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Abstract: Hidden defects affecting the interface in a composite slab are evaluated from thermal data
collected on the upper side of the specimen. First we restrict the problem to the upper component
of the object. Then we investigate heat transfer through, the inaccessible interface by means of
Thin Plate Approximation. Finally, a Fast Fourier Transform is used to filter data. In this way, we
obtain a reliable reconstruction of simulated flaws in thermal contact conductance corresponding to
appreciable defects of the interface.
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1. Introduction

Consider a composite body ΩS made up of two slabs separated by a smooth interface
S. Assume that S is a low conductivity imperfect interface [1] (imperfect thermal contact) i.e., we
have a temperature jump through S but heat flux across the interface is continuous. In this
case the interface has a finite thermal conductance H (i.e., a thermal resistance R = 1

H > 0). It
is clear that an insulating interface correspond to H = 0 while a continuous temperature
(resistance equal to zero or perfect contact) means H = ∞ (very large in practice). Here, we
deal with the problem of investigating the thermal conductance of S by means of Active
Thermography [2].

The physical interface (or interphase [3]) looks like a thin domain quite irregular at
the molecular scale. Assume that, when the body ΩS is undamaged, variations of its
thickness are small with respect to the average value d0. If the thermal conductivity κa in
the interphase is known, the background thermal conductance of the interface is defined as
H0 ≈ κa

d0
. A local flaw in the interphase (for example a delamination or a fracture) manifests

itself with a perturbation of the thermal conductance of S.
Our goal is to evaluate local defects (or anomalies) possibly arising in the interface from

the measure of the corresponding changes of temperature on the external accessible surface
of ΩS (see Section 3.1). Thermal conductance is a function H : S→ [0, ∞]. Deviations of H
from the reference known value H̄ due to interface anomalies are evaluated by solving an
Inverse Heat Conduction Problem (IHCP). An effective approach to this problem, based
on the Reciprocity Function technique, is described in [4]. Here we improve the results
in [4] by means of Thin Plate Approximation (TPA) (see for example [5]) and Fourier
Filtering. The idea of using a perturbative approach such as TPA is supported by the
general assumption (see [2] Section 9.2.1) that thermography works mainly in detection of
subsurface anomalies i.e., has the chance to be effective in thermally thin domains (Biot
number ≤0.1 see [6] Section 5.2).
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2. Geometry of the Specimen

Consider the composite domain ΩA = Ω+
ε ∪ A ∪Ω−ε where

Ω+
ε = {(x, y, z) s.t. x, y ∈ (−L, L) a+ > z > εg+(x, y)}

Ω−ε = {(x, y, z) s.t. x, y ∈ (−L, L) − a− < z < −εg−(x, y)}

with g+ and g− continuous, possibly non differentiable, functions ranging in (0, 1) with
ε << min{a−, a+}. Here, we consider the two cases: (i)a− = a+; (ii) a+ << a− ≈ ∞.

We stress that Ω+
ε and Ω−ε could be made by different materials each characterized by

density ρ± specific heat c± and thermal conductivity κ±. The third, irregular, thin slab is

A = {(x, y, z) s.t. x, y ∈ (−L, L) − εg−(x, y) < z < εg+(x, y)} (1)

and ρa, ca and κa are its physical parameters.
The domain A has variable thickness ε(g+(x, y) + g−(x, y)) and it is assumed to

be filled up with a homogeneous gas whose conductivity κa is much lower than the
conductivities κ± of Ω±. This gas is usually air so that κa = 0.002587 W

mK .

3. Modeling the Heat Conduction through A by Means of Robin Boundary Conditions
on the Two Sides of an Interface S. Imperfect Contact

The solution of heat conduction equation in the domain ΩA = Ω+
ε ∪ A ∪Ω−ε can

be deeply affected by the physical characteristics of A. We account for the different
conductivities κ−, κa, κ+ by imposing continuity of temperature and heat flux for z =
εg+(x, y) and z = −εg−(x, y) (transmission conditions). The functions g+ and g− are
very irregular at a microscopic scale but, if their values are normally distributed in a small
neighborhood of the mean values ḡ− and ḡ+, the set A can be successfully approximated
by the parallelepiped Ā = {(x, y, z) s.t. x, y ∈ (−L, L), − εḡ− < z < εḡ+} . Ā opposes
heat transfer so that its Thermal Conductance is the finite quantity

H̄ =
κa

ε(ḡ+ + ḡ−)
. (2)

The task of solving the heat equation in ΩA becomes much simpler if we consider
Ā instead of A, squeeze Ā to the plane interface S = {z = 0} and assign the Robin
transmission conditions between Ω+

0 and Ω−0 (imperfect contact [3])

k±u±n (x, y, 0±) + H̄(u±(x, y, 0±)− u∓(x, y, 0∓)) = 0. (3)

The presence of anomalies in g± corresponds to a defect in the heat transfer from Ω+
0

to Ω−0 . Hence, extending the meaning of (3), we have

k±u±n (x, y, 0±) + He f f (u±(x, y, 0±)− u∓(x, y, 0∓)) = 0. (4)

where He f f =
κa

ε(g+(x,y)+g−(x,y)) .

3.1. The Inverse Problem

The main goal of the present work is to solve the following inverse problem: a reliable
approximation of the unknown function He f f (x, y) must be computed from the knowledge
of a controlled heat flux Φ(x, y, t) and from the collection of a family of temperature maps
Ψ(x, y, r) taken on the accessible surface z = a+. Ψ(x, y, r) is affected by gaussian noise.

4. Thin Plate Approximation

The dimensionless parameter γ = a+
L gives a measure of how much Ω+

0 is “geomet-
rically thin”. Here, we consider the special case a+ = a− ≡ a in which (generalizing the
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humps theorem in [7]) transmission conditions (4) at the interface are included in the single
Robin boundary condition

− κ+u+
z + 2He f f (x, y)(u+(x, y, 0+, t)− u0(x, y, 0, t)) = 0 (5)

for an Initial Boundary Value Problem for the heat equation in Ω+
0 × (0, T) (direct model).

Here, u0 is the virtual temperature of the heated domain without any interface. Normalize
the “thin” variable z := z

a and then expand u+ and He f f in powers of γ2 and plug the
expansions

u+(x, y, z, t) = u0(x, y, z, t) + γ2u1(x, y, z, t) + γ4u2(x, y, z, t) + .... (6)

He f f (x, y) = h0(x, y, t) + γ2h1(x, y, t) + ... (7)

in the direct model. Since we are in the framework of [5], the first order perturbation theory
(TPA) gives the approximated explicit form

He f f (x, y) ≈
Φ(x, y, t̄) + a(κ+Ψxx + κ+Ψyy − ρ+c+Ψt)− a h+

L Ψ
2(Ψ− u0(x, y, 0, t̄))

(8)

where the time t̄ is suitably chosen and u0 is the background temperature defined in the
introduction.

5. Numerical Simulations

Consider two slabs with the same thickness a and side L.
Physical parameters (MKS units) are:
Upper slab: κ+ = 54; ρ+ = 7870; c+ = 486.
Lower slab: κ− = 14; ρ− = 8000; c− = 500.
Geometrical parameters:
d0 = 10−5 m (average contact thickness); a = 10−2 m (thickness of a single slab);

L = 0.1 m (slab side).
The upper surface is uniformly illuminated with a source with a power density

φ(x, y) = 105 W m−2, constant in time. The contact resistance between the slabs is due to a
variable thickness d(x, y). Given the thermal conductivity ka of the material between the
two sheets (air: ka = 25.87× 10−3 W m−1K−1), the unknown heat exchange coefficient is
given by He f f (x, y) = d(x, y)/ka. Figure 1 shows the unknown heat exchange coefficient.

Figure 1. Unknown heat exchange coefficient at the interface: graph and contour plot.

A gaussian noise with σ = 0.1 ◦C has been added to the simulated temperature map.
Figure 2 shows the reconstructed effective heat transfer coefficient without and with

noise. In order to compute the spatial derivatives in the procedure, a cubic smoothing
spline is applied to data when computing the first-order derivatives. Moreover, the same
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kind of smoothing is applied to temperature maps when noise is present. An alternative to
data smoothing is FFT filtering the noisy data.

Figure 2. Reconstructed He f f without noise; with noise; with noise and a Fourier-filtered map. To be
compared with the contour plot in Figure 1.

6. Discussion

In this paper we describe a method of active thermography for the numerical evalua-
tion of defects of an inaccessible interface that divides two slabs in a composite. The method
is based on the expansion of temperature (of the specimen) and thermal conductance (of
the interface) in power of the thickness of one of the slabs. A perturbative technique (Thin
Plate Approximation), already used in different contexts, is adapted to this problem. We
deal with an ill-posed Inverse Problem for heat equation. Moreover, the computation of
derivatives of discrete functions is required. In simulations, functions and derivatives are
smoothed by means of FFT Filtering. Further developments: testing with experimental
data (in progress, collaboration with Civil Engineering Dept. University of Parma), better
mathematical modeling of the limit from interphase to interface (in progress, collaboration
with Mathematical Department of the University of Firenze).
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