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Abstract: ZE41 is a magnesium alloy used in heat exchangers, condensers, reactors, and pressure
vessels where good surface qualities are required. This current research focuses on the investigation
of the striation angle (SA), surface roughness (SR), and striation zone (SZ) in ZE41, using abrasive
waterjet cutting. Significant variables in the investigation were jet pressure, traverse speed, mass
flow rate, and stand-off distance. In accordance with Taguchi’s L18 orthogonal array, the responses
for each cut test were studied. In addition, the principal component-based grey incidence (PGI)
technique successfully combined the strengths of the optimization tool to identify the ideal parameter
condition. The confirmation results revealed that the PGI technique improved SR by 4.02%, SZ by
6.67%, and 1.48% in the SA.

Keywords: ZE41 alloy; magnesium alloy; AWJC; PGI technique

1. Introduction

Waterjets in their pure form, or when coupled with abrasives, can machine materials
that are tough to cut, such as brass, nickel-chromium alloys, and titanium. Unlike cutting
procedures involving plasma or laser, abrasive water jet cutting (AWJC) is distinguished by
the absence of microcracking and thermal impacts on the cut surface [1]. To conduct the
desired activity, the principle consists of converting water’s available pressure energy into
kinetic energy by passing it through a small hole (orifice) [2]. Abrasive performance was
discovered to be significant while taking cuts, and proper abrasive recharging improved
the penetration depth of waterjets at a lower cost [3]. In addition, a good surface finish was
observed when AWJC of a metal alloy was compared to AWJC of pure metal as a parent [4].
Furthermore, cutting factors such as abrasive water jet pressure (AWJP), cutting speed
(CS), abrasive flow rate (AFR), jet angle (JA), and standoff distance (SOD) were discovered
to play a vital influence in defining the quality features of the cut surface [5]. For offline
quality control, research factors and their impacts on quality characteristics were critical,
and an appropriate combination of factors was required to achieve improved cut surface
characteristics [6,7]. SZ characteristics in the PGI method (zone length and SA) directly
impact surface texture; hence, lowering the SZ and its angle was critical for producing a
superior cut surface [8,9]. It is possible to think of the AWJC technique as a multiple-input
procedure that necessitates the simultaneous optimization of several answers [10,11]. A
survey of the available literature revealed that little is known about the properties of the
SZ and that little has been done to research the SZ in ZE41, a magnesium alloy AWJC. As
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a result, a factor design attempt has been undertaken in AWJC using the PGI method to
reduce SR, SZ, and SA.

2. Materials and Methods

ZE41 was selected as the workpiece material. It is mainly composed of zirconium,
rare-earth elements, zinc, and magnesium. The experiments were run on a dual amplifier
and pump system-equipped three-axis AWJM (Waterjet Germany Pvt. Ltd., model: S30155,
Bad Nauheim, Germany). The device operated a 0.28 mm diameter (sapphire) injection
nozzle that can discharge the water jet at a maximum pressure of 3600 bar using a PLC-
based system. During several cutting trials, garnet (80 mesh) was utilized as the abrasive,
and the nozzle was held at a right angle to the cut surface. Figure 1 depicts the machine
setup and machined samples. The AWJC factor levels were chosen based on the available
literature and pilot experiences. Taguchi’s L18 OA was employed for experimentation,
with each factor being varied at five levels. After the numerous trial cuts, the SZ, SA,
and SR were observed as representatives of surface texture. Lower SZ, SA, and SR values
might improve the surface texture. Therefore, all of the observed responses were treated
as smaller-than-better characteristics. The cutting surface has two distinct zones: one has
no striations, indicating cutting wear, and the other has striations, revealing deformation
wear to the bottom 15. It features a predetermined square on the screen with a built-in
transparent protractor for measuring angles. The length of the bottom section chosen as
the SZ was measured using an optical microscope and an optical micrometre, and the SA
was calculated using the program MB Ruler 4.0’. The SR was determined using a smartsurf
roughness tester with a contact stylus (Model: SE500A, Fukuoka, Japan). The roughness
profile’s arithmetic mean deviation (Ra) was measured for a sampling length of 4 mm and
measured at a speed of 0.1 mm/s16.
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3. Results and Discussion

Using the combination of inputs recommended by the L18 OA, the metallurgical
surface treatment of carbonitriding was applied to all material substrates. Further analysis
was performed on the replies that were received. The effects of individual factors on the
response are displayed in Figure 1a–d. The higher level of JP 350 MPa gives a lower range
of SR of 2.65 µm, SZ of 4.17 µm, and SA of 6.85 degree, as shown in Figure 1a. The lower
level of JP 150 MPa gives a higher spectrum SR of 4.68 µm, SZ of 6.75 mm, and SA of
13.64 degree, as shown in Figure 1a. Figure 1b reveals that the moderate level of SOD 2 mm
gives a lower range of SR 2.71 µm, SZ 4.23 mm, and SA 7.25 degree. The initial and higher
SOD 1 mm and 3 mm level provides a greater range of SR 4.71 µm, SZ 6.69 mm, and SA
11.93 degree. The lower level of TS 50 mm/min gives a lower range of SR 2.71 µm, SZ
4.23 mm, and SA 7.51 degree, as shown in Figure 1c, and it also indicates that the higher
level of TS 110 mm/min produces a higher range of SR 4.41 µm, SZ 6.87 mm, and SA
12.97 degree. The higher level of AFR 400 g/min gives a lower range of SR 2.76 µm, SZ
4.21 mm, and SA 6.81 degree, as shown in Figure 1d. Similarly, the lower range of AFR
200 g/min produces a higher range of SR 4.68 µm, SZ 6.87 mm, and SA 13.65 degree.

3.1. Principal Component-Based Grey Incidence (PGI)

An efficient method for offline quality control is the simultaneous optimization of a
number of responses. The simultaneous optimization of many responses in manufacturing
is challenging and requires additional experimental trials and compound analysis. In an
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innovative (PGI) methodology, an attempt has been made to combine the advantages of
Eigenvector analysis and grey incidence theory. Two stages are used to present the various
PGI technique steps.

3.2. Pre-Processing and Normalization of the S/N Ratio

A necessary solution was used to compute the requisite signal (process average) to
noise (standard deviation), quantified as the S/N ratio, for different quality factors. The
S/N ratio was the reciprocal coefficient of variation, which reflected the relative dispersion
of data and was used as an initial indicator. The first stage of data pre-processing was
finished, and the pre-processed data are shown in Table 1 along with the experimental
results. Equation (1) predicts response values and DPI values [12]. Table 2 summarizes the
results of the confirmation tests. In the validation trials, the difference between anticipated
and actual responses was less than 5%, indicating that the L18 Taguchi models developed for
AWJM on ZE41 is a magnesium alloy were acceptable. At the initial condition, JP = 150 MPa,
SOD = 0.5 mm, TS = 110 mm/min, and MFR = 200 g/min, and in the optimal condition, JP
= 300 MPa, SOD = 1 mm, TS = 72 mm/min, and MFR = 400 g/min; the performance of the
AWJM process on the ZE41 magnesium alloy was observed.

γpred = γm +
nq

∑
k=1

(γ − γm) (1)

Table 1. Experimental results with GIC and DPI grades.

S.No Run

Input Factors Response GIC
DPI

Grade
JP SOD TS AFR SR SZ SA

SR SZ SA
MPa mm mm/min kg/min µm mm Degree

1 26 350 0.5 50 400 3.11 4.928 7.575 0.457 0.489 0.943 0.630

2 15 350 0.5 110 400 2.68 4.899 8.598 0.496 0.428 1.000 0.641

3 6 350 2.5 50 400 4.13 5.057 7.974 0.392 0.516 0.765 0.558

4 22 350 0.5 50 200 3.50 5.057 8.065 0.418 0.477 0.875 0.590

5 23 350 2.5 110 400 3.52 5.232 8.151 0.417 0.476 0.863 0.585

6 17 350 2.5 50 200 3.86 5.363 6.726 0.458 0.639 0.728 0.608

7 3 350 0.5 110 200 4.18 5.340 8.231 0.373 0.490 0.800 0.554

8 7 300 1.5 80 300 3.90 4.159 8.421 0.431 0.511 0.707 0.550

9 1 350 2.5 110 200 3.96 5.716 6.786 0.380 0.552 0.923 0.618

10 13 150 0.5 50 400 4.09 4.587 9.151 0.367 0.444 0.808 0.540

11 10 250 1.5 80 350 4.12 5.780 9.335 0.375 0.448 0.765 0.529

12 27 250 1.5 65 300 4.14 6.033 8.579 0.355 0.455 0.869 0.560

13 16 250 1 80 300 4.16 5.715 9.845 0.369 0.430 0.758 0.519

14 24 250 1.5 80 300 3.88 6.432 9.879 0.364 0.408 0.854 0.542

15 19 250 1.5 80 300 4.23 5.879 6.758 0.379 0.582 0.840 0.600

16 9 250 1.5 80 300 4.25 6.432 9.785 0.350 0.421 0.806 0.526

17 25 250 1.5 95 300 3.59 5.489 7.186 0.440 0.551 0.821 0.604

18 14 250 2 80 300 4.34 6.472 11.433 0.347 0.386 0.745 0.493
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Table 2. Experimental validation.

Confirmation SR SZ SA

Initial setting 3.40 5.80 9.24
DPI setting 2.98 5.24 8.75

Actual 2.86 4.89 8.62
Improvement (%) 4.02 6.67 1.48

3.3. Surface Topography Analysis

Due to the irregular surface roughness towards the bottom, the surface quality was
primarily impacted. The aqua jet’s high abrasive pressure sufficiently sheared the material
at the bottom region. By contrast, the particle with lesser energy created a rough surface
by plastic deformation. Figure 2a depicts the smoother surface quality generated in the
centre region of the ZE41, which is a magnesium alloy machined surface with peck and
scratch at a higher jet pressure JP (350 MPa), whereas Figure 2b depicts the rough surface
with embedding and ploughing at a lower jet pressure (150 MPa) due to ductile erosion.
Microscopic analysis was performed on FESEM images observed at the higher levels of
each factor, with the remaining parameters maintained at a medium level. The SEM images
of factors such as JP, TS, SOD, and MFR are shown in Figure 2c,d.
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TS = 65 mm/min, MFR = 400 g/min, and JP = 350 MPa. The relative impact of variables in
lowering SR, SZ, and SA was investigated using ANOVA statistics on the DPI response. A
significant variable was JP at 44.31%. The other process variables, MFR, SOD, and TS, had
a minor impact. The confirmation results revealed that the PGI technique improved SR by
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