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Abstract: N-doped titanium dioxide (N/TiO2) nanomaterials were successfully prepared using
titanium butoxide and guanidinium chloride using the simple sol-gel method. The significance of
the annealing gas environment (air, argon, or nitrogen) on their physicochemical and photocatalytic
degradation properties was investigated. Indeed, the gas type governed the crystal/phase nature from
monophase anatase with a low crystallinity to dual-phase anatase/rutile with a higher crystallinity.
Moreover, results revealed that the introduction of N in the TiO2 matrix led to a red shift towards
visible-light, narrowed the bandgap (2.35 eV), and suppressed recombination. Nobly, the N/TiO2

prepared in air demonstrated the highest RhB degradation performance (99%) with the highest rate
constant (0.0158 min−1), which was twice faster than the undoped TiO2.
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1. Introduction

Due to rapid urbanization and industrialization, a growing number of toxic contam-
inants are entering into water bodies and this trend is expected to be further worsened.
For instance, RhB is one of the most ubiquitous and industrial effluents. It is particularly
challenging and dangerous to degrade through deploying the conventional techniques as it
is hazardous and generates carcinogenic species [1,2]. Meanwhile, advanced oxidation pro-
cess techniques (such as heterogeneous-catalysis, photocatalysis, electrochemical oxidation,
and Fenton) have played indispensable roles in neutralizing such dyes [3,4]. Particularly
owing to its high chemical inertness, strong oxidizing power, and abundance, TiO2 remains
a promising photocatalyst in tackling such environmental problems [5].

Unfortunately, its large bandgap, low solar conversion, and high charge carrier re-
combination rate limits its practical application [6], and in alleviating these problems,
considerable research has been conducted [7]. Among nonmetal doping, N-doping into a
TiO2 matrix has gained specific attention; consequently, various N/TiO2 nanostructures
have demonstrated a better catalytic performance compared to typical TiO2 under vis-
ible light [8]. To suppress the charge recombination, preparing mixed-phase TiO2 has
been recommended more than its monophasic nanostructure, since the former materials
have demonstrated a better photocatalytic performance [9]. However, preparing these
mixed-phase nanomaterials requires a high temperature (>600 ◦C), and follows multistep
reactions; especially for the brookite counterpart, is quite challenging [7]. The disadvantage
of such a high temperature synthesis method is that it significantly reduces the active
surface area of the catalyst. Thus, preparing the phase-heterojunction N/TiO2 at lower
energies still remains imperative. With this aim, in this study, the effect of annealing gas
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type on the physicochemical properties of N/TiO2 was investigated. A variety of N/TiO2
nanocrystals were synthesized via the sol-gel method using guanidinium chloride (GUA)
as an eco-friendly N-dopant source and were then characterized via different techniques.
Additionally, their RhB photodegradation performance under direct sunlight was explored.

2. Materials and Method
2.1. Synthesis of N/TiO2 Nanocatalysts

The nanomaterials were prepared through our previous modified method [10,11];
which is typically as follows:

• Titanium butoxide (11.4 mmol, Sigma Aldrich, Bengaluru, India branch) was added
into ethanolic solution (30 mL, ethanol/water 5:1) step-wise while vigorously stirring;

• In another beaker, an equimolar amount of guanidinium chloride (98%, Sigma Aldrich,
Bengaluru, India branch) was added to a solution of ethanol (10 mL) and 5 drops of
conc. HNO3 while stirring;

• To this solution, the above white solution was added step-wise while stirring for 2 h;
• The resultant mixture was then sealed and aged for 12 days;
• Finally, it was heated at 400 ◦C for 4 h in a furnace under a different gas environment

with a flow rate of 150 cm3/min (Table 1). The samples prepared in atmospheric air,
Ar, and N2 were denoted as NT-A, NT-Ar, and NT-N, respectively. Following the same
procedure, a control sample was prepared in air without adding the N-dopant and
was designated as N-0.

Table 1. Synthesis parameters and XRD results of as-obtained photocatalysts.

Catalyst Ti(OBu)4
(mmol)

GUA
(mmol)

Temp. (◦C) Gas Type
Phase Comp. (%) Crystal Size (nm)

Anatase Rutile Anatase(101) Rutile(110)

N-0

11.4

0

400

Air 96 4 9.3 -
NT-Ar 11.4 Argon 98 2 8.5 -
NT-N 11.4 Nitrogen 98 2 8.5 -
NT-A 11.4 Air 53 44 10.2 36.3

2.2. Characterization Techniques of Catalysts

The following techniques were deployed for this study: X-ray diffractometer (Bruker
D8 Advance, Cu-Kα), field emission scanning electron microscopy (FESEM) (SEM (Quanta
400 FEG SEM)), photoluminescence, PL, (JASCO FP-6500), and Jasco V-650 spectropho-
tometer for the UV-Vis diffused reflectance (DRS), respectively.

2.3. Photocatalysis Study

Under natural sunlight, these experiments were conducted at CSIR-NIIST, Thiruvanan-
thapuram, India in January, 2018. 50 mg of as-synthesized photocatalyst were dispersed to
RhB solution (200 mL, 20 mg L−1). The dye-catalyst suspension was magnetically stirred
for 30 min in the dark; it was then exposed to direct sunlight irradiation (11 am to 4 pm)
while stirring. At regular time intervals, aliquots of the suspension were withdrawn. After
removing the catalysts by centrifugation, the solution was then analyzed with a UV-vis
spectrophotometer (UV-2401-PC-Shimadzu).
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3. Results and Discussion
3.1. Structural Analysis

Figure 1 depicts the XRD patterns of the as-prepared materials. It can be clearly
seen that both NT-Ar and NT-N have 98% anatase phase (JCPDS: 21-1272) similar to N-0;
whereas NT-A comprises a mixture of 53% anatase and 44% rutile phases (JCPDS: 21-1276)
with trace amount of brookite (Table 1) [12]. Comparing their respective XRD peaks, the
N-doping is occurred without altering the crystal structure in the cases of NT-Ar and NT-N;
however, it is caused a significant phase change in NT-A. Moreover, this difference in gas
environment influences the degree of crystallinity and particle size; NT-A displays the
highest crystallinity nature of all as-synthesized powders with a larger anatase nanoparticle
size (10.2 nm) than that of NT-Ar and NT-N (8.5 nm) (Table 1). This strongly suggests that
calcining TiO2 nanoparticles in atmospheric air favors particle growth; while in Ar and N2,
hinders the growth of the nanoparticles.
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Figure 1. XRD data of as-prepared nanomaterials (A: anatase, and R: rutile).

3.2. Morphological Analysis

The field-emission SEM images and elemental analysis of TiO2-based materials are
presented in Figure 2. The undoped sample has roughly spherical particles with aggregates
(Figure 2a). Importantly, both the NT-Ar and NT-N doped samples (Figure 2b,c) have a
spherical shape, which infers to their surface stability by the respective gas type. Whereas
NT-A has a coral-like structure (Figure 2d); in this particular sample, particle coarsening
and neck formation among the particles were observed due to the surface energy increment
under annealing in air. Consequently, its particle size was increased, which is in agreement
with the previous XRD discussion. Meanwhile, according to the EDAX elemental results
(as shown in Figure 2e–h), N-0 has both Ti and O, however the N/TiO2 materials were found
to have a third additional N element with a 6.8–10.1 atomic % range, thereby confirming that
nitrogen was effectively incorporated. Moreover, the doped-N was homogenously distributed.
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3.3. Optical-Response Analysis

The DRS, Kubelka-Munk, and PL measurements of N-0, NT-Ar, NT-N, and NT-A
are depicted in Figure 3; as shown, the unmodified white TiO2 had an absorption peak
in the UV region (~400 nm). However, all the as-obtained N-doped catalysts were found
to have two peaks: a sharp peak at ~420 nm, and an abroad one in the range of 420–600
nm, displaying an extended red shift to the visible light region. Meanwhile, based on
the Kubelka–Munk plot (Figure 3b), all the N/TiO2 materials exhibited a lower band gap
energy (Eg) than TiO2; NT-N particularly demonstrated the lowest Eg of 2.35 eV. Thus,
incorporating N in the TiO2 matrix not only led to a red shift (towards visible light) but
also narrowed the band gap.
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nanomaterials.

Understanding how N-doping into the TiO2 structure affects the rate of excitons is
crucial; the PL spectra of the as-prepared materials are illustrated as shown in Figure 3c. It
is noted that all the doped materials exhibited a lower PL intensity in the range of 350–550
nm compared to the unmodified sample, N-0. The lower PL values displayed by N/TiO2
indicates that they possess lower charge carrier recombination rates, which subsequently
leads to a high accessible e−/h+ density. Particularly, NT-A was recorded to have the
lowest PL intensity due to the A/R heterojunction through which the e−/h+ can be easily
separated unlike the other monoanatase phase. Consequently, this visible light active
material could perform better photocatalytic activities.
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3.4. Evaluation of Sunlight-Driven Degradation

RhB has become a common deleterious environmental pollutant. As shown in Fig-
ure 4a,b, the concentration of the RhB and characteristics of the RhB peak intensity were
reduced by the function of irradiation time. In particular, NT-A displayed the highest
photocatalytic efficiency of 99% within 300 min sunlight irradiation (Figure 4c). It was
noted that the RhB degradation performance was in the following order: NT-A > NT-N >
N-0 > NT-Ar. Moreover, according to the photodegradation kinetics (Figure 4d), NT-A also
had the highest apparent rate constant (0.0158 min−1) which was two times higher than
the bare TiO2. Such enhanced RhB discoloration over the NT-A surface was ascribed to its
higher degree of crystallinity, formation of A/R heterojunctions, lower recombination rate,
higher accessible e−/h+ density, and higher aqueous-disperse character.
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4. Conclusions

Visible active N-doped titanium nanomaterials were successfully prepared via the
sol-gel method using guanidinium chloride as the N-source. The N/TiO2 powders were
optimized at different annealing gas types (air, argon, and nitrogen) which profoundly
influenced their physicochemical and photocatalytic properties. Among the variety of as-
obtained photocatalysts, the N/TiO2 annealed in air displayed the highest RhB degradation
performance (99%) within 5 h of sunlight irradiation. This improved catalytic activity
was mainly ascribed to the N-introduction into the TiO2 structure that led to a higher
crystallinity, optimal anatase/rutile phase composition, and well separated charge carriers.
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