found in 
the following works: [1–5] 

The infill shape chosen for this work is the gyroid infill, available in fused filament 
fabrication (FFF) slicers, such as PrusaSlicer, which was the slicer used in this work. The 
gyroid infill is an approximation of the gyroid foam, derived from the gyroid surface. In 
Figure 1, the gyroid infill is shown next to the gyroid foam. 

 
Figure 1. Gyroid infill and gyroid foam. 

2. Materials and Methods 
In this work, the gyroid infill was mechanically characterized through tensile and 

compressive tests [6], allowing us to obtain the Young’s modulus and ultimate stress, re-
spectively, for different infill densities. With it, an experimental homogenization law was 
developed and implemented into a bio-inspired structural optimization algorithm [7], 
which defines the optimal density distribution based on a material law correlating the 
mechanical properties with the apparent density. Figure 2 shows a flowchart describing 
the considered bio-inspired remodeling algorithm (BIRA).  
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Figure 1. Gyroid infill and gyroid foam.

2. Materials and Methods

In this work, the gyroid infill was mechanically characterized through tensile and
compressive tests [6], allowing us to obtain the Young’s modulus and ultimate stress,
respectively, for different infill densities. With it, an experimental homogenization law
was developed and implemented into a bio-inspired structural optimization algorithm [7],
which defines the optimal density distribution based on a material law correlating the
mechanical properties with the apparent density. Figure 2 shows a flowchart describing the
considered bio-inspired remodeling algorithm (BIRA).
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Figure 2. Flowchart of the BIRA. 

Additionally, a conventional structural optimization algorithm, the bidirectional 
evolutionary structural optimization (BESO) [8], was used in order to compare the results 
of both approaches. The parameters used in the BESO were an increase ratio of 0.05 and a 
decrease ratio of 0.1. Two standard flexural load cases were studied, namely a three-point 
bending (3PB) load case and a four-point bending (4PB) load case. The design domain and 
load cases are further shown in Figure 3. 

 
Figure 3. Design domain for both load cases. 

  

Figure 2. Flowchart of the BIRA.

Additionally, a conventional structural optimization algorithm, the bidirectional evo-
lutionary structural optimization (BESO) [8], was used in order to compare the results of
both approaches. The parameters used in the BESO were an increase ratio of 0.05 and a
decrease ratio of 0.1. Two standard flexural load cases were studied, namely a three-point
bending (3PB) load case and a four-point bending (4PB) load case. The design domain and
load cases are further shown in Figure 3.
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In order to obtain physical specimens that can be tested, a post-processing stage was
included. At this stage, the density field is divided into density groups corresponding to a
maximum density, a transition density and a minimum density. The elements belonging
to each group will be translated into an individual solid, so that an infill density in the
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slicing software can be attributed to each solid. In order to avoid abrupt density changes,
which would decrease the connection between the solids, a smoothing stage is included. In
this stage, the density is averaged with the density of the nearby elements, according to
Equations (1) to (3), where wij is the weight, dij is the distance ratio, and ρi

smooth is the new
density of the element.

wij = 1 − dij (1)

dij =
dist(i, j)

max(dist)
. (2)

ρi
smooth =

∑ wij ρi

∑ wij
(3)

3. Results

The results of the mechanical tests to obtain the mechanical properties of the gyroid
infill are shown in Table 1.

Table 1. Mechanical properties of the gyroid infill used in the homogenization law.

Infill Density Young’s Modulus (MPa) Ultimate Stress (MPa)

20% 61 5
50% 258 20
80% 459 34

The structural optimization results are shown in Figure 4, which displays the density
distribution results when the structure reduces to approximately 50% of its original mass,
or an average apparent density of 0.6 g/cm3, because the density of PLA is 1.25 g/cm3.
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Figure 5 shows the printed specimens in order to demonstrate the effect of the smooth-
ing stage in the final specimen configuration.
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The printed specimens were tested according to the load case defined in the optimiza-
tion analysis. The test results are summarized in Table 2. In addition, uniformly infilled
specimens with 50% gyroid infill density were printed and tested according to the same
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load cases for comparison purposes. The variable that was chosen to evaluate the structural
behavior of the parts was its stiffness, calculated as shown in Equation (4), where F is the
measured force, and d is the applied vertical displacement.

K =
F [N]

d [mm]
(4)

Table 2. Stiffness values of the optimized parts.

Load Case Theoretical
(N/mm)

Experimental
(without

Smoothing)
(N/mm)

Experimental
(with Smooth-

ing)(N/mm)

BIRA
3PB 251 110.05 ± 0.5 150.04 ± 1.7
4PB 364 304.65 ± 0.5 203.22 ± 3.8

BESO
3PB - 83.77 ± 3.5 138.87 ± 1.2
4PB - 245.23 ± 6.7 143.42 ± 3.1

Uniform lattice
3PB - 115.7 ± 2.0
4PB - 176.8 ± 5.6

4. Conclusions

The BIRA approach resulted in parts with higher stiffness than the parts obtained by
the conventional structural optimization approach. The smoothing process presented a
positive effect in the parts subjected to the 3PB load case. In the 4PB load case, the smoothing
presented a negative effect, possibly because these are more optimized structures than the
ones subjected to the first load case. Because of this, it can be suggested that the smoothing
process can improve a structure with high stress concentration zones, such as thin bars, but
it might have the opposite effect when the original structure is more robust. Except for the
3PB load case of structures without any smoothing, the optimized structures presented
higher stiffness than the uniform lattice.
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