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Abstract: The present study was conducted to develop highly ordered facile TiO2 nanotubes (TiNTs)
at two different applied voltages using two-step electrochemical anodization for the application in
dye-sensitized solar cells (DSSCs). The nanotube fabrication is carried out in an aqueous electrolyte
containing ethylene glycol and ammonium fluoride at 40 V and 60 V fixed applied potentials.
Nanotubes synthesized at 40 V are comparatively uniform and smoother, whereas a rough top surface
is observed at 60 V. The photovoltaic efficiency achieved for the device based on TiNTs prepared at
40 V is 0.84% which is higher than the efficiency achieved for the 60 V device. This work highlights
the importance of ordered nanotubes for efficient devices.
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1. Introduction

The increasing population and global warming have caused an enormous challenge
to cope with the increasing demand for clean energy. Renewable energy sources must be
utilized abundantly including solar, hydroelectric, wind, geothermal, biomass, and fuel
cells. Sun is the source of the most abundant, accessible, and clean energy. The pseudo-
infinite source of clean solar energy, the sun, provides more solar energy on earth in one
hour than the yearly energy consumption of humankind [1].

Photovoltaic devices include p-n junction cells, photo-galvanic and photo-electrochemical
cells, dye-sensitized solar cells, and organic solar cells [2]. Among these, dye-sensitized
solar cells (DSSCs) are a third generation, low cost, efficient, and emerging technology. A
DSSC typically consists of a dye-sensitized wide band gap metal oxide semiconductor layer
on a transparent conductive substrate (photoanode), a redox electrolyte, and a conductive
counter electrode. Among wide band-gap semiconductors, TiO2-based DSSCs have shown
the best photoelectrode properties approaching theoretical values [3].

One of the problems is the low charge collection efficiencies due to electron recombi-
nation. The main reason for the phenomenon is the longer paths followed by electrons in
randomly connected TiO2 nanoparticles. Modifying the morphology of the TiO2 to a one
dimensional (1D) structure such as nanorods, nanotubes, and nanowires is an alternative
to address the problem [4,5]. TiO2 nanotubes (TiNTs) in comparison to other structures
provide a better directional path for the electron transport and orthogonal separation,
therefore, they improve the charge collection efficiencies [6–8].

Anodization potential is one of the key parameters that has a direct effect on the TiNTs
length (or growth) and pore (or tube) diameter [9–11]. In the present study, we have chosen
two voltages for nanotube formation and their effect on the ordered morphology, length,
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and consequently on performance of the DSSC device. It is observed that applied voltage
strongly effect the ordering of nanotubes.

2. Materials and Methods
2.1. Fabrication of TiO2 Nanotubes

For the anodization, a Ti sheet (0.5 mm thickness, 99.99% purity, Sigma-Aldrich) was
used as working electrode and a stainless-steel plate was used as counter electrode. All
of the anodization experiments were performed in ethylene glycol (99% purity; Merck,
Rahway, NJ, USA), electrolyte containing 0.5 wt. % NH4F (Unichem, and 3 wt. % DI
water (pH~6) kept at 20 ◦C and with moderate stirring of the electrolyte. Anodization of
samples was performed at two different voltages, 40 V and 60 V. Before anodization, Ti foils
were cleaned using ultrasonication in acetone (analytical reagent; Sigma-Aldrich), ethanol
(absolute; Sigma-Aldrich), and DI water each for 20 min. A two-step anodization method
was used for the preparation of TiO2 nanotubes (TiNTs). Ti samples were pre-anodized
for 3 h. TiNTs formed during the pre-anodization were removed by ultrasonication in DI
water to ensure fabrication of highly ordered TiNTs during the subsequent anodization
steps. After each step of anodization, samples were immersed in ethanol and DI water to
remove the electrolyte. All samples were annealed at 450 ◦C for 2 h while the heating and
cooling rates were maintained at 1 ◦C/min.

2.2. DSSC Fabrication

For the preparation of DSSCs, annealed TiNT samples were employed as photoanode
and soaked in 0.3 mM N-719 solution for 24 h. With the Pt-coated FTO glass as counter
electrode, the DSSCs were prepared by assembling the two electrodes in a sandwich-
type cell geometry using a hot melt sealant/spacer of a thickness of 25 µm (Meltonix;
Solaronix, Oriel Solar Simulator, Model 91160, Aubonne, Switzerland). The electrolyte
iodide/triiodide (Iodolyte AN-50; Solaronix) was injected to fill in the spaces between
the electrodes through the drilled hole in the Pt counter electrode via vacuum back-filling
technique. The active area for the cell was 0.16 cm2. The cell was illuminated in back
illumination mode as the substrate underlying the TiO2 oxide is Ti metal.

3. Results and Discussion

Figure 1 shows typical SEM images of TiNTs prepared using the two-step anodization
approach at a constant voltage of 40 V for 2 h. Figure 1a shows the top surface of the
TiNTs. It is evident that the top surface of the TiNTs has a relatively ordered arrangement
with open-ended tubes having an inner diameter of 100 nm on average. The tubes were
vertically aligned and remained intact, as shown in the cross-sectional image (Figure 1b)
with a thickness of 15 µm.
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The SEM image in Figure 2 presents the top surface and cross-sectional view of TiNTs
prepared at 60 V by the two-step anodization method. The top surface is rough, as shown
in Figure 2a. Nano-grass and cracks are clearly observable. The inner diameter of the
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TiNTs is 150 nm on average, which is increased due to the anodization at a higher voltage
(Figure 2).
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Figure 2. SEM images showing the top surface (a) and cross-sectional images (b) of TiNTs prepared
at 60 V.

However, the thickness of the nanotubes is reduced to 13.5 µm when observed for
tubes prepared at 40 V. Nano-grass is formed due to the permanent etching of the tube
walls in the fluoride-containing electrolyte [11]. As anodization is performed at a higher
applied voltage (60 V), the wall thinning is more prominent and results in the grass (or
bundle) formation at the top of the TiNTs. As a consequence of chemical etching and grass
formation, the thickness of the nanotubes is decreased.

The performance of TiNTs prepared at two different voltages was investigated in
DSSCs. The photovoltaic measurements were performed under A.M. illumination with
100 mW/cm2 intensity. The performance parameters such as Jsc—short current density,
Voc—open circuit voltage, FF—fill factor, and
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Figure 3. Current–voltage characteristics curves of DSSCs.

The device based on TiNTs prepared at 40 V shows a larger JSC as 2.4 mA/cm2 and
FF as 0.52 than the device prepared with the photoanode consisting of TiNTs fabricated
with 60 V applied voltage. As is evident in Table 1, the efficiency of the TiNTs based
DSSC is enhanced by 75% when tubes are prepared at 40 V rather than those prepared at
60 V. The higher efficiency was achieved due to the ordered and open-ended morphology
of TiNTs. The top surface of the nanotubes prepared at 40 V is homogeneous without
any crack or roughness due to nano-grass formation. The open channels allow a better
infiltration of dyes as well as electrolytes during device testing. Moreover, the ordered one
one-dimensional morphology results in efficient electron transport.

Table 1. Performance Parameters for the prepared TiNTs samples.

Sample Jsc (Ma cm2) Voc (V) FF
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4. Conclusions

In summary, TiNTs are successfully fabricated using the two-step anodization method
at two different voltages, 40 V and 60 V. Highly ordered and open-ended with homogenous
top surface nanotubes are achieved at 40 V applied voltage. However, tubes have a rough
surface when prepared at 60 V. With the increase in voltage, the inner diameter of tubes
is increased but the thickness is decreased. The lower thickness at higher voltage is due
to the increased chemical etching resulting in nano-grass formation on top surface. The
DSSC based on TiNTs prepared by anodization at 40 V is more efficient than the device
fabricated by TiNTs prepared at 60 V. This study concludes that well defined tube geometry
with smooth surfaces and vertical channels transports the electrons effectively, resulting in
more efficient photoanodes in DSSC.
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