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Abstract: In this work, monolayer molybdenum disulfide (MoS2) nanosheets, obtained via chemical 
vapor deposition onto SiO2/Si substrates, are exploited to fabricate field-effect transistors with n-
type conduction, high on/off ratio, steep subthreshold slope and good mobility. We study their elec-
tric characteristics from 10−6 Torr to atmospheric air pressure. We show that the threshold voltage 
of the transistor increases with the growing pressure. Moreover, Schottky metal contacts in mono-
layer molybdenum disulfide (MoS2) field-effect transistors (FETs) are investigated under electron 
beam irradiation conditions. It is shown that the exposure of Ti/Au source/drain electrodes to an 
electron beam reduces the contact resistance and improves the transistor performance. It is shown 
that e-beam irradiation lowers the Schottky barrier at the contacts due to thermally induced atom 
diffusion and interfacial reactions. The study demonstrates that electron beam irradiation can be 
effectively used for contact improvement though local annealing. It is also demonstrated that the 
application of an external field by a metallic nanotip induces a field emission current, which can be 
modulated by the voltage applied to the Si substrate back-gate. Such a finding, that we attribute to 
gate-bias lowering of the MoS2 electron affinity, enables a new field-effect transistor based on field 
emission. 

Keywords: electron beam; molybdenum dislufide; field emission; two-dimensional; field effect 
transistor 
 

1. Introduction 
Transition metal dichalcogenides (TMDs) have attracted a lot of attention in the past 

decades due to their several promising properties for electronic and optoelectronic appli-
cations. TMDs consist of a “sandwich” structure (layer) with a transition-metal sheet lo-
cated in between two chalcogen sheets and possess unique properties such as energy 
bandgap tunable by the number of layers (from 0 to about 2.2 eV), good mobility up to 
few hundreds cm2V−1s−1, photoluminescence, broadband light adsorption, pristine inter-
faces without out-of-plane dangling bonds that allows the fabrication of hetero-structures, 
exceptional flexibility, thermal stability in air, and high scalability for device fabrication 
[1–4]. They can be produced by mechanical or liquid exfoliation, chemical vapor deposi-
tion (CVD), molecular beam epitaxy, pulsed laser deposition, etc. [5,6]. 

Molybdenum disulfide (MoS2) is one of the most studied transition metal dichalco-
genides, owing to its layered structure and useful mechanical, chemical, electronic and 
optoelectronic properties [7–10]. A molybdenum (Mo) atomic plane sandwiched between 
two sulphur (S) planes constitutes the monolayer that is bonded to other monolayers by 
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weak van der Waals forces to form the bulk material. MoS2 is a semiconductor suitable for 
several applications [11–14], having 1.2 eV indirect bandgap in the bulk form that becomes 
direct in the monolayer [9]. Even if it has a field-effect mobility from few tenths to hundreds 
[15–18] of cm2V−1s−1, lower than grapheme [19,20]. MoS2 field effect transistors (FETs) have 
recently become very popular as alternatives to graphene FETs [15–18,20–22] for next gener-
ation electronics based on 2D-materials [23–30]. 

MoS2 nanosheets have inspired applications in pressure sensors due to their very ex-
ceptional mechanical properties. Indeed, due to the atomic thickness, the electrical prop-
erties of two-dimensional materials are highly affected by ambient gases and their pres-
sure variations [10]. 

It has been reported that the adsorbed gases on the MoS2 channel of FETs result in 
degradation of device conductance, in enhanced hysteresis and in threshold voltage shift-
ing [10,31,32]. Conversely, vacuum annealing can increase the MoS2 device conductance 
by desorbing the gas molecules. 

The fabrication and characterization of devices based on 2D materials often rely on 
irradiation by charged particles, as in the electron beam (e-beam) lithography (EBL) or 
focussed ion beam processing as well as on scanning (SEM) or transmission electron mi-
croscopy (TEM). The exposure to low-energy electrons and/or ions can modify the elec-
tronic properties of the 2D, as structural defects can locally modify the band structure and 
behave as charge traps, thereby changing the device characteristics [33,34]. 

TMDs possess atomically sharp edges and localized defects that can enhance the local 
electric field and enable the extraction of a field emission (FE) current with low turn-on 
voltage. FE is a quantum mechanical phenomenon in which electrons, extracted from a 
conductor or a semiconductor surface under application of an intense electric field, move 
in vacuum from a cathode to an anode. FE is used in a variety of applications, ranging 
from electrically-operated floating-gate memory cells [35,36], electron microscopy [37] 
and e-beam lithography [38] to display technology or vacuum electronics [39]. 

Fowler and Nordheim developed a field emission theory for planar electrodes that is 
commonly applied also to rough surfaces where tip-shaped protrusions enhance the local 
electric field and emit electrons at a reduced anode-to-cathode voltage [40]. 

In this paper, we use CVD to fabricate monolayer MoS2 flakes on a SiO2/Si substrate 
and characterize their transport properties. We studied their electric properties under 
electron beam irradiation and varying the pressure. Furthermore, using a tip anode that 
can be accurately positioned near the edge of the flake, we investigate the local field emis-
sion properties of MoS2 nanosheets. 

2. Materials and Methods 
A three-zone split tube furnace, purged with 1000 Ncm3/min of Ar gas for 15 min to 

minimize the O2 content, was used to grow MoS2 flakes by CVD. The p-Si substrate capped 
by 285 nm thick SiO2 was initially spin coated with 1% sodium cholate solution. The sub-
strate and the MoO3 precursor, obtained from a saturated ammonium heptamolybdate 
(AHM) solution annealed at 300 °C under ambient conditions, were placed in one of the 
three zones of the tube furnace, while 50 mg of S powder were positioned upstream in a 
separate heating zone. The zones containing the S and MoO3 were heated to 150 °C and 
750 °C, respectively. The growth process was stopped after 15 min and the sample was 
cooled down rapidly [41]. 

Larger MoS2 flakes were selected to fabricate field-effect transistors (FET) through 
standard photolithography and lift-off processes. Figures 1a,b show the scanning electron 
microscope (SEM) top view of a typical device and its schematic layout and biasing circuit. 
The Si substrate is the back-gate while the evaporated Ti/Au (10/40 nm) electrodes are the 
source and the drain of the FET. 

The electrical measurements were carried out inside an SEM chamber (LEO 1530, 
Zeiss, Oberkochen, Germany), endowed with two metallic probes (tungsten tips) con-
nected to a Keithley 4200 Source Measurement Unit (SCS, Tektronix Inc., Beaverton, OR, 
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USA). Piezoelectric motors control the motion of the tips that can be positioned with na-
nometer precision. The chamber was usually kept at room temperature and pressure be-
low 10−6 Torr. 

In the following, the electrical characterization refers to the transistor between the 
contacts labelled as 1 and 2 in Figure 1a. The contact 1 constitutes the drain and 2 the 
grounded source (Figure 1b). 

  

Figure 1. (a) Scanning electron microscope image of a typical device (top-view); (b) Schematic layout and biasing circuit. 

3. Results and Discussion 
The result of transfer characteristic measurements at different pressures,  P, from high 

vacuum to atmospheric pressure is displayed in Figure 2a. The increasing air pressure 
causes a left-shift of the transfer curve and therefore an increase of transistor threshold volt-
age, V . The threshold voltage is here defined as the x-axis intercept of the straight lines 
fitting the I − V  curves in the current range 1–100 nA. We note that the effect of air pres-
sure on the channel conductance, which could result in the dramatic transformation of n-
type to p-type conduction when passing from high vacuum to atmospheric pressure, has 
been reported also for other 2D TMDs materials such as WSe2 or PdSe2 (REF). The effect is 
usually reversible although it has been found that an aging can occur in specific TMDs, such 
as PdSe2, after a long (>20 days) air exposure at atmospheric pressure [32]. 

The monotonic  𝑉 − 𝑃 behaviour, shown in Figure 3b, suggests that the transistor 
can be used as pressure sensor, with maximum sensitivity up to ( ) ≈ 13  at 
lower pressures, where the 𝑉 − 𝑃 curve is steeper. Besides the higher sensitivity, the 
duty cycle of the device increases when operated in vacuum because of the suppressed 
air aging effect. Therefore, the sensor is best suited as a vacuum gauge. Moreover, the 
sensor can be operated in low power-consumption regime as is needed a current of 1 nA 
or less to monitor the 𝑉  variation. 

  

Figure 2. (a) Transfer characteristic of the device varying the pressure; (b) Threshold voltage right shifts decreasing the 
pressure. 
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The device contact 1 has been exposed to the SEM electron beam. Each exposure 
lasted 300 s corresponding to a fluence of ~180 , over a surface of ~100 μm . As the 
shape and the current intensity of the output characteristics is related to the Schottky bar-
rier heights at the contacts, the exponentially increasing current displayed in Figure 3a 
induced Schottky barrier lowering. The energy release in the metal contacts can modify 
the chemistry of the metal/MoS2 interface or create stress and defects that can lead to a 
lowering of the barrier and a consequent contact resistance reduction. We note that the 
reduction of the contact resistance by chemical reactions between the metal contacts and 
MoS2 channel has been reported for metal deposited under ultrahigh vacuum [42] and 
contact laser annealing [43]. A disordered, compositionally graded layer, composed of Mo 
and TixSy species, forms at the surface of the MoS2 crystal following the deposition of Ti, 
and thermal annealing in the 100–600 °C temperature range can cause Ti diffusion induc-
ing further chemical and structural changes at the Ti/MoS2 interface [44,45]. It is also pos-
sible that diffusion of Au atoms to the interface with MoS2 occurs under the energetic elec-
tron beam irradiation. Au does not react with MoS2 but reduces the contact resistance and 
therefore to the Schottky barrier height. 

Figure 3b shows the Schottky barrier variation at the interface of the contact 1 and 
the flake, calculated as reported in reference [46]. 

  

Figure 3. (a) Output characteristic of the device before e-beam irradiation (grey) and after 1 (red), 2 (blue) and 3 (pink) 
esposure to the beam. (b) Schottky barrier variation at the interface between contact 1 and the MoS2 flake. 

The intrinsic and gate-controllable n-type doping, the low electron affinity (4.2 eV 
[47]), and the nanosheets’ sharp edges make 2D MoS2 appealing for FE applications [8,11]. 
To perform field emission measurements, we used the configuration in the inset of Figure 
4a. 

Figure 4a shows two curves of field emission current measurements performed at d 
= 200 nm anode-cathode distance. They show repeatable FE current occurring with about 
180 V/μm turn-on field (defined as the field to which the current emerges from the noise 
floor). 

According to the Fowler–Nordheim (FN) model, the FE current from a semiconduc-
tor can be described as [48]: 𝐼 = 𝑆𝑎 𝐸𝜒 𝑒 /   (1)

where S is the emitting surface area, 𝑎 =  1.54 ×  10 A V eV  and 𝑏 =  6.83 × 10 𝑉 cm eV  are constants, 𝐸  (𝑉𝑐𝑚 ) is the electric field at the emitting surface and 
χ is the electron affinity of the emitting material. The electric field 𝐸 = 𝛽 𝑉/(𝑘 ∙ 𝑑), with 
β the so-called field enhancement factor, i.e., the ratio between the electric field at the 
sample surface and the applied field 𝑉/(𝑘 ∙ 𝑑), and 𝑘~1.6 a phenomenological factor ac-
counting for the spherical shape of the tip [49,50]. The Fowler–Nordheim equation leads 
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to the linear behaviour of the so-called FN plot of 𝑙𝑛(𝐼 /𝑉 )𝑣𝑠. 1/𝑉 of Figure 4b, which 
allows to estimate the β factor as 16.5. 

The back gate can be used to electrically control the doping level of the MoS2 channel. 
Greater availability of conduction electrons increases the tunneling probability. Therefore, 
a positive voltage on the gate is expected to enhance the field emission current. 

Indeed, Figure 4c confirms an increasing field emission current for increasing gate 
voltages. 

The data of Figure 4c provide the proof-of-concept of a new MoS2 field-effect transis-
tor based on field emission. The transfer characteristic of the device, at different anode 
voltages V, are shown in Figure 4d. The exponential growth of the field emission current 
for increasing Vgs is well explained in reference [51]. 

  

  

Figure 4. (a) Field emission current measured using the schematic in the inset; (b) Fowler-Nordheim analysis resulting in 
a beta factor of 16.5; (c) Field emission measurements varying the applied voltage on the back-gate, as in the inset; (d) 
Transfer characteristic of this field-effect transistor based on field emission. 

4. Conclusions 
We have fabricated and electrically characterized monolayer MoS2 field effect tran-

sistors. We have found that the threshold voltage of the transistor increases monotonously 
with the air pressure. We investigated the effects of 10 keV electron beam irradiation of 
the Schottky metal contacts in MoS2 based FETs. The electrical measurements revealed 
that electron beam irradiation improves the device conductance, reduces the rectification 
of the output characteristic and causes a left-shift of the threshold voltage. A field emission 
current, following the FN model, has been measured from the edge of the MoS2 
nanosheets. More importantly, it has been shown that the gate voltage can modulate the 
FE current thus featuring a new transistor based on field emission. This finding constitutes 
a first step toward a device with great application potential, especially if implemented 
with the current flowing parallel to the substrate surface. 

Institutional Review Board Statement: Not applicable. 
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Data Availability Statement: The data presented in this study are available on request from the 
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