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Abstract: Machining is a critical aspect of metalworking since it is used to cut metal. Machine
tools, particularly cutting tools, are critical in metalworking for successful metal cutting. They have
a significant role in developing distinct shapes and forms. Machining has become more crucial
in modern automated manufacturing systems because of the massive upsurge in production time
and the necessity to offset the high capital cost. Specifically, the Taguchi approach is used in this
experiment because it uses an orthogonal array to investigate the parameters through a fixed number
of experiments. In this case, three parameters (speed, depth of cut, and feed) were combined to
produce nine possible result combinations. Stainless steel and mild steel are machined with the help
of a ceramic tool insert with certain combinations. This is performed to estimate tool wear and surface
roughness. The comparative study was conducted for two different materials: stainless steel (SS) and
mild steel (MS).

Keywords: surface roughness; depth of cut; feed; speed; orthogonal array

1. Introduction

A main machining process called turning involves cutting metal and removing chips
to create final products with the correct size, shape, and surface roughness. Choosing the
appropriate machining parameters for a certain product may be challenging. Indeed, it
is determined by the expertise of the engineers and the design table for machine tools.
As a result, optimisation is more important than ever to fulfill the needs of the machined
item in terms of cost and quality. The main objective of Taguchi’s design was to make
sure the product works effectively in noisy environments, which increases the likelihood
that it will last a long time. The Taguchi technique is easy to use and does not require
much work. As a result, a variety of businesses are using Taguchi’s technology to raise
the caliber of their production procedures. Important factors in the machining process are
the cutting force and surface roughness. Cutting forces have an influence on the exactness
of the workpiece’s dimensions, its deformation, and its chip formation. In industries, a
minimum of ten components through precise surface roughness is always necessary to
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meet consumers’ requirements. This is possible through the optimisation route, which is
the subject of this research.

S. K. Thangarasu et al. [1] explored a turning process, and the estimation of cutting
forces was performed. Turning with an enriched cutting tool has various advantages
over grinding, the most notable of which is a reduced cycle time. Cutting fluid is not
required, which upsurges the expanse of time available, the flexibility of the operation, the
suitability of the MRR, surface unevenness, and a typical environmental effect. Cutting
forces delivered to a MS workpiece by a cemented carbide insert tool were measured via a
full-bridge dynamometer at different depths of cut and speed of cut, along with feed rates.
Experiments were designed following Taguchi principles. The measured cutting forces
were associated with the expected ones to determine a feasible proposed design.

Manoj Nayak et al. [2] examined the mechanical, microstructure, and machining
properties of D6 steel in both the annealed and hardened stages. Researchers discovered
that the feed rate and depth of cut (DOC) impact surface roughness. However, the feed
rate and DOC have a major effect on the foremost cutting force. When machining annealed
steel, cutting speed does not distress surface roughness and is the major driving factor
for the cutting action. High cutting speeds besides a medium depth of cut resulted in
significant wear.

C Moganapriya et al. [3] showed that cutting speed (43.1 percent) and DOC
(35.8 percent) were the most critical drivers of tool wear. Although the usage of cutting
fluid (13.7 percent) drastically impacted the tool wear, the feed rate was shown to be the
most critical factor in determining tool wear. L. A. Looney et al. [4] found that obtaining
the desired surface finish when cutting on a low feed rate requires ideal cutting conditions.
The occurrence of roughness plus tool wear was seen when cutting at high speed and with
a medium DOC.

A. J. Makadia et al. [5] showed that the DOC had a strong influence on MRR and,
also, on the cutting speed, although the DOC followed via the feed had the most excellent
effect on the amalgamation of the two. Turning tests were conducted on an AISI 1020 mild
steel workpiece whose nose radius was a 0.8 mm carbide insert. The impact of various
constraints, like the feed rate, DOC, and cutting speed, on the roughness of the machined
surface was examined.

S. Debnath et al. [6] used the orthogonal array-based Taguchi technique to conduct
the minimum number of experiments. The feed rate effect was shown to significantly
contribute to the workpiece’s surface roughness, accounting for 34.3 percent of the total. In
addition, the flow velocity of the cutting fluid had a momentous influence on the outcome
(33.1 percent). In contrast, the DOC and the cutting speed had only minimal control over
the surface unevenness of the cut material.

R. Suresh et al. [7] discovered that multilayer coating on carbide substrates, compared
with uncoated carbide tools, increases the tool’s lifespan while simultaneously decreasing
the cutting force. Models for second-order mathematical analysis were used to investigate
the impact of cut depth on machining physiognomies—for instance, surface roughness, tool
wear, explicit cutting force and machining power, and force—while machining chromium-
based materials.

Experiments have demonstrated that extending tool life can lead to less tool wear. By
combining the force constituents applied to the cutting tool, the overall work produced
by machining with a cutting tool was computed. Increasing the feed rate, cutting speed,
and DOC results in a rise in tool temperature, which shortens the tool’s useful life. In
response to the rise in feed and primary cutting force at the chip and tool interface, an
upsurge in temperature was observed; however, this temperature decreased with the rise
in the DOC [8–10]. These studies have exposed that increasing the speed of the cut results
in lowered cutting tool forces and lowered temperature of machined surfaces [11]. Further
research revealed that tool wear was accountable for the increased temperature of the
machined surface and cutting tool forces [12]. The chip’s temperature increased as the
cutting speed improved [13].



Eng. Proc. 2024, 61, 48 3 of 8

2. Experimental Details
2.1. Stainless Steel 304

The utmost prevalent kind of SS is SAE 304 as shown in Figure 1 used for the experi-
mental work. The crucial non-iron constituents of steel are nickel (8–10.5%) and chromium
(18–20%) [1]. This kind of SS is austenitic compared with carbon steel, it has lesser electrical
and thermal conductivity. While still magnetic, it is not as magnetic as steel. Since it is
easier to mould into diverse forms, it is more extensively utilised and has a tougher erosion
resistance than ordinary steel.
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2.2. Mild Steel 1020

Mild steel 1020 shown in Figure 2 used for the research work is a common-purpose low
tensile carbon steel with low hardenability properties, normally delivered in the cold drawn,
turned, and polished situations, with a distinctive tensile strength range of 410–790 Mpa,
and 119–235 Brinell hardness range.

Eng. Proc. 2024, 61, 48 3 of 8 
 

 

2. Experimental Details 
2.1. Stainless Steel 304 

The utmost prevalent kind of SS is SAE 304 as shown in Figure 1 used for the experimental 
work. The crucial non-iron constituents of steel are nickel (8–10.5%) and chromium (18–
20%) [1]. This kind of SS is austenitic compared with carbon steel, it has lesser electrical and 
thermal conductivity. While still magnetic, it is not as magnetic as steel. Since it is easier 
to mould into diverse forms, it is more extensively utilised and has a tougher erosion re-
sistance than ordinary steel. 

 
Figure 1. Stainless steel specimen. 

2.2. Mild Steel 1020 
Mild steel 1020 shown in Figure 2 used for the research work is a common-purpose low 

tensile carbon steel with low hardenability properties, normally delivered in the cold 
drawn, turned, and polished situations, with a distinctive tensile strength range of 410–
790 Mpa, and 119–235 Brinell hardness range. 

 
Figure 2. Mild steel specimen. 

2.3. Profile Projector 
Profile projector is used to compare measured contour models and complex shape 

stampings. It is simple and effective and is a standard optical instrument that measures 
around 360°, so the screen’s X-Y axis aligns with a straight edge of the machined item. 
This projection screen is expanded to provide an easier linear measurement while display-
ing the specimen’s profile. The edge of the specimen might line up with the grid on the 
screen. Simple distance measurements may be taken from there. This is carried out on a 
larger specimen profile, which makes measurement easier and less error-prone. The en-
larged projection screen of a profile projector is utilised in the most widely used lighting 
method called diascopic illumination, sometimes referred to as transmitted illumination. 
An opaque specimen is translucent and light-permeable; light cannot travel through it, 
but it will define the specimen’s profile. On the screen, the sample may be measured. 
There will be episcopic lighting in addition to a profile projector illuminating overhead. 
This displays any inside locations or bores that require measurement and cleaning. This 
standard optical instrument measurement is simple and effective and is used for intricate 
stampings, gears, cams, threads, and the contour model. 

2.4. Surfcom Flex 
Surfcom Flex shown in Figure 3 is easy to use and it boosts shop floor operability. It 

takes only three button presses to accomplish a measurement. An essential attachment, a 
strap, can be added to either side mini-USB connector with Surfcom Flex for PC connec-
tion. The data can be transmitted to a PC for analysis. 

Figure 2. Mild steel specimen.

2.3. Profile Projector

Profile projector is used to compare measured contour models and complex shape
stampings. It is simple and effective and is a standard optical instrument that measures
around 360◦, so the screen’s X-Y axis aligns with a straight edge of the machined item. This
projection screen is expanded to provide an easier linear measurement while displaying
the specimen’s profile. The edge of the specimen might line up with the grid on the
screen. Simple distance measurements may be taken from there. This is carried out on
a larger specimen profile, which makes measurement easier and less error-prone. The
enlarged projection screen of a profile projector is utilised in the most widely used lighting
method called diascopic illumination, sometimes referred to as transmitted illumination.
An opaque specimen is translucent and light-permeable; light cannot travel through it, but
it will define the specimen’s profile. On the screen, the sample may be measured. There will
be episcopic lighting in addition to a profile projector illuminating overhead. This displays
any inside locations or bores that require measurement and cleaning. This standard optical
instrument measurement is simple and effective and is used for intricate stampings, gears,
cams, threads, and the contour model.

2.4. Surfcom Flex

Surfcom Flex shown in Figure 3 is easy to use and it boosts shop floor operability. It
takes only three button presses to accomplish a measurement. An essential attachment, a
strap, can be added to either side mini-USB connector with Surfcom Flex for PC connection.
The data can be transmitted to a PC for analysis.
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2.5. Tool Holder and Tool Insert

The tool holder which is shown in Figure 4a is a universal term for connectors used
to mount the cutting tools in the machine tool equipment that accomplishes numerous
processes. It impacts the machining accurateness of machine tools plus the product quality,
so they can claim high exactness for which not even microscopic inaccuracy is endurable.

Eng. Proc. 2024, 61, 48 4 of 8 
 

 

 
Figure 3. Surfcom Flex used for experimental work. 

2.5. Tool Holder and Tool Insert 
The tool holder which is shown in Figure 4a is a universal term for connectors used 

to mount the cutting tools in the machine tool equipment that accomplishes numerous 
processes. It impacts the machining accurateness of machine tools plus the product qual-
ity, so they can claim high exactness for which not even microscopic inaccuracy is endur-
able. 

Ceramic tool inserts shown in Figure 4b have become essential insert materials as 
they have high thermo-stability, wear resistance, and high resistance to corrosion. Because 
they can resist temperatures up to 2204 °C, the work material can be softened, allowing 
deeper and cleaner cuts. Ceramic tools are manufactured using the powder metallurgy 
technique from aluminum oxide (Al2O3) or silicon nitride compounds combined with ad-
ditions like titanium oxide and magnesium oxide to enhance cutting characteristics. In 
addition to their high hardness, ceramic materials can keep their qualities at extremely 
high temperatures, have excellent electrical and wear resistance, and chemical inertness, 
all of which make them the ultimate choice for tooling. At temperatures above 537 degrees 
Celsius (2320 degrees Fahrenheit), the metallic binders in carbide and cement tools begin 
to weaken, but ceramic tools remain solid. 

 

(a) (b) 

Figure 4. (a) Tool holder and (b) tool insert. 

3. Results and Discussions 
Table 1 demonstrates how cutting parameters such as speed (112, 180, 280), feed 

(0.045, 0.070, 0.125), and DOC (0.5, 1.0, 1.5) are chosen for assessing surface roughness plus 
tool wear while turning stainless steel and mild steel with ceramic-based tool inserts. 

Table 1. Cutting parameters. 

Sl. No. Cutting Speed in rpm Feed in mm/rev DOC in mm 
1 112 0.045 0.5 
2 112 0.070 1.0 
3 112 1.0125 1.5 

Figure 4. (a) Tool holder and (b) tool insert.

Ceramic tool inserts shown in Figure 4b have become essential insert materials as
they have high thermo-stability, wear resistance, and high resistance to corrosion. Because
they can resist temperatures up to 2204 ◦C, the work material can be softened, allowing
deeper and cleaner cuts. Ceramic tools are manufactured using the powder metallurgy
technique from aluminum oxide (Al2O3) or silicon nitride compounds combined with
additions like titanium oxide and magnesium oxide to enhance cutting characteristics. In
addition to their high hardness, ceramic materials can keep their qualities at extremely
high temperatures, have excellent electrical and wear resistance, and chemical inertness, all
of which make them the ultimate choice for tooling. At temperatures above 537 degrees
Celsius (2320 degrees Fahrenheit), the metallic binders in carbide and cement tools begin to
weaken, but ceramic tools remain solid.

3. Results and Discussion

Table 1 demonstrates how cutting parameters such as speed (112, 180, 280), feed (0.045,
0.070, 0.125), and DOC (0.5, 1.0, 1.5) are chosen for assessing surface roughness plus tool
wear while turning stainless steel and mild steel with ceramic-based tool inserts.

Numerous cutting constraints were selected for an in-depth understanding of the
machining process. The detailed selected constraints are displayed in Table 1. The various
processes carried out were grouped with the suitable name and are presented in Table 2.
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Table 1. Cutting parameters.

Sl. No. Cutting Speed in rpm Feed in mm/rev DOC in mm

1 112 0.045 0.5
2 112 0.070 1.0
3 112 1.0125 1.5
4 180 0.045 1.0
5 180 0.070 1.5
6 180 1.0125 0.5
7 280 0.045 1.5
8 280 0.070 0.5
9 280 1.0125 1.0

Table 2. Experimental results of turning stainless steel.

Sl. No. Cutting Speed
in rpm

Feed in
mm/rev

DOC in
mm RA (µm) RZ (µm) RT (µm) RPK (µm) Tool Wear

in (µm)

1 112 0.045 0.5 1.124 6.355 11.07 2.30 79
2 112 0.070 1.0 1.340 8.240 14.91 2.69 92.9
3 112 1.0125 1.5 1.285 10.24 22.88 1.43 50
4 180 0.045 1.0 0.583 4.72 5.936 1.68 90
5 180 0.070 1.5 1.713 8.851 12.46 2.05 57
6 180 1.0125 0.5 2.541 13.49 20.81 5.53 97.3
7 280 0.045 1.5 3.695 18.89 27.31 4.37 81.3
8 280 0.070 0.5 0.779 5.197 8.032 2.75 91.5
9 280 1.0125 1.0 1.379 8.506 14.56 2.83 60.3

Table 2, Figures 5 and 6 displays several metrics for stainless steel resulting from the
profile projector and Surfcom Flex, such as the arithmetical mean roughness value (RA) in
µm, mean roughness depth (RZ) in µm, total height of the profile (RT) in µm, reduced peak
height (RPK) in µm, and tool wear in µm
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To assess tool wear and surface roughness, mild steel is turned using a ceramic tool
insert. The following Table 3, Figures 7 and 8 displays the RA (µm), RZ (µm), RT (µm),
RPK (µm), and tool wear acquired using the profile projector and Surfcom Flex.
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