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Abstract: Gross primary production (GPP) represents the carbon (C) uptake of ecosystems through
photosynthesis and it is the largest flux of the global carbon balance. Our overall objective in this
research is to identify and model GPP dynamics and its relationship with meteorological variables
and energy fluxes based on time series analysis of eddy covariance (EC) data in two different
agroecosystems, a Mediterranean rice crop in Spain and a rainfed cropland in Germany. Crops
exerted an important influence on the energy and water fluxes dynamics existing a clear feedback
between GPP, meteorological variables and energy fluxes in both type of crops.

Keywords: gross primary production (GPP); energy fluxes; time series analysis; feedback; Granger-
causality tests

1. Introduction

The understanding of the CO2 flux between the biosphere and atmosphere is essential
for assessing the carbon cycle and its influence on global climate change. Gross primary
production (GPP) represents the C uptake of ecosystems through photosynthesis and it is
the largest flux of the global carbon balance. Crop GPP contributes approximately 15% of
global carbon dioxide fixation [1].

Climate determines carbon, water and energy fluxes on a seasonal to interannual
time scale creating a complex pattern of CO2 exchange between the atmosphere and the
ecosystem. Meanwhile, the ecosystem itself is responsible for strong feedback processes to
climate [2]. Jung et al. [3] showed the strong connections between GPP and energy fluxes
at a global scale; however, the relationships between fluxes should be studied at a local
scale in different ecosystems.

The eddy covariance (EC) technique has been established as a valid method to measure
meteorological variables as well as carbon, water and energy fluxes between ecosystems
and the atmosphere [4]. The high temporal resolution of EC measurements makes the
statistical time series analysis (TSA) an excellent method to analyze and study these data.
TSA in the time and frequency domains provides tools and methodologies to model and
forecast these variables and their relationship based on their dynamics [5]. Carbon, energy
and water fluxes could be analyzed by TSA and be used as an excellent indicator of the
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phenology of ecosystems monitoring several characteristics of the ecosystems such as,
cycles, evolution and trends.

Our overall objective in this research was to identify and model the GPP dynamics
and its relationship with meteorological variables and energy fluxes based on time series
analysis of EC data in two different agroecosystems, a Mediterranean rice crop in Spain
and a rainfed cropland in Germany.

2. Material and Methods
2.1. Study Site

Two EC flux towers integrated into the FLUXNET micrometeorological tower sites [6]
have been selected for this research.

The first one is situated in Gebesee (Germany) in an experimental agricultural area
which has been cultivated since 1970 mainly with cereals, potato and sugar beet. More
details on the site can be found in Anthoni et al. [7]. The study period analyzed of this flux
tower is from 1 January 2001 to 31 December 2014 in which has been cultivated rainfed
crops such as wheat, barley and potato. The area is characterized by a temperate climate
(Cfb) according to Köppen-Geiger classification.

The second one is placed in El Saler-Sueca in Valencia (Spain) in a rice crop [8]. The
area is characterized by a Mediterranean climate (Csa) and the available data of this flux
tower site is from 1 January 2004 to 31 December 2010.

The following pre-processed daily variables were used: (1) air temperature (Ta, ◦C);
(2) vapor pressure deficit (VPD, hPa); (3) precipitation (PPT, mm day−1); (4) soil water
content (SWC, % vol); (5) latent heat (LE, W m−2) (6) sensible heat (H, W m−2); and (7) gross
primary productivity (GPP_T, g C m−2 day−1).

2.2. Statistical Methods

Buys–Ballot tables [9] were used to study the intra-annual variability of meteorological
data, energy fluxes and GPP. Secondly, Granger causality tests [10] were used to study
dynamic relationships between variables. The statistical analysis was computed through
Statgraphics 18 (StatPoint Technologies Inc., Warrenton, VA, USA), Eviews 10 University
edition (IHS Global Inc., Irvine, CA, USA) and SAS software (SAS 9.4 Software, SAS
Institute Inc., Cary, NC, USA).

3. Results and Discussion

In Germany, H and LE increases with temperature during spring. However, while LE
increases together with GPP during the growing period due to the link between growth
and ETP, H reaches its maximum during May when the crop begins to cover the ground
and the energy inverted to change temperature stabilizes. The majority of Net radiation
is converted into latent heat. After harvest, sensible heat reaches its maximum in August
because the crop has been disappeared and does not influence on temperature. Latent heat
decreases because there is no crop and no ETP. Gao et al. [11] also showed that during
growing season latent heat was the main consumer of net radiation, while sensible heat
was dominant during the non-growing season in a rainfed maize crop.

In Spain, sensible heat reaches its maximum in mid-April when there is no crop and
between flooded periods. Latent heat has two cycles that coincides with flooded periods.
The first one is related to evaporation and the second one to ETP. Other studies highlighted
that latent heat is the main component of available energy in rice crops [12].

Figure 1 shows the Granger causality tests between H and LE and GPP in both
directions (i.e., variable cause GPP and GPP cause variable). In Germany, sensible heat
causes GPP at very short term (first three lags). Then, both directions show similar F-test
values. In Spain, from lag 2 to 10 GPP causes H more than in the other direction. In both
sites, GPP causes Latent heat more than backwards. However, in Germany F-tests are
much higher than in Spain especially in the sense GPP causes LE.
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GPP causes Latent heat more than backwards. However, in Germany F-tests are much 
higher than in Spain especially in the sense GPP causes LE. 

These feedback processes that vegetation exerts on the energy partitioning have been 
assessed by several authors [13,14]. 

 
Figure 1. Granger causality test between gross primary production GPP_T (g C m−2 day−1) and (a) 
sensible heat H (W m−2) and (b) latent heat LE (W m−2) in the two croplands (Left: Germany (DE), 
Right: Spain (ES)). 

4. Conclusions 
Differences in GPP values and dynamics between sites are due to different crops and 

their interaction with the meteorological variables in each climate. GPP depends mainly 
on temperature especially in irrigated crops. In terms of energy fluxes, latent heat is more 
coupled to GPP in rainfed crops and the sensible heat depends especially on ground cover 
in both crops. There is a clear feedback between GPP, meteorological variables and energy 
fluxes in both type of crops that we have quantify by Granger causality tests. In this sense, 
GPP causes temperature and latent heat, especially in rainfed crops. 
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Figure 1. Granger causality test between gross primary production GPP_T (g C m−2 day−1) and (a) sensible heat H (W m−2)
and (b) latent heat LE (W m−2) in the two croplands (Left: Germany (DE), Right: Spain (ES)).

These feedback processes that vegetation exerts on the energy partitioning have been
assessed by several authors [13,14].

4. Conclusions

Differences in GPP values and dynamics between sites are due to different crops and
their interaction with the meteorological variables in each climate. GPP depends mainly
on temperature especially in irrigated crops. In terms of energy fluxes, latent heat is more
coupled to GPP in rainfed crops and the sensible heat depends especially on ground cover
in both crops. There is a clear feedback between GPP, meteorological variables and energy
fluxes in both type of crops that we have quantify by Granger causality tests. In this sense,
GPP causes temperature and latent heat, especially in rainfed crops.

Author Contributions: Conceptualization, V.C., J.L., V.S.-G., A.P.-O.; methodology, V.C., J.L., V.S.-G.,
L.R., A.P.-O.; software, V.C., J.L.; formal analysis, V.C., J.L., A.P.-O.; investigation, V.C., J.L., V.S.-G.,
L.R., C.S., A.P.-O.; resources, J.L., A.P.-O.; writing—original draft preparation, V.C., J.L., V.S.-G.,
L.R., C.S., A.P.-O.; writing—review and editing, V.C., J.L., V.S.-G., L.R., C.S., A.P.-O.; supervision,
A.P.-O.; funding acquisition, A.P.-O. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Universidad Politécnica de Madrid within the project
RP2013210028: “Generación de un observatorio de dinámica de la vegetación a distintas escalas a
partir de series de tiempo de imágenes de teledetección”.

Acknowledgments: We would like to thank the FLUXNET2015 data set and the European Fluxes
Database Cluster for the assignment and permission to download the data of Gebesee and El Saler-
Sueca, respectively.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Eng. Proc. 2021, 9, 9 4 of 4

References
1. Malmström, C.M.; Thompson, M.V.; Juday, G.P.; Los, S.O.; Randerson, J.T.; Field, C.B. Interannual variation in global-scale net

primary production: Testing model estimates. Glob. Biogeochem. Cycles 1997, 11, 367–392. [CrossRef]
2. Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models.

Rev. Geophys. 2002, 40, 1006. [CrossRef]
3. Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.;

et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations. J. Geophys. Res. 2011, 116, G00J07. [CrossRef]

4. Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Dordrecht,
The Netherlands, 2012; ISBN 978-94-007-2350-4.

5. Huesca, M.; Litago, J.; Palacios-Orueta, A.; Montes, F.; Sebastián-López, A.; Escribano, P. Assessment of forest fire seasonality
using MODIS fire potential: A time series approach. Agric. For. Meteorol. 2009, 149, 1946–1955. [CrossRef]

6. Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey,
M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225.
[CrossRef] [PubMed]

7. Anthoni, P.M.; Knohl, A.; Rebmann, C.; Freibauer, A.; Mund, M.; Ziegler, W.; Kolle, O.; Schulze, E.-D. Forest and agricultural
land-use-dependent CO2 exchange in Thuringia, Germany. Glob. Chang. Biol. 2004, 10, 2005–2019. [CrossRef]

8. SUECA. Available online: http://ceamflux.com:9090/sueca/index.html (accessed on 20 May 2021).
9. Buys-Ballot, C.H.D. Les Changements périodiques de température, dépendants de la nature du soleil et de la lune, mis en rapport avec le

pronostic du temps, déduits d’observations néerlandaises de 1729 à 1846; Kemink: Utrecht, The Netherlands, 1847.
10. Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37,

424–438. [CrossRef]
11. Gao, X.; Mei, X.; Gu, F.; Hao, W.; Gong, D.; Li, H. Evapotranspiration partitioning and energy budget in a rainfed spring maize

field on the Loess Plateau, China. CATENA 2018, 166, 249–259. [CrossRef]
12. Liu, B.; Cui, Y.; Luo, Y.; Shi, Y.; Liu, M.; Liu, F. Energy partitioning and evapotranspiration over a rotated paddy field in Southern

China. Agric. For. Meteorol. 2019, 276–277, 107626. [CrossRef]
13. Wang, P.; Li, X.; Tong, Y.; Huang, Y.; Yang, X.; Wu, X. Vegetation dynamics dominate the energy flux partitioning across typical

ecosystem in the Heihe River Basin: Observation with numerical modeling. J. Geogr. Sci. 2019, 29, 1565–1577. [CrossRef]
14. Forzieri, G.; Miralles, D.G.; Ciais, P.; Alkama, R.; Ryu, Y.; Duveiller, G.; Zhang, K.; Robertson, E.; Kautz, M.; Martens, B.; et al.

Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 2020, 10, 356–362. [CrossRef]

http://doi.org/10.1029/97GB01419
http://doi.org/10.1029/2001RG000103
http://doi.org/10.1029/2010JG001566
http://doi.org/10.1016/j.agrformet.2009.06.022
http://doi.org/10.1038/s41597-020-0534-3
http://www.ncbi.nlm.nih.gov/pubmed/32647314
http://doi.org/10.1111/j.1365-2486.2004.00863.x
http://ceamflux.com:9090/sueca/index.html
http://doi.org/10.2307/1912791
http://doi.org/10.1016/j.catena.2018.04.008
http://doi.org/10.1016/j.agrformet.2019.107626
http://doi.org/10.1007/s11442-019-1677-z
http://doi.org/10.1038/s41558-020-0717-0

	Introduction 
	Material and Methods 
	Study Site 
	Statistical Methods 

	Results and Discussion 
	Conclusions 
	References

