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Abstract: To establish a safe human–robot interaction in collaborative agricultural environments, a
field experiment was performed, acquiring data from wearable sensors placed at five different body
locations on 20 participants. The human–robot collaborative task presented in this study involved six
well-defined continuous sub-activities, which were executed under several variants to capture, as
much as possible, the different ways in which someone can carry out certain synergistic actions in
the field. The obtained dataset was made publicly accessible, thus enabling future meta-studies for
machine learning models focusing on human activity recognition, and ergonomics aiming to identify
the main risk factors for possible injuries.
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1. Introduction

An emerging field in agriculture is collaborative robotics that take advantage of the
distinctive human cognitive characteristics and the repeatable accuracy and strength of
robots. One important factor, which is at the top of the priority list of Industry 5.0, is the
safety of workers, due to the simultaneous presence of humans and autonomous vehi-
cles within the same workplaces [1]. This human-centric approach is very challenging,
especially in the agricultural sector, since it deals with unpredictable and complex envi-
ronments, which contrast with other industries’ structured domains. A crucial element
in accomplishing a safe human–robot interaction is human awareness. Human activity
recognition relying on wearable sensor data has received remarkable attention as compared
with vision-based techniques, as the latter are prone to visual disturbances. To that end,
sensors, including accelerometers, magnetometers and gyroscopes, are often utilized, either
alone or in a synergistic manner. In general, multi-sensor data fusion is considered to be
more trustworthy than a single sensor, because the potential information losses from one
sensor can be offset by the presence of the others [2].

In the present study, a collaborative human–robot task was designed, while data were
collected from field experimental sessions involving two different types of Unmanned
Ground Vehicles (UGVs) and twenty healthy participants wearing five Inertial Measure-
ment Units (IMUs). Consequently, the workers’ activity “signatures” were obtained and
analyzed, providing the potential to increase human awareness in human–robot interaction
activities and provide useful feedback for future ergonomic analyses.
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2. Materials and Methods
Experimental Setup and Signal Processing

A total of 13 male and 7 female participants, with neither recent musculoskeletal
injury nor history of surgeries, took part in these outdoor experiments. Their average age,
weight and height were 30.95 years (standard deviation ≈ 4.85), 75.4 kg (standard deviation
≈ 17.2) and 1.75 m (standard deviation ≈ 0.08), respectively. An informed consent form
was filled out prior to any participation, which had been approved by the Institutional
Ethical Committee. Moreover, a five-minute instructed warm-up was executed to avoid
any injury. The aforementioned task, which has to be carried out three times by each
person, included: (a) walking a 3.5 m unimpeded distance; (b) lifting a crate (empty or
with a total mass of 20% of the mass of each participant); (c) carrying the crate back to the
departure point; (d) placing the crate on an immovable UGV (Husky; Clearpath Robotics
Inc. or Thorvald; SAGA Robotics, Oslo, Norway). A common plastic crate (height = 31 cm,
width = 53 cm, depth = 35 cm) was used, with a tare weight of 1.5 kg and two handles at
28 cm above the base. Finally, the loading heights for the cases of Husky and Thorvald
were approximately 40 and 80 cm, respectively.

Five IMU sensors (Blue Trident, Vicon, Nexus, Oxford, UK) were utilized in the
present experiments, which are widely used in such studies. Each wearable sensor contains
a tri-axial accelerometer, a tri-axial magnetometer and a tri-axial gyroscope. These sensors
were attached via double-sided tape at the regions of chest (breast bone), the first thoracic
vertebra, T1, (cervix), and the fourth lumbar vertebrae, L4, (lumbar region). In contrast,
special velcro straps were used to attach the sensors at the left and right wrists (Figure 1).
The sampling frequency was set equal to 50 Hz, while, for the purpose of synchronizing the
IMUs and gathering the data, the Capture.U software, provided by VICON, was deployed.

Figure 1. Body locations of the five IMU sensors and the available UGVs used in the experiments.

Distinguishing the sub-activities through carefully analyzing the video records was
a particularly challenging task, since each participant performed the predefined sub-
activities in their own pace and manner to increase the variability of the dataset. The
most observed difference among the participants was definitely the technique they used to
lift the crate from the ground. These techniques can be divided into the following main
lifting postures [3]: (a) Stooping: bending the trunk forward from an erect position without
kneeling; (b) Squat: bending knees by keeping the back straight and then standing back up;
(c) Semi-squat: an intermediate posture between stooping and squat.

The sub-activities were continuous to obtain realistic measurements, hence increasing
the degree of difficulty in labeling. To determine the critical instant where the transition
occurred, the following well-defined criteria were imposed: (i) “Standing still” until the
signal is given to begin; (ii) “Walking without the crate”: One of the feet leaves the ground,
corresponding to the start of the stance phase of gait cycle; (iii) “Bending”: Starting bending
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the trunk forward (stooping), or kneeling (squat), or performing both simultaneously (semi-
squat); (iv) “Lifting crate”: Starting lifting the crate; (v) “Walking with the crate”: The
stance phase starts as analyzed above, but carrying the crate this time; (vi) “Placing crate”:
Starting stooping, squat or semi-squat and ending when the entire crate is placed to either
Husky or Thorvald.

3. Results and Discussion

For the sake of brevity, only indicative raw signals in z direction are presented in this
study (Figure 2), while the full dataset was made publicly available in [4]. Moreover, labels
were assigned to the sub-activities, from 0 (standing still) to 5 (placing crate), with the
intention of rendering them adequate for future machine learning studies.

Figure 2. Indicative raw signals in z direction, considering the case of loading Thorvald with a crate of a total mass equal
to 20% of the participant’s mass, representing: (a) acceleration at different body locations, (b) measurements of different
sensors at the chest, and (c) acceleration at the chest using different techniques.

As expected, the sub-activities demanding more time were those involving walking
with and without the crate. In contrast, transitional sub-activities, including bending
to approach the crate and lifting it, as well as placing the crate onto the robot, were
considerably less time-consuming. Consequently, more effort was needed to capture the
critical transitional instant through carefully analyzing the video records in accordance with
the aforementioned criteria. In Figure 2a,b, the distinction of the sub-activities is clearly
shown. More specifically, Figure 1a depicts the raw signals acquired by accelerometers at
the five body locations. The signals originating from the wrists and lower back were quite
complicated, while those from the chest and cervix presented local maxima or minima when
a transition took place. Focusing on the acceleration measurements of the chest (Figure 2b),
for instance, the nearly flat signal (corresponding to the standstill state) starts to fluctuate
after t = 1 s, almost periodically indicating the repetitive parts of the gait cycle. This state
is abruptly interrupted by an “indentation” in acceleration (or, equivalently, a “bulge”
regarding the magnetometer signal). Within this indentation, the bending and lifting of
the crate occur, requiring an approximately equal time. Subsequently, the signal indicating
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gait follows, while the sub-activity of placing the crate cannot easily be distinguished; it
looks like a part of the previous sub-activity.

One very interesting feature extracted from the analysis of signals was their different
forms, especially when bending and lifting the crate. This differentiation can be attributed
to the several variations in the experiments (e.g., full/empty crate, different depositing
heights, performing tasks at the individual’s own pace). However, a more careful exami-
nation of video records revealed that the difference in these time series was mainly due
to the lifting technique used. As can be seen in Figure 2c, when the participant used the
squat technique, a relatively small indentation was observed, lasting longer than the other
two techniques. The squat style was used by a minority of subjects, whereas stooping
and semi-squat were used in the majority of cases, demonstrating a deeper indentation.
In general, a squat lift leads to less stress on the spine while stooping; although more
natural, this is considered to be the primary risk factor for lower back disorders. This
type of lifting, especially when performed in a repetitive manner, appears to be the most
common technique in agricultural activities, justifying the epidemic proportion of low back
injuries in this sector [3,5]. The semi-squat is an alternative posture between squat and
stooping, which avoids the deep kneeling of squat and the full lumbar flexion of stooping.
There is considerable controversy regarding the best lifting posture, since all of them have
drawbacks regarding oxygen consumption and fatigue in spine and knees [3].

In summary, a field experiment, involving well-defined continuous sub-activities, was
designed, which collected data via wearable sensors. This dataset is characterized by a
large variability, due to the inclusion of a plethora of different parameters. Finally, it was
made publicly accessible [4] and is expected to be particularly useful for future research
regarding machine learning and ergonomic studies.
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